JPH10251714A - Production of silver powder for powder metallurgy - Google Patents

Production of silver powder for powder metallurgy

Info

Publication number
JPH10251714A
JPH10251714A JP5439397A JP5439397A JPH10251714A JP H10251714 A JPH10251714 A JP H10251714A JP 5439397 A JP5439397 A JP 5439397A JP 5439397 A JP5439397 A JP 5439397A JP H10251714 A JPH10251714 A JP H10251714A
Authority
JP
Japan
Prior art keywords
silver
powder
soln
formaldehyde
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5439397A
Other languages
Japanese (ja)
Inventor
Akihiko Okuda
晃彦 奥田
Tetsuji Takahashi
哲司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP5439397A priority Critical patent/JPH10251714A/en
Publication of JPH10251714A publication Critical patent/JPH10251714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain silver powder whose particle diameter and bulk are optimum for powder metallurgy by adding an alkali hydroxide soln. to a silver nitrate soln. to form silver oxide, adding a formaldehyde soln. and reducing the silver oxide at a specified temp. SOLUTION: A soln. prepd. by dissolving an alkali hydroxide such as sodium hydroxide in pure water is added to a silver nitrate soln. to form silver oxide. A formaldehyde soln. is added under cooling to <=60 deg.C, the amts. of the alkali hydroxide and formaldehyde are regulated so that a soln. after reduction is adjusted to pH0.1-6 and the objective silver powder for powder metallurgy is obtd. In this case, the amt. of the formaldehyde soln. added is preferably regulated to 1.1-1.5 equiv. based on the amt. of formed silver. The reason why the silver oxide is reduced at <=60 deg.C is that formaldehyde as a reducing agent is effectively utilized at <=60 deg.C and formic acid as a reactional product is used for controlling particle diameter. Fine silver powder vanishes by dissolution, nucleus-grown powder is formed and silver powder not uniform in particle diameter and fit for powder metallurgy is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉末冶金で用いら
れる銀粉末の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing silver powder used in powder metallurgy.

【0002】[0002]

【従来の技術】従来、粉末冶金用の銀粉末の製造方法と
しては、アトマイズ法等の物理的製造方法と還元法によ
る化学的製造方法とが代表的である。
2. Description of the Related Art Conventionally, as a method for producing silver powder for powder metallurgy, a physical production method such as an atomizing method and a chemical production method by a reduction method are representative.

【0003】アトマイズ法によって得られる銀粉末は、
粒径が数十μmの大きな粒子となることから圧縮、焼結
後の収縮が小さく、焼結後の見かけ密度が上がらず、後
の工程に影響を及ぼすという問題がある。
[0003] Silver powder obtained by the atomizing method is
Since large particles having a particle size of several tens of μm are obtained, there is a problem that shrinkage after compression and sintering is small, the apparent density after sintering does not increase, and affects subsequent steps.

【0004】一方、化学的還元法による銀粉末は、粉末
が細かいためハンドリングに手間がかかり、作業環境の
整備も必要となる。また、カサが大きくなると圧縮形成
の際金型への収容量に限界が生じ、製品重量の大きなも
のが得られにくくなるという問題がある。さらには、微
細な粉のためガスの吸着が多く、圧縮時にガスが抜けず
に後の工程において膨れるという問題も生じる。
[0004] On the other hand, silver powder produced by the chemical reduction method requires a lot of trouble in handling due to the fineness of the powder, and it is necessary to improve the working environment. In addition, when the bulk is large, there is a limit in the capacity of the mold to be formed during the compression forming, and there is a problem that it is difficult to obtain a product having a large weight. Further, there is a problem that the gas is adsorbed much due to the fine powder, and the gas is not released at the time of compression but swells in a subsequent step.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
欠点を解消し、粉末冶金に最適な粒径、カサとなるよう
な銀粉末の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a silver powder which solves the above-mentioned drawbacks and has an optimum particle size and bulk for powder metallurgy.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明は硝酸銀溶液に苛性アルカリ溶液を加えて酸化
銀を生成させた後、ホルマリン溶液を加えて酸化銀を還
元して粉末冶金用銀粉末を製造する方法において、酸化
銀を還元する時の還元温度を60℃以下にして反応させる
事を特徴とする粉末冶金用銀粉末の製造方法である。本
発明の銀粉製造方法においては、添加するホルマリン溶
液量を銀量に対して1.1〜 1.5当量、還元後のpHを 0.
1〜6にすることが好ましい。
In order to achieve the above object, the present invention provides a method for powder metallurgy by adding a caustic alkali solution to a silver nitrate solution to form silver oxide, and then adding a formalin solution to reduce silver oxide. In a method for producing silver powder, a method for producing a silver powder for powder metallurgy is characterized in that a reduction temperature at the time of reducing silver oxide is reduced to 60 ° C. or less to cause a reaction. In the method for producing silver powder of the present invention, the amount of formalin solution to be added is 1.1 to 1.5 equivalents to the amount of silver, and the pH after reduction is 0.1.
It is preferred to be 1-6.

【0007】本発明では、還元温度を60℃以下で反応さ
せる必要がある。これは還元剤であるホルマリンを有効
に利用するためと、反応生成物質である蟻酸を粒径制御
に用いる目的のためである。反応温度が60℃以上の場
合、ホルマリンが気化し、投入量に対して有効に作用せ
ず、また、蟻酸による粒径制御に関しては蟻酸の活性が
高いため60℃以上では反応が急激に進み過ぎて、粒径制
御が困難となるからである。
In the present invention, the reaction needs to be performed at a reduction temperature of 60 ° C. or less. This is for the purpose of effectively utilizing formalin as a reducing agent and for the purpose of using formic acid as a reaction product for controlling the particle size. When the reaction temperature is higher than 60 ° C, formalin vaporizes and does not act effectively on the input amount. In addition, regarding the particle size control by formic acid, the reaction proceeds too rapidly at 60 ° C or higher due to the high activity of formic acid. This makes it difficult to control the particle size.

【0008】さらに、添加するホルマリン溶液量を銀量
に対して 1.1当量以上とするのは、酸化銀を全量還元す
るために化学量論以上投入する必要があるからであり、
1.5未満にするのは過剰のホルマリンは必要とされない
ばかりでなく、反対に蟻酸生成量が多くなるために粒度
制御が困難となるという問題が生じるからである。
Further, the amount of the formalin solution to be added is set to 1.1 equivalent or more with respect to the amount of silver because it is necessary to add more than the stoichiometric amount in order to reduce the total amount of silver oxide.
The reason for setting the ratio to less than 1.5 is that not only is excess formalin not required, but also, on the other hand, there arises a problem that the particle size control becomes difficult due to an increase in the amount of formic acid produced.

【0009】還元後のpHを 0.1〜6にする目的は、蟻
酸による粒度制御を効果的に行うためであり、上記酸性
領域にてのみ蟻酸による銀の溶解還元反応が進む。明確
な反応メカニズムは不明であるが、酸性液中蟻酸存在下
の系内において化学電池が形成され、その起電力発生を
推進力として銀表面からの溶解還元が進むものと推察さ
れる。
The purpose of adjusting the pH after reduction to 0.1 to 6 is to effectively control the particle size with formic acid, and the dissolution and reduction reaction of silver with formic acid proceeds only in the acidic region. Although the clear reaction mechanism is unknown, it is presumed that a chemical battery is formed in a system in the presence of formic acid in an acid solution, and the generation and generation of the electromotive force drives the dissolution and reduction from the silver surface.

【0010】これらの反応の結果、微細な粒子ほど溶解
反応が進み、それらの粒子は消失あるいは減少し、他に
結晶成長が進んだ銀結晶粒子が生成される。本発明によ
る銀粉末は微細な粉末は溶解されてなくなり、一方で核
成長した粉が生成され、大小の粉末が混合された粉末冶
金に適したものとなる。また、 0.3μm以下の微細な粉
末がなくなり、ハンドリング上取り扱いやすいものとな
る。
As a result of these reactions, the dissolution reaction proceeds as finer particles become, and those particles disappear or decrease, and silver crystal particles with further advanced crystal growth are generated. In the silver powder according to the present invention, the fine powder is not dissolved, while the powder that grows nuclei is produced, which is suitable for powder metallurgy in which large and small powders are mixed. Further, fine powder having a size of 0.3 μm or less is eliminated, which makes it easy to handle in handling.

【0011】[0011]

【発明の実施の形態】本発明で用いられる硝酸銀は、粒
状又は粉末状の銀地金を硝酸に溶解して得るのが一般的
である。得られた硝酸銀溶液へ苛性ソーダ、苛性カリ等
の苛性アルカリを純水に溶解した溶液を添加して酸化銀
を生成させた後、60℃以下に冷却しながらホルマリン溶
液を添加し、還元反応後の溶液のpHが 0.1〜6になる
よう苛性アルカリならびにホルマリン量を調整すること
により、粉末冶金用銀粉末が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Silver nitrate used in the present invention is generally obtained by dissolving granular or powdery silver ingot in nitric acid. To the obtained silver nitrate solution, a solution in which caustic alkali such as caustic soda and potassium hydroxide is dissolved in pure water is added to generate silver oxide, and then a formalin solution is added while cooling to 60 ° C or less, and the solution after the reduction reaction is added. By adjusting the amount of caustic alkali and formalin so that the pH of the solution becomes 0.1 to 6, a silver powder for powder metallurgy can be obtained.

【0012】[0012]

【実施例】以下、本発明の実施例と従来例について説明
する。
Embodiments of the present invention and a conventional example will be described below.

【0013】[0013]

【実施例1】電解銀粉 108g(1当量)を 130ml硝酸
(62%)で溶解した後、苛性ソーダ80g(2当量)を純
水に溶解し、 200mlとした溶液に前記硝酸銀溶液を撹拌
しながら5分間で投入し、酸化銀を生成させた。この酸
化銀含有溶液を60℃以下に冷却しながらホルマリン溶液
(37%)52ml( 1.4当量)を5分間で投入した。還元後
のpHは 3.4であった。反応液を除去し、 200ml純水で
2回デカンテーションした後ろ過、乾燥した。その結
果、空気透過法による平均粒径は 4.2μm、タップ密度
は 3.0であった。
Example 1 After dissolving 108 g (1 equivalent) of electrolytic silver powder in 130 ml of nitric acid (62%), 80 g (2 equivalents) of caustic soda was dissolved in pure water, and the silver nitrate solution was added to a solution of 200 ml while stirring. Minutes to produce silver oxide. While the silver oxide-containing solution was cooled to 60 ° C. or lower, 52 ml (1.4 equivalents) of a formalin solution (37%) was charged in 5 minutes. The pH after the reduction was 3.4. The reaction solution was removed, decanted twice with 200 ml of pure water, filtered and dried. As a result, the average particle size was 4.2 μm and the tap density was 3.0 by the air permeation method.

【0014】[0014]

【実施例2】電解銀粉 108g(1当量)を 130ml硝酸
(62%)で溶解した後、苛性ソーダ80g(2当量)を純
水に溶解し、 200mlとした溶液に前記硝酸銀溶液を撹拌
しながら5分間で投入し、酸化銀を生成させた。この酸
化銀含有溶液を60℃以下に冷却しながらホルマリン溶液
(37%)44ml( 1.2当量)を5分間で投入した。還元後
のpHは 5.4であった。反応液を除去し、 200ml純水で
2回デカンテーションした後ろ過、乾燥した。その結
果、空気透過法による平均粒径は 2.6μm、タップ密度
は 2.4であった。
Example 2 After dissolving 108 g (1 equivalent) of electrolytic silver powder in 130 ml of nitric acid (62%), 80 g (2 equivalents) of caustic soda was dissolved in pure water, and the silver nitrate solution was added to a solution of 200 ml with stirring. Minutes to produce silver oxide. While the silver oxide-containing solution was cooled to 60 ° C. or lower, 44 ml (1.2 equivalents) of a formalin solution (37%) was charged in 5 minutes. The pH after the reduction was 5.4. The reaction solution was removed, decanted twice with 200 ml of pure water, filtered and dried. As a result, the average particle size was 2.6 μm and the tap density was 2.4 by the air permeation method.

【0015】[0015]

【従来例1】電解銀粉 108g(1当量)を 130ml硝酸
(62%)で溶解した後、苛性ソーダ80g(2当量)を純
水に溶解し、 200mlとした溶液に前記硝酸銀溶液を撹拌
しながら5分間で投入し、酸化銀を生成させた。この酸
化銀含有溶液を90℃に保温しながらホルマリン溶液(37
%)74ml(2当量)を5分間で投入した。還元後のpH
は12.4であった。反応液を除去し、 200ml純水で2回デ
カンテーションした後ろ過、乾燥した。その結果、空気
透過法による平均粒径は 2.2μm、タップ密度は1.6で
あった
Conventional Example 1 After dissolving 108 g (1 equivalent) of electrolytic silver powder in 130 ml of nitric acid (62%), 80 g (2 equivalents) of caustic soda was dissolved in pure water, and the silver nitrate solution was added to a solution of 200 ml while stirring. Minutes to produce silver oxide. While maintaining the silver oxide-containing solution at 90 ° C, a formalin solution (37
%) 74 ml (2 equivalents) were charged in 5 minutes. PH after reduction
Was 12.4. The reaction solution was removed, decanted twice with 200 ml of pure water, filtered and dried. As a result, the average particle size by the air permeation method was 2.2 μm, and the tap density was 1.6.

【0016】[0016]

【従来例2】電解銀粉 108g(1当量)を 130ml硝酸
(62%)で溶解した後、苛性ソーダ80g(2当量)を純
水に溶解し、 200mlとした溶液に前記硝酸銀溶液を撹拌
しながら5分間で投入し、酸化銀を生成させた。この酸
化銀含有溶液を60℃以下に冷却しながらホルマリン溶液
(37%)74ml(2当量)を5分間で投入した。還元後の
pHは 1.5であった。反応液を除去し、 200ml純水で2
回デカンテーションした後ろ過、乾燥した。その結果、
空気透過法による平均粒径は25μm、タップ密度は 4.5
であった。
Conventional Example 2 After dissolving 108 g (1 equivalent) of electrolytic silver powder in 130 ml of nitric acid (62%), 80 g (2 equivalents) of caustic soda was dissolved in pure water, and the silver nitrate solution was added to a solution of 200 ml while stirring. Minutes to produce silver oxide. While the silver oxide-containing solution was cooled to 60 ° C. or lower, 74 ml (2 equivalents) of a formalin solution (37%) was charged in 5 minutes. The pH after the reduction was 1.5. Remove the reaction solution and add 200 ml
After decanting twice, the mixture was filtered and dried. as a result,
Average particle size by air permeation method is 25μm, tap density is 4.5
Met.

【0017】(評価)実施例1、2の銀粉末を圧縮密度
(見かけ密度) 5.0まで圧縮形成し、 850℃1時間焼結
した。圧縮形成の状態、焼結密度、焼結時の状態を表1
に示す。従来例1、2の銀粉末についても、実施例1、
2と同様に圧縮形成し、その結果を表1に合わせて示
す。
(Evaluation) The silver powders of Examples 1 and 2 were compacted to a compressed density (apparent density) of 5.0 and sintered at 850 ° C. for 1 hour. Table 1 shows the state of compression formation, sintering density, and state during sintering.
Shown in For the silver powders of Conventional Examples 1 and 2,
2, and the results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上説明したように、本発明の粉末冶金
用銀粉末の製造方法は、酸化銀の還元温度を60℃以下に
て反応させ、ホルマリン溶液量を銀量に対して 1.1〜
1.5当量、還元後pHを 0.1〜6にすることをにより、
従来では製造できなかった粉末冶金用銀粉末を容易に得
ることができ、粉末冶金の原料として優れた結果が得ら
れる。
As described above, in the method for producing a silver powder for powder metallurgy according to the present invention, a reduction reaction of silver oxide is carried out at a temperature of 60 ° C. or less, and a formalin solution is used in an amount of 1.1 to 1.1% based on the amount of silver.
By adjusting the pH to 0.1 to 6 after reduction by 1.5 equivalents,
Silver powder for powder metallurgy that could not be produced conventionally can be easily obtained, and excellent results can be obtained as a raw material for powder metallurgy.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硝酸銀溶液に苛性アルカリ溶液を加えて
酸化銀を生成させた後、ホルマリン溶液を加えて酸化銀
を還元して粉末冶金用銀粉末を製造する方法において、
酸化銀を還元する時の還元温度を60℃以下とする事を特
徴とする粉末冶金用銀粉末の製造方法。
1. A method for producing silver powder for powder metallurgy by adding a caustic alkali solution to a silver nitrate solution to generate silver oxide, and then adding a formalin solution to reduce silver oxide,
A method for producing a silver powder for powder metallurgy, wherein the reduction temperature when reducing silver oxide is set to 60 ° C. or lower.
【請求項2】 上記添加するホルマリン溶液量を銀量に
対して 1.1〜 1.5当量、還元後のpHを 0.1〜6にする
ことを特徴とする請求項1記載の粉末冶金用銀粉末の製
造方法。
2. The method for producing silver powder for powder metallurgy according to claim 1, wherein the amount of the formalin solution to be added is 1.1 to 1.5 equivalents to the amount of silver, and the pH after reduction is 0.1 to 6. .
JP5439397A 1997-03-10 1997-03-10 Production of silver powder for powder metallurgy Pending JPH10251714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5439397A JPH10251714A (en) 1997-03-10 1997-03-10 Production of silver powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5439397A JPH10251714A (en) 1997-03-10 1997-03-10 Production of silver powder for powder metallurgy

Publications (1)

Publication Number Publication Date
JPH10251714A true JPH10251714A (en) 1998-09-22

Family

ID=12969448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5439397A Pending JPH10251714A (en) 1997-03-10 1997-03-10 Production of silver powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JPH10251714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040016758A (en) * 2002-08-19 2004-02-25 최명부 The magative ion antibvacterial nonwoven fabrics
KR100713662B1 (en) * 2005-10-20 2007-05-02 한국지질자원연구원 Manufacturing Process of Sphere Shape Silver Powder from Silver Scrap
CN102962473A (en) * 2012-12-06 2013-03-13 云南铜业科技发展股份有限公司 Method for preparing silver powder for touch screen silver paste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040016758A (en) * 2002-08-19 2004-02-25 최명부 The magative ion antibvacterial nonwoven fabrics
KR100713662B1 (en) * 2005-10-20 2007-05-02 한국지질자원연구원 Manufacturing Process of Sphere Shape Silver Powder from Silver Scrap
CN102962473A (en) * 2012-12-06 2013-03-13 云南铜业科技发展股份有限公司 Method for preparing silver powder for touch screen silver paste

Similar Documents

Publication Publication Date Title
CN109311698B (en) Ternary precursor material and preparation method thereof
JP4018138B2 (en) Long spherically agglomerated basic cobalt carbonate (II) and long spherically agglomerated cobalt hydroxide (II), their production and use
CZ300529B6 (en) Pulverized tantalum, process of its preparation as well as anodes and capacitors produced therefrom
JPS61295308A (en) Production of alloy powder containing rare earth metal
AU2022342227A1 (en) Novel green lithium iron phosphate precursor, preparation method therefor and application thereof
JPH11292548A (en) Tricobalt tetroxide and its production
KR100420605B1 (en) Cabalt Metal Agglomerates, a Process of the Same and Their Use
JPH10251714A (en) Production of silver powder for powder metallurgy
JPH11292549A (en) Cobalt hydroxide and its production
WO2017073392A1 (en) Method for producing seed crystal of cobalt powder
EP1509630B1 (en) Process for manufacturing an alloy material for use in the manufacture of synthetic diamonds
KR100411998B1 (en) Cabalt Metal Agglomerates, a Method of Producing Them and Their Use
JPH0251847B2 (en)
JP2002038206A (en) Method for producing rare earth-transition metal- nitrogen-based alloy powder
JP2002211930A (en) Method for producing cobalt oxide particles by neutralization method
JPS5855337A (en) Manufacture of u3o8 powder
JPS59104404A (en) Preparation of copper powder by hydrogen reduction
CN110697802A (en) Shell-core structured carbonate ternary precursor and preparation method thereof
JPH05105922A (en) Production of fine nickel powder
JPH05156325A (en) Production of fine metal powder
JPH05286713A (en) Production of highly dispersible magnesium oxide and highly dispersible magnesium oxide
JP2023529366A (en) Manufacture of magnetic materials
JP2669010B2 (en) Desiliconization method in metal salt solution
JP2002085966A (en) Carbon dioxide absorbing material, its production method and combustion equipment
JP2004250719A (en) Fibrous nickel structure and manufacturing method therefor