JPS59104404A - Preparation of copper powder by hydrogen reduction - Google Patents

Preparation of copper powder by hydrogen reduction

Info

Publication number
JPS59104404A
JPS59104404A JP21418582A JP21418582A JPS59104404A JP S59104404 A JPS59104404 A JP S59104404A JP 21418582 A JP21418582 A JP 21418582A JP 21418582 A JP21418582 A JP 21418582A JP S59104404 A JPS59104404 A JP S59104404A
Authority
JP
Japan
Prior art keywords
copper
copper powder
bismuth
aqueous solution
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21418582A
Other languages
Japanese (ja)
Other versions
JPH0225405B2 (en
Inventor
Tadao Nagai
永井 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21418582A priority Critical patent/JPS59104404A/en
Publication of JPS59104404A publication Critical patent/JPS59104404A/en
Publication of JPH0225405B2 publication Critical patent/JPH0225405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F9/26Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors

Abstract

PURPOSE:To obtain a fine and uniform hardly oxidized crystalline copper powder with high purity, by a method wherein bismuth is added to an aqueous copper sulfate solution in a specific amount or more and hydrogen gas is introduced into said solution under pressure to perform reduction reaction. CONSTITUTION:An aqueous copper sulfate solution is subjected to hydrogen reduction to prepare a copper powder. The copper concn. in the aqueous copper sulfate solution is set to 10-90g/l (especially 20-40g/l) and 0.05g/l or more (expecially 0.05-1g/l) of bismuth is added to said solution. Bismuth is pref. added in the form of bismuth sulfate. Hydrogen gas is introduced into the resulting solution under pressure to perform reduction reaction to form a crystalline fine copper powder. The reaction temp. at this time is 120-250 deg.C and hydrogen partial pressure is 3-200kg/cm<2>.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、硫酸銅水溶液を水素還元するととによシ微細
銅粉を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing fine copper powder by reducing an aqueous copper sulfate solution with hydrogen.

従来技術 従来、銅粉の製造法として溶湯噴霧法、機械的粉砕法、
電解法等が代表的なものとして知られておシ、又、近年
水素還元法も提案されている。
Conventional technology Conventionally, methods for producing copper powder include molten metal spraying, mechanical crushing,
Electrolytic methods are known as typical methods, and hydrogen reduction methods have also been proposed in recent years.

而して、溶湯噴霧法は、溶融金属銅の細流を水孔から流
出させ、これに圧縮ガスあるいは水流ジェットを作用さ
せて溶融金属銅を噴霧状態にして細かく分散させると同
時に冷却凝固させて銅粉を得ることから成るものである
が、この方法では溶融金属銅を上記のように噴霧状態に
して細かく分散させるために加えられる力の作用時間が
短いので得られる銅粉は微粉になりにくいという欠点が
みられる。
In the molten metal atomization method, a trickle of molten copper metal flows out from a water hole, and a compressed gas or a water jet is applied to the molten metal copper to make it into a spray state and disperse it finely.At the same time, it is cooled and solidified to form copper. This method consists of obtaining powder, but in this method, the force applied to make the molten copper into a spray state and disperse it finely is short, so the resulting copper powder is said to be less likely to become fine powder. There are drawbacks.

又、機械的粉砕法は、電解法による析出銅やガス還元法
により得られた金属銅を、ボールミル、振動ミル等で粉
砕することから成るものであって、操作が比較的筒車で
粉砕コストも低床であるという利点がある反面、粉砕時
に粉砕機の摩耗等に起因する不純物が粉砕金属銅中に混
入し易く、加うるに粉砕中に酸化を起し易いため、得ら
れる銅粉の純度の低下が避けられ々いという欠点がある
In addition, the mechanical pulverization method consists of pulverizing deposited copper by electrolytic method or metallic copper obtained by gas reduction method using a ball mill, vibration mill, etc., and the operation is relatively hourly and the cost of pulverization is low. Although it has the advantage of having a low floor, it is easy for impurities caused by wear of the crusher to get mixed into the crushed metal copper during crushing, and in addition, it is easy to cause oxidation during crushing, so the resulting copper powder It has the disadvantage that a decrease in purity is unavoidable.

次に、電解法は、銅電解によ多陰極に析出した銅粉を採
取し、これを洗浄、脱水、真空乾燥した後篩分けするこ
とから成るものである。
Next, the electrolytic method consists of collecting the copper powder deposited on the multi-cathode by copper electrolysis, washing it, dehydrating it, vacuum drying it, and then sieving it.

しかし、この方法で得られる銅粉は酸素含有量が多くな
シ易く、加うるに電解液が銅粉の粒子の間隙に残留して
銅粉の径時的変化を起し易いという問題がみられる。
However, the copper powder obtained by this method tends to have a high oxygen content, and in addition, there is a problem that the electrolyte remains in the gaps between the copper powder particles, causing changes in the copper powder over time. It will be done.

又、硫酸銅水溶液のような銅含有水溶液を水素のような
還元性ガスで還元することによシ銅粉を製造する方法で
は、得られる銅粉の純度が比較的高いものの、還元中に
生成する析出銅の粒子が互に凝集し、また、還元を行な
うための反応器の内壁に付着し易い等の問題がある。
In addition, in the method of producing copper powder by reducing a copper-containing aqueous solution such as a copper sulfate aqueous solution with a reducing gas such as hydrogen, although the purity of the copper powder obtained is relatively high, There are problems in that the deposited copper particles aggregate with each other and tend to adhere to the inner wall of the reactor for reduction.

更に、一般に微細な銅粉は、その比表面積が大きく活性
状態となるため非常に酸化され易占ので、銅粉の製造上
その酸化防止の対策が重要である。
Furthermore, since fine copper powder generally has a large specific surface area and is in an active state, it is very easily oxidized, so it is important to take measures to prevent oxidation in the production of copper powder.

発明の目的 本発明は、銅粉の製造における上述したごとき現状に鑑
みてなされたものであって、微細な均一粒子を有し、純
度が高く、且つ結晶質で酸化しにくい銅粉を、水素還元
法によシ有利に製造し得る方法を提供することを目的と
する。
Purpose of the Invention The present invention was made in view of the above-mentioned current situation in the production of copper powder. The object of the present invention is to provide a method that can be advantageously produced by a reduction method.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

発明の構成 牢発明の構成上の特徴は、硫酸銅水溶液にビスマスを0
.05gA以上添加して、加圧下に水素ガスを導入して
還元反応を行なわせるととによシ、結晶質の微細銅粉を
生成させることにある。
Structure of the Invention The structural feature of the invention is that bismuth is added to an aqueous solution of copper sulfate.
.. By adding 0.05 gA or more and introducing hydrogen gas under pressure to carry out the reduction reaction, it is possible to produce crystalline fine copper powder.

すなわち、本発明は、硫酸銅水溶液を水素還元して銅粉
を製造するに際し、上記水溶液にビスマスを添加してお
くと、結晶質の銅粒子が生成し。
That is, in the present invention, when producing copper powder by reducing an aqueous copper sulfate solution with hydrogen, if bismuth is added to the aqueous solution, crystalline copper particles are generated.

しかも粒子相互の凝集も少なく、且つ均一な粒子から成
る純度の高い微細銅粉が得られるとの知見に基づくもの
である。因みに、このようなビスマスの機能は、硫酸銅
水溶液からの銅の核生成時および核の成長時にビスマス
か何らかの触媒作用をすることによるものと考えられる
Furthermore, this method is based on the knowledge that fine copper powder with high purity and consisting of uniform particles with little mutual aggregation of particles can be obtained. Incidentally, such a function of bismuth is thought to be due to the fact that bismuth acts as a catalyst during copper nucleation and nucleus growth from an aqueous copper sulfate solution.

本発明で硫酸銅水溶液に添加するビスマスは、ビスマス
化合物の形態で用いるとよく、ビスマス化合物中のビス
マスの原子価は、3価又は5価のいずれでもよく、又化
合物の形態は塩形態等の任意のものであってもよいが、
硫酸以外のアニオンを系に加えないならば1例えば硫酸
ビスマスの形態で添加するとよい。ビスマスの上記水溶
液に対する添加量は、ビスマスとして0.051/lで
あることが必要であって、この添加量付近から上述した
ような効果が認められ、その添加濃度が増加するに伴な
い、上記効果も大きくなる。しかし、ビスマスの上記水
溶液中の濃度が1.0 Fl/lを越えると生成する銅
粉中に白色のビスマス塩の沈殿が混入するように力るの
で、実際にはビスマスの添加濃度を0.05〜1. O
Fl/lにすることが好ましい。
Bismuth added to the copper sulfate aqueous solution in the present invention is preferably used in the form of a bismuth compound, and the valence of bismuth in the bismuth compound may be either trivalent or pentavalent, and the form of the compound may be a salt form, etc. It may be arbitrary, but
If anions other than sulfuric acid are not added to the system, they may be added in the form of bismuth sulfate, for example. The amount of bismuth added to the above aqueous solution needs to be 0.051/l as bismuth, and the above-mentioned effect is observed from around this addition amount, and as the addition concentration increases, the above-mentioned The effect will also be greater. However, if the concentration of bismuth in the above aqueous solution exceeds 1.0 Fl/l, white bismuth salt precipitates will be mixed into the produced copper powder, so in reality, the concentration of bismuth added should be 0.0 Fl/l. 05-1. O
It is preferable to use Fl/l.

本発明で用いる硫酸銅水溶液中の銅濃度は、10〜90
g/ム好ましくは20〜40 f//lであって、上記
銅濃度が大きくなるに伴力いビスマスの添加効果が低減
して、還元によシ析出する銅粒子の結晶性が失なわれる
とともに、銅粒子が凝集する傾向があるので留意すべき
である二本発明において、上述のようにしてビスマスを
添加した硫酸銅水溶液に水素ガスを加圧下に導入して還
元反応を行なうに当っては、還元反応時の反応温度を1
20〜250C,好ましくは150〜180Cに、およ
び水素ガスの分圧を3〜200に9/、1、好ましくは
5〜20隆臼にするとよい。なお、この反応温度および
水素ガスの分圧は、硫酸銅水溶液中の銅濃度、遊離硫酸
濃度、反応装置の様式および目的とする銅粉の粒径に応
じて最適条件が変化するので実際上はこれらの要素を勘
案して選定するとよい。
The copper concentration in the copper sulfate aqueous solution used in the present invention is 10 to 90
g/mu, preferably 20 to 40 f//l, and as the copper concentration increases, the effect of adding bismuth decreases, and the crystallinity of copper particles precipitated by reduction is lost. At the same time, it should be noted that copper particles tend to agglomerate.In the present invention, hydrogen gas is introduced under pressure into a copper sulfate aqueous solution to which bismuth has been added as described above to carry out a reduction reaction. is the reaction temperature during the reduction reaction of 1
The temperature is preferably 20 to 250 C, preferably 150 to 180 C, and the partial pressure of hydrogen gas is 3 to 200 to 9/1, preferably 5 to 20 molar. In addition, the optimal conditions for this reaction temperature and partial pressure of hydrogen gas vary depending on the copper concentration in the copper sulfate aqueous solution, the free sulfuric acid concentration, the type of reaction equipment, and the target particle size of copper powder, so in practice, It is recommended to take these factors into consideration when making a selection.

因みに、一般に反応温度および水素ガス分圧が高くなる
と上記水溶液からの銅の核発生が容易となるので、@細
な銅粉が生成し易くなシ、特に反応温度が高いと反応速
度も速くなって短時間で高い収率を得られるが、一方銅
粉粒子の互いの凝集および銅粉における樹枝状結晶の成
長もみられるように々るので留意すべきである。
Incidentally, in general, as the reaction temperature and hydrogen gas partial pressure increase, copper nucleation from the aqueous solution becomes easier, so fine copper powder is less likely to be produced.In particular, when the reaction temperature is high, the reaction rate becomes faster. Although high yields can be obtained in a short period of time, it should be noted that on the other hand, agglomeration of copper powder particles with each other and growth of dendrites in the copper powder may occur.

又、本発明における水素還元反応では反応の進行に伴な
って硫酸が生成して水溶液中の遊離硫酸濃度が徐々に増
大し、該濃度が5001/l以上になると還元反応速度
が極めて遅くなるので、反応期間中におけろ水溶液中の
硫酸濃度の監視には十分な注意を払う必要がある。
In addition, in the hydrogen reduction reaction of the present invention, sulfuric acid is produced as the reaction progresses, and the concentration of free sulfuric acid in the aqueous solution gradually increases, and when the concentration exceeds 5001/l, the reduction reaction rate becomes extremely slow. It is necessary to pay close attention to monitoring the sulfuric acid concentration in the aqueous solution during the reaction period.

上述のように、還元反応の速度は遊離硫酸濃度に影響さ
れ、該濃度が低い方が結晶性の良好な銅粉が得られるの
で1本発明の実施に肖っては、上記水溶液中の遊離硫酸
濃度があまシ高くならないうちに反応を停止するか、も
しくは該水溶液を適宜中和処理するとよい。
As mentioned above, the rate of the reduction reaction is affected by the concentration of free sulfuric acid, and copper powder with better crystallinity can be obtained when the concentration is lower. It is preferable to stop the reaction before the sulfuric acid concentration becomes too high, or to neutralize the aqueous solution as appropriate.

又、本発明を実施するに当って、オートクレーブのよう
な圧力容器に所要量のビスマスを添加した硫酸銅水溶液
を収容し、これに所定の温度および圧力下で水素ガスを
吹き込み攪拌下に還元反応を行なわせて銅粉を生成する
ことから成る回分方式を採用する場合には、反応により
生成した銅粉が反応時間の経過とともにその粒径が増大
するので、還元反応を完結する壕で行ガわずに水溶液中
の銅濃度、反応温度、水素ガスの分圧等の反応条件を勘
案して適当な還元率の時点で反応を停止して所望の粒径
の微細銅粉を回収し得るようにするとよい。
Furthermore, in carrying out the present invention, a pressure vessel such as an autoclave is used to store a copper sulfate aqueous solution to which a required amount of bismuth has been added, and hydrogen gas is blown into the solution at a predetermined temperature and pressure to carry out a reduction reaction while stirring. When using a batch method in which copper powder is produced by performing a reduction reaction, the particle size of the copper powder produced by the reaction increases as the reaction time progresses, so the reduction reaction is completed in a trench. In order to recover fine copper powder with the desired particle size, the reaction is stopped at an appropriate reduction rate by taking into account reaction conditions such as copper concentration in the aqueous solution, reaction temperature, and partial pressure of hydrogen gas. It is better to make it .

又、本発明を連続方式で実施するには、例えば圧力容器
に、所要量のビスマスを添加した硫酸銅水溶液を連続的
に供給し、その際所定の還元率が維持されるようにその
供給量を調節し、反応により生成した銅粉を含む溶液を
上記容器から連続的に取シ出すようにする。なお、この
場合、容器の一端から上記水溶液を供給するとともに水
素ガスおよび加熱源としての水蒸気を並流的に導入する
か、もしくは水素ガスおよび水蒸気を容器の他端から導
入して上記水溶液と向流的に接触させて、該水溶液と水
素ガスおよび水蒸気との接触が十分性われるようにする
Further, in order to carry out the present invention in a continuous manner, for example, a copper sulfate aqueous solution to which a required amount of bismuth has been added is continuously supplied to a pressure vessel, and the supply amount is adjusted so that a predetermined reduction rate is maintained. The solution containing the copper powder produced by the reaction is continuously taken out from the container. In this case, the aqueous solution may be supplied from one end of the container and hydrogen gas and water vapor as a heating source may be introduced in parallel, or hydrogen gas and water vapor may be introduced from the other end of the container so that they flow counter-currently with the aqueous solution. The aqueous solution is brought into contact with the hydrogen gas and water vapor to ensure sufficient contact with the hydrogen gas and water vapor.

このようにして得られる銅粉を含む溶液は、サイクロン
、カロウエルコーン等の篩別器によシ固液分離を行なっ
て銅粉を回収する。
The solution containing copper powder thus obtained is subjected to solid-liquid separation using a sieve such as a cyclone or a carowell cone to recover the copper powder.

なお5本発明では還元反応時に生成した銅粉の粒子が互
に凝集するのを更に確実に防止する目的でポリアミン、
ポリアクリル酸のような公知の凝集防止剤をビスマスと
ともに硫酸銅水溶液に添加することも可能である。
5 In the present invention, polyamine,
It is also possible to add known anti-agglomerating agents such as polyacrylic acid to the aqueous copper sulfate solution along with bismuth.

斜上のように、本発明によると、微細な均一粒度から成
る結晶質の酸化しにくい高純度の銅粉が有利に製造し得
るので、結晶面の反射率を利用した塗料および導電ペー
スト等の電子工業分野での用途に適した銅粉を提供する
ことが可能となる。
As shown above, according to the present invention, crystalline high-purity copper powder that is difficult to oxidize and has a fine uniform particle size can be advantageously produced, so it can be used for paints, conductive pastes, etc. that utilize the reflectance of crystal planes. It becomes possible to provide copper powder suitable for use in the electronic industry field.

以下に実施例を示して本発明を更に具体的に説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例 本例は、硫酸銅水溶液中の銅濃度を161!/1 。Example In this example, the copper concentration in the copper sulfate aqueous solution is 161! /1.

321/l並びに50の4に、および遊離硫酸濃度を0
 ’/l、50 ’/り並びに200bりにそれぞれ調
節した該水溶液の各々に一−−硫酸ビスマスーをビス−
マスとして0.06#、句、 0.1 F、句並びに0
.51句の各濃度で添加したものをそれぞれオートクレ
ーブに装入し、これにx40c、t60C並びに185
0の温度で水素ガスを10kg/crl並びに20顎の
分圧下に導入して還元反応を行なわせ、上記銅濃度、遊
離硫酢婦度、ビスマス添加濃度、反応温度および水素ガ
ス分圧、更には還元率等の条件と得られる銅粉の粒径お
よび結晶形状、更には粒子の凝集性との関係を示したも
のである。 ”なお、上記還元反応の過程で反応液を取
シ出して濾過、乾燥および篩別を行なって銅粉を回収し
た。
321/l and 50 to 4, and the free sulfuric acid concentration to 0.
Bismuth monosulfate was added to each of the aqueous solutions adjusted to 50'/l, 50'/l and 200'/l.
0.06 #, phrase, 0.1 F, phrase and 0 as squares
.. 51 added at each concentration were charged into an autoclave, and x40c, t60c and 185
A reduction reaction is carried out by introducing hydrogen gas at a partial pressure of 10 kg/crl and 20 kg at a temperature of This figure shows the relationship between conditions such as the reduction rate, the particle size and crystal shape of the copper powder obtained, and the cohesiveness of the particles. ``In the process of the above reduction reaction, the reaction solution was taken out, filtered, dried, and sieved to recover copper powder.

結果は表1に示すとおシである。The results are shown in Table 1.

表1にみられるように、得られた銅粉はいずれも立方晶
系の低面指数を有する結晶面が発達した粒子であシ1反
応が進んで還元率が91チに達したものを除いては粒子
の凝集が少ないかもしくは弱いものであり、且つその平
均粒径も硫酸銅水溶液の組成および反応条件によシ異な
るも、平均して微細と言い得るものであシ、約03〜0
.5μの立方体結晶も含まれる。
As shown in Table 1, all of the obtained copper powders were particles with developed crystal faces having a low facet index of the cubic system, except those in which the reaction progressed and the reduction rate reached 91. The agglomeration of the particles is small or weak, and the average particle size also varies depending on the composition of the aqueous copper sulfate solution and the reaction conditions, but on average it can be said to be fine, about 0.3 to 0.0
.. A 5μ cubic crystal is also included.

次に参考として1表1における試験A3で得られた銅粉
と、ビスマスを添加しない以外は試験163と同一条件
で反応させて得られた銅粉(比較例)との電子顕微鏡写
真を添付図面に第1図(本発明)並びに第2図(比較例
)として示した。
Next, for reference, the attached drawing is an electron micrograph of the copper powder obtained in Test A3 in Table 1 and the copper powder obtained by reacting under the same conditions as Test 163 (comparative example) except that bismuth was not added. 1 (present invention) and FIG. 2 (comparative example).

この添付図面にみられるように、本発明によシビスマス
を添加した硫酸銅水溶液を水素還元して得られた銅粉は
、その粒子相互の凝集が少ないのに対して、ビスマスを
添加しない上記水溶液を同様に水素還元して得ら袢た銅
粉ではその表面が丸みを帯び粒子同志が互いに凝集して
いることが分る。なお、本発明で得られた銅粉を自然雰
囲気中で室温に放置したところ、24時間経過後でも銅
粉の酸化はみられず、したがって、耐酸化性に優れた銅
粉であるのに対して比較例の銅粉では24時間経過後に
酸化して著しい変色がみられた。
As seen in this attached drawing, the copper powder obtained by hydrogen reduction of a copper sulfate aqueous solution to which sibismuth has been added according to the present invention has less agglomeration among its particles, whereas the above aqueous solution without bismuth It can be seen that the surface of the powdered copper powder obtained by similar hydrogen reduction has a rounded surface and the particles are agglomerated with each other. Furthermore, when the copper powder obtained in the present invention was left at room temperature in a natural atmosphere, no oxidation of the copper powder was observed even after 24 hours had passed. In the copper powder of the comparative example, significant discoloration was observed due to oxidation after 24 hours.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明によシ得られた銅粉の電子顕微鏡写真
を例示したものであり、第2図はビスマスを添加しない
硫酸銅水溶液を水素還元して得られた銅粉の電子顕微鏡
写真を例示したものである。
Fig. 1 shows an example of an electron micrograph of copper powder obtained according to the present invention, and Fig. 2 shows an electron micrograph of copper powder obtained by hydrogen reduction of a copper sulfate aqueous solution without adding bismuth. This is an example of a photograph.

Claims (3)

【特許請求の範囲】[Claims] (1)硫酸銅水溶液を水素還元して銅粉を製造する方法
において、硫酸銅水溶液にビスマスをQ、 051/l
以上添加して、加圧下に水素ガスを導入して還元反応を
行なわせることによシ。 結晶質の微細銅粉を生成させることを特徴とする銅粉の
製造法。
(1) In the method of producing copper powder by reducing a copper sulfate aqueous solution with hydrogen, bismuth is added to the copper sulfate aqueous solution with Q, 051/l.
By adding the above and introducing hydrogen gas under pressure to cause a reduction reaction. A method for producing copper powder characterized by producing crystalline fine copper powder.
(2)硫酸銅水溶液中の銅濃度が10乃至9ONである
特許請求の範囲第1項記載の製造法。
(2) The manufacturing method according to claim 1, wherein the copper concentration in the copper sulfate aqueous solution is 10 to 9 ON.
(3)ビスマスの添加濃度が0.05乃至1.09/l
である特許請求の範囲第1項又は第2項記載の製造法。
(3) Addition concentration of bismuth is 0.05 to 1.09/l
The manufacturing method according to claim 1 or 2.
JP21418582A 1982-12-07 1982-12-07 Preparation of copper powder by hydrogen reduction Granted JPS59104404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21418582A JPS59104404A (en) 1982-12-07 1982-12-07 Preparation of copper powder by hydrogen reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21418582A JPS59104404A (en) 1982-12-07 1982-12-07 Preparation of copper powder by hydrogen reduction

Publications (2)

Publication Number Publication Date
JPS59104404A true JPS59104404A (en) 1984-06-16
JPH0225405B2 JPH0225405B2 (en) 1990-06-04

Family

ID=16651640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21418582A Granted JPS59104404A (en) 1982-12-07 1982-12-07 Preparation of copper powder by hydrogen reduction

Country Status (1)

Country Link
JP (1) JPS59104404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115102A (en) * 1983-11-25 1985-06-21 日本鉱業株式会社 Copper powder filling organic conductive material
JP2018154883A (en) * 2017-03-17 2018-10-04 住友金属鉱山株式会社 Method for producing a nickel powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115102A (en) * 1983-11-25 1985-06-21 日本鉱業株式会社 Copper powder filling organic conductive material
JP2018154883A (en) * 2017-03-17 2018-10-04 住友金属鉱山株式会社 Method for producing a nickel powder

Also Published As

Publication number Publication date
JPH0225405B2 (en) 1990-06-04

Similar Documents

Publication Publication Date Title
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
CA1089654A (en) Production of ultrafine cobalt powder from dilute solution
KR20120116013A (en) Spherical copper fine powder and process for production of the same
JP2003503300A (en) Method for producing cobalt hydroxide or cobalt mixed hydroxide of high density and large particle size and product produced by this method
CN108467914B (en) A kind of processing method of waste battery grade ferric phosphate
JP3955130B2 (en) Method for producing vanadium (III) sulfate
JPS59104404A (en) Preparation of copper powder by hydrogen reduction
KR100420605B1 (en) Cabalt Metal Agglomerates, a Process of the Same and Their Use
KR100411998B1 (en) Cabalt Metal Agglomerates, a Method of Producing Them and Their Use
JPH09221322A (en) Indium oxide-tin oxide powder and its production
JP2005524515A (en) Method for producing diamond using catalyst and processing of graphite / catalyst mixture used in synthesis
JP2834199B2 (en) Method for producing ultrafine tungsten particles
JP4552324B2 (en) Method for producing cobalt oxide particles by neutralization method
US4409019A (en) Method for producing cobalt metal powder
JPH05156326A (en) Production of fine silver powder
JPS638217A (en) Manufacture of aqueous suspension containing high concentration silver salt-tin salt
US4025611A (en) Process for obtaining hyperfine magnetite powder
JPH0249364B2 (en)
KR100491677B1 (en) METHOD FOR PREPARING OF CeO2 NANO POWDER
JP2004284952A (en) Indium oxide-tin oxide powder
JPH03180481A (en) Production of copper oxide powder by electrolysis
JPH04176806A (en) Production of fine copper particles
JPH10251714A (en) Production of silver powder for powder metallurgy
CN117107099A (en) Preparation method of Ti6Al4V alloy powder
JP2736693B2 (en) Method for producing jarosite particle powder