JPH0249364B2 - - Google Patents

Info

Publication number
JPH0249364B2
JPH0249364B2 JP58036558A JP3655883A JPH0249364B2 JP H0249364 B2 JPH0249364 B2 JP H0249364B2 JP 58036558 A JP58036558 A JP 58036558A JP 3655883 A JP3655883 A JP 3655883A JP H0249364 B2 JPH0249364 B2 JP H0249364B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt
powder
fine
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58036558A
Other languages
Japanese (ja)
Other versions
JPS59162206A (en
Inventor
Hisao Hayashi
Yoshinobu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3655883A priority Critical patent/JPS59162206A/en
Publication of JPS59162206A publication Critical patent/JPS59162206A/en
Publication of JPH0249364B2 publication Critical patent/JPH0249364B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は湿式法によるニツケル及びコバルト微
粉末の製造方法に係り、詳しくは粒度分布幅が小
さく均一で、非凝集性のニツケル及びコバルトの
金属微粉末の製造方法に関する 近時ニツケル及びコバルトの金属微粉末は粉末
冶金分野だけでなく、電子工業分野において、
金、銀、パラジウム等の貴金属に替つて、例えば
電子部品用ペースト材料等として実用化されつつ
ある。 ニツケル及びコバルト微粉を得る従来の製造方
法としては、 (1) ニツケル又はコバルトのカーボニル塩を熱分
解する方法 (2) ニツケル又はコバルトの酸化物あるいは塩を
融点以下の温度で水素または炭素で還元する方
法 (3) 真空あるいは不活性ガス中でニツケルメタル
を蒸発凝縮せしめるガス中蒸発法 等が広く知られている。 (1)の方法は広く工業的に実施されている方法で
あるが、得られるニツケル粉末は粒径0.5〜10μm
と粒度分布幅が広く粒子形状も一定しないもので
あり、さらに電子工業分野で必要とする粒径の小
さい粒度分布幅の小さいものとするには、粉砕、
篩分けを必要とし、製品の収率も悪い。 また(2)の方法は酸化物あるいは塩等の化合物の
粒度、粒子形態の影響が顕著であること及び高温
で反応させるため粒子の焼結が生じ易い等の欠点
がある。更に(3)の方法は温度、雰囲気の圧力など
により蒸発速度が支配され、金属微粉末の製造能
力は極めて低い、大量の金属微粉末を連続して製
造しにくい欠点を有する。 また、従来実施されていた電気化学的還元法及
び化学的還元法等の湿式法で得られる粉末は、そ
の粒度分布が0.5〜200μmのごとく粒径が広い範
囲に分布すると同時に粒子形状も一定しないもの
であり、さらに粉砕、篩分けを必要とする。 また、化学的還元法では、燐(P)、ホウ素
(B)等の不純物を数%〜10数%含有し、その製
品収率も低かつた。 これら湿式法で得られる微粉末は一般に粒径が
小さくなるほど通常の過法では回収が困難であ
ると言つた処理上多くの問題点を有していた。 本発明は、これら従来法の欠点を解消すべくな
されたもので、その目的は湿式法によりかつ簡便
な設備で容易に直径2μm以下に自由に粒度をコン
トロールし、粒度分布幅が小さく、均一で、非凝
集性の高純度のニツケル及びコバルト金属微粉末
を大量に高収率で製造する方法を提供することに
ある。 本発明者らは、前記目的を達成すべく種々研究
を重ねた結果、ニツケルまたはコバルトをイオン
として含有する硫酸ニツケル、硫酸コバルト、塩
化ニツケル、塩化コバルト、硝酸ニツケル、硝酸
コバルト等々の水溶液(以下ニツケルイオン水溶
液、コバルトイオン水溶液という)に水素化ホウ
素ナトリウム(NaBH4の他Na2B2H6
Na2B4H10及びNa2B5H9等のホウ化水素とNaの
付加化合物に当る組成の化合物の総称をいう。以
下SBHと称す。)及びヒドラジン(NH2NH2
を同時に混合添加し、溶液中のニツケルまたはコ
バルトを金属微粉凝集体に還元した後、該金属微
粉凝集体を膠にて処理後、アルコールにて洗滌、
乾燥することにより直径2μm以下の粒度分布幅が
小さく、均一な非凝集性の高純度のニツケル及び
コバルト金属微粉末が得られることを見出し本発
明を完成したものである。 すなわち本発明は、ニツケルイオン溶液または
コバルトイオン溶液にSBH及びヒドラジンを同
時に混合添加し、前記溶液中のニツケルまたはコ
バルトイオンを金属微粉凝集体に還充した後、該
金属微粉凝集体を膠にて処理後、アルコールにて
洗滌、乾燥することにより金属微粉分散体を得る
ことを特徴とするニツケル及びコバルト微粉末の
製造法にある。 本発明によるニツケル及びコバルト微粉末の製
造法においては、ニツケルイオン溶液またはコバ
ルトイオン溶液のPHを苛性ソーダ、苛性カリ、ア
ンモニア等、好ましくはアンモニア及び硫酸塩酸
等の鉱酸好ましくは硫酸により6.0〜10、好まし
くは8.0〜9.5に保ち、また、水溶液の温度を30〜
90℃、好ましくは40〜80℃に保ち、前記水溶液中
のニツケルまたはコバルト含有量に対しモル比
(SBH/NiorCo,ヒドラジン/NiorCo)におい
て、1.25×10-3〜0.125好ましくは2.5×10-3〜0.05
量のSBH及び0.5〜2.5好ましくは1.0〜2.0量のヒ
ドラジンを混合し水溶液としたものを添加する。
この操作により水溶液中のニツケルまたはコバル
トは金属微粉凝集体に還元され、過助剤または
凝集剤を使用することなく、自然重力過、減圧
過により簡単に短時間で固液分離できる。固液
分離され、過器に保持された上記ニツケルまた
はコバルトの金属微粉凝集体に膠にて洗滌処理
後、アルコールを添加洗滌し、ニツケルまたはコ
バルトの金属微粉分散体とする。この操作におい
て使用する膠は濃度0.5〜5g/の水溶液とし
て、ニツケルまたはコバルトの金属微粉量に対し
て0.1〜5重量パーセントを添加し処理する。続
いて水により過剰の膠を洗浄後、アルコールを添
加することにより水を置換除去する。尚アルコー
ルは水を置換するアルコールであればどんなもの
でもよいが、メタノール、エタノールが好まし
い。この様にして得られた金属微粉分散体は、真
空乾燥、凍結乾燥等特殊な乾燥法を使用すること
なく、通常の乾燥法、雰囲気にて温度60〜90℃30
〜60分乾燥することにより直径2μm以下の粒度分
布幅の小さい、均一な微粉末とすることができ
る。 前記還元反応において、ニツケルまたはコバル
トイオン溶液の濃度は特に限定されないが、取扱
い液量及び反応コントロールの点より0.5〜
4.0mol/が好ましい。 以上のごとき本発明方法によると、従来困難と
されていた直径2μm以下のニツケル及びコバルト
の金属微粉末を湿式法により、乾式法に比較し
て、簡便な設備で容易に大量に高収率で製造でき
るという優れた効果を有し、さらに得られた金属
微粉末は粒度分布幅が小さく均一な非凝集性の粉
末であり、比表面積は1〜10m2/g、純度99.5%
以上の優れた特性をも有し電子工業分野において
使用可能なものである。 以下、本発明を実施例および比較例に基づいて
さらに具体的に説明するが、本発明はこれら実施
例に限定されるものではない。 実施例 1 硫酸ニツケル(NiSO4・6H2O)を水に溶解し、
アンモニア(NH4OH)及び硫酸(H2SO4)によ
り溶液中のPHを調整した。一方SBH及びヒドラ
ジンを混合し水に溶解したヒドラジン水溶液を第
1表に示す如き、PH及び反応温度を保持しながら
添加し、水溶液中のニツケルを金属微粉凝集体に
還元した。 この場合、硫酸ニツケル水溶液々量及び濃度、
混合添加したSBH及びヒドラジンの量(mol)
及びSBH/Niモル比、ヒドラジン/Niモル比、
ヒドラジン水溶液中のヒドラジン濃度、PH及び反
応温度条件を第1表に示す如く変更し試験No.1〜
5を行なつた。
The present invention relates to a method for producing fine nickel and cobalt powders by a wet process, and more particularly, to a method for producing fine nickel and cobalt metal powders that have a small, uniform particle size distribution and are non-agglomerative. Powder is used not only in the powder metallurgy field but also in the electronic industry field.
It is being put into practical use as a paste material for electronic components, for example, in place of precious metals such as gold, silver, and palladium. Conventional manufacturing methods for obtaining nickel and cobalt fine powder include (1) thermal decomposition of nickel or cobalt carbonyl salts, and (2) reduction of nickel or cobalt oxides or salts with hydrogen or carbon at a temperature below their melting point. Method (3) The evaporation method in gas, in which nickel metal is evaporated and condensed in vacuum or inert gas, is widely known. Method (1) is a method that is widely practiced industrially, but the resulting nickel powder has a particle size of 0.5 to 10 μm.
The particle size distribution width is wide and the particle shape is not constant.Furthermore, in order to obtain the small particle size and particle size distribution width required in the electronics industry, it is necessary to crush,
It requires sieving and the yield of the product is poor. In addition, the method (2) has drawbacks such as the significant influence of the particle size and particle morphology of compounds such as oxides or salts, and the tendency to cause sintering of particles because the reaction is carried out at high temperatures. Furthermore, the method (3) has the disadvantage that the evaporation rate is controlled by temperature, atmospheric pressure, etc., the production capacity of fine metal powder is extremely low, and it is difficult to continuously produce a large amount of fine metal powder. In addition, the powder obtained by conventional wet methods such as electrochemical reduction and chemical reduction has a particle size distribution over a wide range of 0.5 to 200 μm, and at the same time, the particle shape is not constant. It requires further grinding and sieving. In addition, in the chemical reduction method, impurities such as phosphorus (P) and boron (B) are contained in an amount of several percent to several tens of percent, and the product yield is also low. The fine powders obtained by these wet methods generally have many processing problems, such as the fact that the smaller the particle size, the more difficult it is to recover them by normal filtration methods. The present invention was made to eliminate these drawbacks of conventional methods, and its purpose is to easily and freely control the particle size to 2 μm or less in diameter using a wet method and simple equipment, and to achieve a uniform particle size distribution with a small width. The object of the present invention is to provide a method for producing non-agglomerated, highly pure nickel and cobalt metal fine powders in large quantities and in high yield. As a result of various studies to achieve the above object, the present inventors have discovered that aqueous solutions of nickel sulfate, cobalt sulfate, nickel chloride, cobalt chloride, nickel nitrate, cobalt nitrate, etc. containing nickel or cobalt as ions (hereinafter referred to as nickel) Sodium borohydride (NaBH 4 as well as Na 2 B 2 H 6 ,
A general term for compounds with compositions that correspond to addition compounds of borohydride and Na, such as Na 2 B 4 H 10 and Na 2 B 5 H 9 . Hereinafter referred to as SBH. ) and hydrazine (NH 2 NH 2 )
are mixed and added at the same time to reduce the nickel or cobalt in the solution to metal fine powder aggregates, and then the metal fine powder aggregates are treated with glue, and then washed with alcohol.
The present invention was completed by discovering that by drying, a uniform, non-agglomerated, highly pure nickel and cobalt metal fine powder with a diameter of 2 μm or less and a narrow particle size distribution width can be obtained. That is, in the present invention, SBH and hydrazine are mixed and added to a nickel ion solution or a cobalt ion solution at the same time, the nickel or cobalt ions in the solution are returned to metal fine powder aggregates, and then the metal fine powder aggregates are mixed with glue. A method for producing fine nickel and cobalt powders, characterized in that after treatment, a fine metal powder dispersion is obtained by washing with alcohol and drying. In the method for producing fine nickel and cobalt powder according to the present invention, the pH of the nickel ion solution or cobalt ion solution is adjusted to 6.0 to 10, preferably by using a mineral acid such as caustic soda, caustic potash, ammonia, preferably ammonia, and a mineral acid such as sulfuric acid, preferably sulfuric acid. is kept at 8.0~9.5, and the temperature of the aqueous solution is kept at 30~9.5.
It is maintained at 90°C, preferably 40 to 80°C, and the molar ratio (SBH/NiorCo, hydrazine/NiorCo) to the nickel or cobalt content in the aqueous solution is 1.25 × 10 -3 to 0.125, preferably 2.5 × 10 -3 ~0.05
An aqueous solution of SBH and 0.5 to 2.5, preferably 1.0 to 2.0, of hydrazine is added.
By this operation, the nickel or cobalt in the aqueous solution is reduced to fine metal powder aggregates, and solid-liquid separation can be easily performed in a short time by natural gravity or reduced pressure without using any supernatant or coagulant. After the solid-liquid separated nickel or cobalt metal fine powder aggregate held in a filter is washed with glue, alcohol is added and washed to obtain a nickel or cobalt metal fine powder dispersion. The glue used in this operation is treated in the form of an aqueous solution with a concentration of 0.5 to 5 g/g/g/g/g/g, and is added in an amount of 0.1 to 5 percent by weight based on the amount of fine nickel or cobalt metal powder. Subsequently, after washing excess glue with water, alcohol is added to remove the water by displacement. The alcohol may be any alcohol as long as it displaces water, but methanol and ethanol are preferred. The metal fine powder dispersion obtained in this way can be dried at a temperature of 60 to 90℃30 using an ordinary drying method without using special drying methods such as vacuum drying or freeze drying.
By drying for ~60 minutes, a uniform fine powder with a diameter of 2 μm or less and a narrow particle size distribution width can be obtained. In the reduction reaction, the concentration of the nickel or cobalt ion solution is not particularly limited, but from the viewpoint of the amount of liquid to be handled and reaction control, the concentration is between 0.5 and 0.5.
4.0 mol/ is preferable. According to the method of the present invention as described above, fine nickel and cobalt metal powders with a diameter of 2 μm or less, which has been difficult to produce in the past, can be easily produced in large quantities at high yields using simple equipment by a wet method compared to a dry method. It has an excellent effect in that it can be manufactured, and furthermore, the obtained metal fine powder is a uniform non-agglomerated powder with a narrow particle size distribution width, a specific surface area of 1 to 10 m 2 /g, and a purity of 99.5%.
It also has the above excellent properties and can be used in the electronic industry. Hereinafter, the present invention will be explained in more detail based on Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 Dissolve nickel sulfate (NiSO 4 6H 2 O) in water,
The pH in the solution was adjusted with ammonia (NH 4 OH) and sulfuric acid (H 2 SO 4 ). On the other hand, an aqueous hydrazine solution in which SBH and hydrazine were mixed and dissolved in water was added while maintaining the pH and reaction temperature as shown in Table 1, and the nickel in the aqueous solution was reduced to fine metal powder aggregates. In this case, the amount and concentration of the nickel sulfate aqueous solution,
Amount of mixed and added SBH and hydrazine (mol)
and SBH/Ni molar ratio, hydrazine/Ni molar ratio,
The hydrazine concentration in the hydrazine aqueous solution, PH, and reaction temperature conditions were changed as shown in Table 1, and Test No.
I did 5.

【表】 次で生成した金属微粉凝集体含有スラリーを自
然重力過器により過し、過器中に保持され
たニツケル微粉凝集体を水にて通液洗滌過→濃
度2g/の膠溶液1を通液過→水にて通液
洗滌過→メタノール(CH3OH)1を通液
過の各処理をした後80℃、60分の乾燥条件にて乾
燥したニツケル微粉末を得た。各試験例において
得られた微粉末量及びその特性値を第2表に示
す。
[Table] The slurry containing metal fine powder aggregates generated in the following process was passed through a natural gravity filter, and the nickel fine powder aggregates retained in the filter were washed with water → Glue solution 1 with a concentration of 2 g/ After carrying out the following processes: passing through a liquid, washing with water, passing through a methanol (CH 3 OH) 1, a fine nickel powder was obtained which was dried at 80° C. for 60 minutes. Table 2 shows the amount of fine powder obtained in each test example and its characteristic values.

【表】 *2 走査電子顕微鏡による観察
第2表並びに添付の試験No.1より得られたNi
微粉末の20000倍の走査電子顕微鏡参考写真No.1
に明らかな如く比表面積が大で平均粒径は何れも
2μ以下で走査電子顕微鏡による観察によるとそ
の粒度分布幅が非常に小さく均一な非凝集性のニ
ツケル微粉末であることがわかつた。 実施例 2 硫酸コバルト(CoSO4・7H2O)を水に溶解
し、アンモニア水(NH4OH)及び硫酸
(H2SO4)により溶液中のPHを9.0に調整したコバ
ルト濃度0.5mol/の水溶液5にSBH6.25×
10-2モル(SBH/COモル比2.5×10-2)及びヒド
ラジン5モル(ヒドラジン/COモル比2.0)を混
合し、水に溶解したヒドラジン濃度20重量%の水
溶液を反応PH9.0、反応温度70℃に保持しながら
添加し、コバルトを金属微粉凝集体に還元した
後、実施例1と同様な処理を行なつた後コバルト
微粉末145gを得た。そのCo純度は99.5%比表面
積2.2m2/g、平均粒径0.5μmであり、走査電子顕
微鏡による観察にて、その粒径範囲は0.4〜0.6μm
と粒度分布幅が小さく均一な粉末であることがわ
かつた。 尚得られたCo微粉末の20000倍の走査電子顕微
鏡写真を参考写真No.2として添付した。 比較例 1 実施例1及び2と同様な方法で調整した濃度
0.5mol/、PH9.0のニツケルイオン水溶液また
はコバルトイオン水溶液5にSBH1.875モル
(SBH/Ni又はCoのモル比0.75)またはヒドラジ
ン5モル(ヒドラジン/Ni又はCoのモル比2.0)
を反応温度60℃に保持しながら、SBH及びヒド
ラジンを夫々単独で添加し、生成した粉末スラリ
ーを実施例1と同様な方法で処理し粉末を得た。 各々の粉末をX線回折及び化学分析した結果、
ニツケルイオン水溶液にSBHを単独添加した場
合、生成Ni粉末はNi0とNi2Bの混合ピークを示
し、Ni品位90%、B品位5%であつた。同様に
SBHをコバルトイオン水溶液に単独添加した場
合も生成Co粉末はメタルコバルトとコバルトホ
ライドの混合物でありCo品位86%B品位4%で
あつた。ヒドラジンをニツケル水溶液又はコバル
トイオン水溶液に単独添加した場合夫々生成した
粉末は硫酸ニツケルヒドラジン及び硫酸コバルト
ヒドラジンであつた。すなわち、本発明の目的を
達成するためNiイオン又はCoイオンを含有する
溶液にSBH及びヒドラジンの同時添加が必須で
あることを示している。 比較例 2 実施例1の試験No.1及び実施例2と同様な方法
で生成したニツケルまたはコバルト微粉凝集体を
膠及び/またはアルコール処理することなく単に
水にて洗浄し、過後、80℃、240分乾燥し、ニ
ツケルまたはコバルト微粉各々145g、146gを得
た。生成した微粉末のX線回折及び走査電子顕微
鏡観察の結果、酸化物のピークが認められると同
時に、凝集、固結が著しく、超音波分散によつて
も容易に分散しなかつた。 即ちこの結果より膠及び/またはアルコール処
理が本発明目的達成のために必要であることが判
る。 叙上の実施例及び比較例に明らかな如く本発明
によるニツケル及びコバルト微粉末の製造法は従
来の湿式法により得られる微粉末よりその特性に
おいて優れかつ簡便な設備を用いて大量に高収率
で製造しうるもので甚だ有用な発明である。
[Table] *2 Observation using a scanning electron microscope Ni obtained from Table 2 and attached Test No. 1
20000x scanning electron microscope reference photo of fine powder No.1
As is obvious, the specific surface area is large and the average particle size is
Observation using a scanning electron microscope showed that the particle size distribution was less than 2μ, and it was found to be a uniform, non-agglomerated fine nickel powder with a very small particle size distribution width. Example 2 Cobalt sulfate (CoSO 4 7H 2 O) was dissolved in water, and the pH of the solution was adjusted to 9.0 with aqueous ammonia (NH 4 OH) and sulfuric acid (H 2 SO 4 ) to give a cobalt concentration of 0.5 mol/. SBH6.25× in aqueous solution 5
10 -2 mol (SBH/CO molar ratio 2.5 x 10 -2 ) and 5 mol hydrazine (hydrazine/CO molar ratio 2.0) were mixed, and an aqueous solution with a hydrazine concentration of 20% by weight dissolved in water was reacted at pH 9.0. The cobalt was added while maintaining the temperature at 70° C. to reduce cobalt to metal fine powder aggregates, and then the same treatment as in Example 1 was performed to obtain 145 g of cobalt fine powder. The Co purity is 99.5%, the specific surface area is 2.2 m 2 /g, and the average particle size is 0.5 μm, and the particle size range is 0.4 to 0.6 μm when observed with a scanning electron microscope.
It was found that the powder was uniform with a narrow particle size distribution. A scanning electron micrograph of the obtained Co fine powder at a magnification of 20,000 times is attached as reference photograph No. 2. Comparative Example 1 Concentration adjusted in the same manner as Examples 1 and 2
0.5 mol/, 1.875 mol of SBH (SBH/Ni or Co molar ratio 0.75) or hydrazine 5 mol (Hydrazine/Ni or Co molar ratio 2.0) in nickel ion aqueous solution or cobalt ion aqueous solution 5 with pH 9.0
While maintaining the reaction temperature at 60° C., SBH and hydrazine were added individually, and the resulting powder slurry was treated in the same manner as in Example 1 to obtain powder. As a result of X-ray diffraction and chemical analysis of each powder,
When SBH was added alone to the nickel ion aqueous solution, the produced Ni powder showed a mixed peak of Ni 0 and Ni 2 B, and the Ni content was 90% and the B content was 5%. similarly
Even when SBH was added alone to an aqueous cobalt ion solution, the resulting Co powder was a mixture of metal cobalt and cobalt holide, with a Co grade of 86% and a B grade of 4%. When hydrazine was added alone to an aqueous nickel solution or an aqueous cobalt ion solution, the powders produced were nickel hydrazine sulfate and cobalt hydrazine sulfate, respectively. That is, it is shown that simultaneous addition of SBH and hydrazine to a solution containing Ni ions or Co ions is essential in order to achieve the object of the present invention. Comparative Example 2 Nickel or cobalt fine powder aggregates produced in the same manner as Test No. 1 and Example 2 of Example 1 were simply washed with water without being treated with glue and/or alcohol, and then heated at 80°C. After drying for 240 minutes, 145 g and 146 g of nickel or cobalt fine powder were obtained, respectively. As a result of X-ray diffraction and scanning electron microscopy observation of the resulting fine powder, an oxide peak was observed, and at the same time, it was significantly agglomerated and solidified, and was not easily dispersed even by ultrasonic dispersion. That is, from this result, it can be seen that glue and/or alcohol treatment is necessary to achieve the object of the present invention. As is clear from the above examples and comparative examples, the method for producing fine nickel and cobalt powders according to the present invention has superior properties to fine powders obtained by conventional wet methods, and can be produced in large quantities at high yields using simple equipment. It is an extremely useful invention as it can be manufactured using

Claims (1)

【特許請求の範囲】 1 ニツケルイオンまたはコバルトイオンを含有
する水溶液に水素化ホウ素ナトリウム及びヒドラ
ジンを同時に混合添加し、前記水溶液中のニツケ
ルまたはコバルトを金属微粉凝集体に還元し、得
られた金属微粉凝集体を膠にて処理後、アルコー
ルにて洗滌、乾燥することにより金属微粉分散体
を得ることを特徴とするニツケル及びコバルト微
粉末の製造法。 2 前記還元に当り水溶液のPHを6.0〜10、温度
30〜90℃に保持することを特徴とする特許請求の
範囲第1項記載のニツケル及びコバルト微粉末の
製造法。 3 前記水素化ホウ素ナトリウム及びヒドラジン
を混合添加するに当り、水溶液中のニツケルまた
はコバルト含有量に対し、水素化ホウ素ナトリウ
ムのモル比が1.25×10-3〜0.125,ヒドラジンのモ
ル比が0.5〜2.5であることを特徴とする特許請求
の範囲第1項記載のニツケル及びコバルト微粉末
の製造法。 4 前記金属微粉凝集体を膠濃度0.5〜5g/
の水溶液にてニツケルまたはコバルト微粉末量に
対し0.1〜5重量%添加し洗滌することを特徴と
する特許請求の範囲第1項記載のニツケル及びコ
バルト微粉末の製造法。
[Claims] 1. Metal fine powder obtained by simultaneously adding sodium borohydride and hydrazine to an aqueous solution containing nickel ions or cobalt ions, reducing the nickel or cobalt in the aqueous solution to metal fine powder aggregates. A method for producing fine nickel and cobalt powder, which comprises treating the aggregates with glue, washing with alcohol, and drying to obtain a fine metal powder dispersion. 2 During the above reduction, the pH of the aqueous solution was adjusted to 6.0 to 10, and the temperature
The method for producing fine nickel and cobalt powder according to claim 1, wherein the temperature is maintained at 30 to 90°C. 3. When adding the sodium borohydride and hydrazine together, the molar ratio of sodium borohydride to the nickel or cobalt content in the aqueous solution is 1.25 x 10 -3 to 0.125, and the molar ratio of hydrazine is 0.5 to 2.5. A method for producing fine nickel and cobalt powder according to claim 1, characterized in that: 4 The metal fine powder aggregates are mixed with a glue concentration of 0.5 to 5 g/
2. The method for producing fine nickel and cobalt powder according to claim 1, wherein 0.1 to 5% by weight of the fine nickel or cobalt powder is added to an aqueous solution of the fine powder and washed.
JP3655883A 1983-03-08 1983-03-08 Manufacture of fine nickel and cobalt powder Granted JPS59162206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3655883A JPS59162206A (en) 1983-03-08 1983-03-08 Manufacture of fine nickel and cobalt powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3655883A JPS59162206A (en) 1983-03-08 1983-03-08 Manufacture of fine nickel and cobalt powder

Publications (2)

Publication Number Publication Date
JPS59162206A JPS59162206A (en) 1984-09-13
JPH0249364B2 true JPH0249364B2 (en) 1990-10-30

Family

ID=12473080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3655883A Granted JPS59162206A (en) 1983-03-08 1983-03-08 Manufacture of fine nickel and cobalt powder

Country Status (1)

Country Link
JP (1) JPS59162206A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2945644B2 (en) * 1997-12-12 1999-09-06 三井金属鉱業株式会社 Nickel fine powder and method for producing the same
CN1319685C (en) * 2005-01-13 2007-06-06 南京大学 Production for nanometer nickel powder
JP5399100B2 (en) * 2009-03-04 2014-01-29 三ツ星ベルト株式会社 Metal colloidal particle aggregate and method for producing the same
CN103706804A (en) * 2013-12-25 2014-04-09 南昌航空大学 Environment-friendly preparing method of nickel nanocrystalline
CN104001551B (en) * 2014-05-30 2016-02-17 绍兴文理学院 The Ni-B Catalysts and its preparation method of poly-N-tert-butyl acrylamide nanosphere load and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395165A (en) * 1977-01-31 1978-08-19 Murata Manufacturing Co Minute particle metal nickel powder manufacturing process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395165A (en) * 1977-01-31 1978-08-19 Murata Manufacturing Co Minute particle metal nickel powder manufacturing process

Also Published As

Publication number Publication date
JPS59162206A (en) 1984-09-13

Similar Documents

Publication Publication Date Title
KR100486604B1 (en) Method for manufacturing nano-scale copper powders by wet reducing process
KR100480864B1 (en) Method for preparing nickel fine powder
US20070213228A1 (en) Method of producing fine-particle copper powders
JP3961826B2 (en) Method for producing high density and large particle size cobalt hydroxide or cobalt mixed hydroxide and product produced by this method
KR100490668B1 (en) Method for manufacturing nano-scale silver powders by wet reducing process
CN104625082B (en) Nanometer nickel powder preparation method
Sinha et al. Synthesis of nanosized copper powder by an aqueous route
CN115477293A (en) Preparation method of anhydrous iron phosphate with low impurity and high specific surface area
Polani et al. Large-scale synthesis of polyhedral Ag nanoparticles for printed electronics
CN104741622B (en) The preparation method of a kind of high pure copper powder
JPH0557324B2 (en)
JPH0249364B2 (en)
JPH0372683B2 (en)
CA1151881A (en) Cobalt metal powder by hydrogen reduction
JPH02145422A (en) Production of fine copper oxide powder
WO2017073392A1 (en) Method for producing seed crystal of cobalt powder
RU2410205C2 (en) Method of producing ultra-dispersed metal powder
US4761177A (en) Production of cobalt and nickel powder
JPS58224103A (en) Production of fine copper powder
KR100360559B1 (en) Process for the production of extra fine powder of Cobalt
KR100490678B1 (en) Method for manufacturing nano-scale nickel powders by wet reducing process
JP2834199B2 (en) Method for producing ultrafine tungsten particles
JP2017155253A (en) Production method of nickel powder
Glavee et al. Preparation of magnetic fine particles by borohydride reduction
Şişman et al. Surfactant-assisted polyol preparation of nickel powders with different morphologies