JPS60128230A - Production of vanadium - Google Patents

Production of vanadium

Info

Publication number
JPS60128230A
JPS60128230A JP23360383A JP23360383A JPS60128230A JP S60128230 A JPS60128230 A JP S60128230A JP 23360383 A JP23360383 A JP 23360383A JP 23360383 A JP23360383 A JP 23360383A JP S60128230 A JPS60128230 A JP S60128230A
Authority
JP
Japan
Prior art keywords
vanadium
carbon
mixture
oxide
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23360383A
Other languages
Japanese (ja)
Inventor
Yujo Marukawa
雄浄 丸川
Koji Ebihara
海老原 宏二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23360383A priority Critical patent/JPS60128230A/en
Publication of JPS60128230A publication Critical patent/JPS60128230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover vanadium in the form of a mixture composed of metallic vanadium and vanadium carbide at a high yield by maintaining the mixture composed of vanadium oxide and carbon at a high temp. under a vacuum condition. CONSTITUTION:Carbon, for example, graphite powder is mixed with V2O5 which is obtd. by thermal decomposition of, for example, ammonium (meta)vanadate and is generally powder. The material in this stage is preferably of about 30 mesh of finer than said size and the C/V2O5 ratio is preferably about 0.1-5.0. The mixture is made to compact powder and is molded to a briquette, etc. to permit easy putting of said mixture into and out of a hermetic vessel for performing a reduction stage. Such molding is transferred into the hermetic vessel and is held at a high temp. of about >=1,000 deg.C under the vacuum of about <=0.01atm. The V2O5 is then reduced to V and VC and generally the mixture composed thereof is obtd. as the resulted product. If such product is held, for example, at a high temp. of about >=1,000 deg.C for specified time under a vacuum according to need, the product is decarburized.

Description

【発明の詳細な説明】 (発明の目的) 本発明は、酸化バナジウムからの金属バナジウムの製造
方法、特にV2O5などの酸化バナジウムを炭素で還元
することによるハナジウJいの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION The present invention relates to a method for producing metallic vanadium from vanadium oxide, and in particular to a method for producing vanadium by reducing vanadium oxide, such as V2O5, with carbon.

バナジウムは、たとえば鉄鋼業界におG」る特殊鋼の製
造に際してフェロハナンウJ・の形態で高張力鋼、工具
鋼の添加剤として用いられる他、電気松科、超伝導祠料
、各種触媒等にも使用され゛(おり、用途が広く稀少価
値を有するので、今後まずまず需要が見込まれている高
価な金属である。
Vanadium is used, for example, in the form of ferrohananium as an additive for high-strength steel and tool steel in the production of special steel used in the steel industry, as well as in electrical materials, superconducting abrasives, and various catalysts. It is an expensive metal that is expected to be in high demand in the future because it is widely used, has a wide range of uses, and is rare.

しかし、バナジウムを多量に得る方法は限定されており
、その容易な製造方法の開発が望まれている。
However, methods for obtaining vanadium in large amounts are limited, and there is a desire to develop an easy method for producing it.

すなわち、バナジウムは種々の6°石に含まれているも
のの、その含有量は微量で、鉄、銅等のように高品位の
鉱床を造ることはまれである。そのため、純度のよいバ
ナジウムを得るためには、バナジウムを微量に含む鉱石
を多大の労力をかけて濃縮しなレノればならない。別の
方法として、含チタンバナジウムの磁鉄鋼、ウラン、鉛
、亜鉛鋼等から有用な金属を得る際の副産物としてバナ
ジウムを得る方法や、最近では石油燃焼煙灰等からバナ
ジウムを回収する方法も開発中である。
That is, although vanadium is contained in various 6° stones, its content is minute, and it is rare to create high-grade ore deposits like iron, copper, etc. Therefore, in order to obtain vanadium of high purity, ores containing trace amounts of vanadium must be concentrated with great effort. Another method is to obtain vanadium as a by-product when obtaining useful metals from titanium-containing vanadium magnetic steel, uranium, lead, zinc steel, etc., and recently, a method to recover vanadium from oil combustion smoke is also being developed. It is.

バナジウム製造技術雫具体例として、特願昭57−94
082号(特開昭 −号)その他に開示されたようなテ
ルミ、1・反応を利用する方法がある。これは、バナジ
ウム含有資源からメタバナジン酸アンモニウムとしてバ
ナジウム分を回収し、次いでこれを酸化性ガス雰囲気で
熱分解して五酸化バナジウム(V 20 s )とし、
これに鉄粉、アルミニウム粉末を加えてテルミット反応
を行ね(、フェロバナジウムの形でバナジウムを得る方
法である。この方法は簡便ではあるが、■2o、を得る
段階でアンモニウム塩の熱分解により発生したアンモニ
アガスにより生成したV2O5がさらに還元されて、V
 2−04、V 2’ Oaなどの低次酸化物が副生ず
ることは避けられず、このような低次酸化物の混入は、
多量の酸素を必要とするチルミソ)・反応の原料として
は好ましくない。また、後段のテルミット反応の段階に
おいても、反応そのものが激しくて、反応の制御が困難
である上、原料の飛散によりバナジウムの回収効率が悪
化するなどの難点がある。そのため、テルミット法によ
るバナジウムの製造は未だ充分に実用的とはいえない。
As a specific example of vanadium production technology, patent application 1983-1994
There is a method using the Terumi, 1 reaction as disclosed in No. 082 (Japanese Patent Application Laid-open No. 082/1993) and others. This involves recovering vanadium from vanadium-containing resources as ammonium metavanadate, then thermally decomposing it in an oxidizing gas atmosphere to produce vanadium pentoxide (V 20 s ).
Iron powder and aluminum powder are added to this and a thermite reaction is carried out (this is a method to obtain vanadium in the form of ferrovanadium.This method is simple, but in the step of obtaining 2o, thermal decomposition of ammonium salt is The V2O5 generated by the generated ammonia gas is further reduced to V
It is unavoidable that lower oxides such as 2-04 and V 2' Oa are produced as by-products, and the contamination of such lower oxides is
It is not preferred as a raw material for the tilmiso reaction, which requires a large amount of oxygen. Furthermore, in the later stage of the thermite reaction, the reaction itself is violent, making it difficult to control the reaction, and there are also drawbacks such as the scattering of raw materials, which deteriorates the recovery efficiency of vanadium. Therefore, the production of vanadium by the thermite method is still not fully practical.

本発明者らは従来のバナジウム製造方法における欠点を
克服し、効果的がっ実用的な製造方法を見いだすべく検
討を重ねた。その結果、従来の方法でも用いたような五
酸化バナジウムを主とする酸化バナジウムを炭素と混合
し、密閉状態で真空下に高温保持することにより炭素還
元を行うと、金属バナジウムと炭化バナジウムとの混合
物の形でバナジウムを高収率で回収できることを見いだ
し、本発明を完成させたものである。
The present inventors have conducted repeated studies to overcome the drawbacks of conventional vanadium production methods and to find an effective and practical production method. As a result, when vanadium oxide, mainly vanadium pentoxide, which is used in conventional methods, is mixed with carbon and carbon is reduced by keeping it in a closed state under vacuum at high temperature, metal vanadium and vanadium carbide can be combined. The present invention was completed by discovering that vanadium can be recovered in a high yield in the form of a mixture.

(発明の構成) 本発明は酸化バナジウムと炭素とをfR合し、この混合
物を真空条件下において高温保持することを特徴とする
バナジウム源 本発明の1態様によれば、バナジン酸アンモニウム((
Nil 4 )& VO4)またはメタバナジン酸アン
モニウム(Nll < VO3)の熱分解により18だ
酸化バナジウムを使用する。
(Structure of the Invention) The present invention provides a vanadium source characterized by subjecting vanadium oxide and carbon to fR combination and maintaining this mixture at high temperature under vacuum conditions.According to one aspect of the present invention, ammonium vanadate ((
Vanadium 18 oxide is used by thermal decomposition of Nil4) & VO4) or ammonium metavanadate (Nll<VO3).

本発明の別の態様によれば、酸化バナジウムと炭素を、
炭素/酸化バナジウムのM量比が0.1〜5.0となる
比率で混合し、0.01気圧以下の真空条件下で100
0℃以上の高温に混合物を保持する。
According to another aspect of the invention, vanadium oxide and carbon are
The carbon/vanadium oxide M amount ratio is mixed at a ratio of 0.1 to 5.0, and the mixture is heated under vacuum conditions of 0.01 atm or less.
The mixture is maintained at an elevated temperature above 0°C.

本発明のまた別の態様によれば、混合する酸化バナジウ
ムおよび炭素はいずれも3oメツシユまたはそれより微
細な粉体であり、この粉体混合物を反応前に50kg 
/ cII+以上の成形圧でブリケットまたはタブレノ
トに成形する。
According to another aspect of the present invention, the vanadium oxide and carbon to be mixed are both powders of 30 mesh or finer, and the powder mixture is mixed with 50 kg of powder before the reaction.
/ Molded into briquettes or tablenots at a molding pressure of cII+ or higher.

以下に本発明をその好適態様に関してさらに詳しく説明
する。
The present invention will be explained in more detail below with respect to its preferred embodiments.

本発明に使用する酸化バナジウムは任意のバナジウム原
料から任意の方法で得たものでよい。しかし、通當、酸
化バナジ・クムばバナジン酸アンモニウム、特にメタバ
ナジン酸アンモニウムの熱分解により製造されることが
多く、本発明でもこの方法により得た酸化バナジウムを
用いるのが好ましい。バナジウム源の1例は、製鉄所に
おけるソーダ灰脱燐スラグから回収されたバナジン酸ア
ンモニウムまたはメタバナジン酸アンモニウムであり、
これを約350”cに加熱すると熱分解により五酸化バ
ナジウム(■2゜5)が得られる。ただし、前述のよう
に、アンモニウム塩ノ熱分解により発生したアンモニア
ガスニより、生成したV2O5の一部はV204.V2
03まで還元が進むので、生成物にはこのような低次酸
化物も含まれる。しかし、テルミット法とは異なり、本
発明では後工程の炭素による還元で酸素が不要であるの
で、このような低次酸化物の共存は本発明の方法ではま
ったく支障をきたさない。後出の炭素還元の反応式から
もわかるように、■20.から金属バナジウムおよび炭
化バナジウムへの還元は、このような低次酸化物の状態
を経て進11するので、低次酸化物の存在は逆に好まし
いとさえいえる。
The vanadium oxide used in the present invention may be obtained from any vanadium raw material by any method. However, vanadium oxide and cum are generally produced by thermal decomposition of ammonium vanadate, especially ammonium metavanadate, and it is preferred in the present invention to use vanadium oxide obtained by this method. One example of a vanadium source is ammonium vanadate or ammonium metavanadate recovered from soda ash dephosphorization slag in a steel mill;
When this is heated to about 350"c, vanadium pentoxide (■2°5) is obtained by thermal decomposition. However, as mentioned above, from the ammonia gas produced by the thermal decomposition of ammonium salt, part of the V2O5 produced is The part is V204.V2
Since the reduction progresses to 03, the product also contains such lower oxides. However, unlike the thermite method, the present invention does not require oxygen in the subsequent reduction with carbon, so the coexistence of such lower oxides does not pose any problem in the method of the present invention. As can be seen from the carbon reduction reaction formula described later, ■20. Since the reduction from vanadium to metal vanadium and vanadium carbide proceeds through the state of such lower oxides, the presence of lower oxides can even be said to be preferable.

こうして得られた酸化バナジウムは一般に粉状である。The vanadium oxide thus obtained is generally in powder form.

これを炭素、例えば黒鉛1′5)末と混合する。この時
の材料は、後の還元反応を促進さ・けるためにいずれも
30メソシユまたはそれより微細な粒爪であることが好
ましい。30メ、シブ6より粗大な粉体であると、後の
還元反応が不充分となり、純度のよいバナジウムが得ら
れない。したがって、必要に応じて、一方または両方の
材料を粉砕するが、ごの粉砕は、操作の経済性および混
合の促進の意味から酸化バナジウムと炭素を混合した後
に行テのが好ましい。
This is mixed with carbon, such as graphite 1'5) powder. The material used at this time is preferably 30 mesosinus or finer particles in order to promote the subsequent reduction reaction. If the powder is coarser than 30 mm or 6 mm, the subsequent reduction reaction will be insufficient and vanadium with good purity cannot be obtained. Therefore, if necessary, one or both of the materials may be pulverized, but the pulverization is preferably carried out after mixing the vanadium oxide and carbon from the viewpoint of operational economy and promotion of mixing.

酸化バナジウムと炭素の混合仕事は、炭素/r11化バ
ナジウムの重量比で0.1〜5.0となる範囲内が好ま
しい。この比率が0.1未満であると還元量が不充分と
なって純度のよいバナジウムがjSられない。一方、混
合比が5.0より大きいと炭素分の損失が多くなり、経
済的に好ましくない。
The mixing work of vanadium oxide and carbon is preferably within the range of 0.1 to 5.0 in terms of carbon/vanadium 11 oxide weight ratio. If this ratio is less than 0.1, the amount of reduction will be insufficient and vanadium with good purity will not be recovered. On the other hand, if the mixing ratio is greater than 5.0, the loss of carbon content will increase, which is economically unfavorable.

このようにしてiSられた混合物を、還元工程を行う密
閉容器への出し入れを容易にするために、圧粉化してブ
リゲットまたはクブレノトに成形する。この時の成形圧
は50kg/c+d以上とし、好ましくば250kg/
cIII以下とする。50kg/cnt未謂の成形圧で
は、得られた成形物が取扱に爾える充分な強度をももに
くい。一方250J / aδを越える成形圧で成形す
ると、圧縮されすぎて内部の反応が不充分となり、純度
の高いバナジウムを得にくく、そのうえ過大な成形圧は
経済上からも好ましくない。
The thus iS-treated mixture is compacted and shaped into a brigette or cubrenot in order to facilitate its transfer into and out of a closed container in which the reduction process is carried out. The molding pressure at this time is 50 kg/c+d or more, preferably 250 kg/c+d.
cIII or below. At a molding pressure of 50 kg/cnt, it is difficult for the resulting molded product to have sufficient strength to be handled. On the other hand, if molding is performed at a molding pressure exceeding 250 J/aδ, the compression will be too high and the internal reaction will be insufficient, making it difficult to obtain vanadium of high purity, and excessive molding pressure is also unfavorable from an economical point of view.

ついで上記成形物を密閉容器に移し、真空下で高温に保
持することにより、炭素による酸化バナジウムのぶ元を
行う。真空条件は0.01気圧以下とする。
Next, the molded product is transferred to a closed container and kept under vacuum at a high temperature to perform vanadium oxide removal using carbon. The vacuum condition is 0.01 atmosphere or less.

直空条件は還元反応を促進させるためであり、圧力が0
.01気圧より犬であると還元反応は充分には進まない
。混合物の保持温度は1000℃以上とする。1000
°C未満の温度では還元反応は充分に行われず、得られ
るバナジウム純度も低下する。高温保持時間は特に制限
されず、真空下で還元を行うため、比蚊的短時間で還元
は終了する。一般に、保持時間は少なくとも5分以上、
60分以下程度である。
The direct air condition is to promote the reduction reaction, and the pressure is 0.
.. If the pressure is lower than 0.01 atm, the reduction reaction will not proceed sufficiently. The temperature at which the mixture is maintained is 1000°C or higher. 1000
At temperatures below .degree. C., the reduction reaction does not take place sufficiently and the purity of the vanadium obtained also decreases. The high temperature holding time is not particularly limited, and since the reduction is performed under vacuum, the reduction is completed in a comparatively short time. Generally, the retention time is at least 5 minutes or longer;
It takes about 60 minutes or less.

酸化バナジウムの炭素による還元は、一般に下記の反応
式で表される反応を包含する: V2O5+ c −→■、O4400■■2O2+ C
−・V 203+C0■V 203 +5 C−・2 
V C+ 3 C○ ■V2O3+ C−2VOIc○
 ■ VO−1−C−→ V十CO■ V 203 + 3 V C→5 v 1−3 CO■
これらの反応i、(をまとめると、V 、 O!、から
Q)金属バナジウムおよび炭化ノ\・ノーシウム・・、
の還元L:LIIlIjル乃次の2式で表される: 金属バナジウムへの還元(■、■、■ヱ0V205 +
5C−2V 1−5C○ ■炭化バナジウムへの還元(
■、■、■、(■j、0V 20 s +7 C→ 2
 V C−15CO■したがって、最終的にiYIられ
る生成物1、−p投に金属ハナジうムと炭化R−)・シ
ウムとの混合物であって、バナジウムと゛炭素以外の不
純物をbiとんど含まない高純度のものである。得られ
たブリヶ・ノドをI’ll砕すると、生成物は取扱いの
容易な多孔性のわ〕体1入恕となる。
Reduction of vanadium oxide with carbon generally includes a reaction represented by the following reaction formula: V2O5+ c -→■, O4400■■2O2+ C
-・V 203+C0■V 203 +5 C-・2
V C+ 3 C○ ■V2O3+ C-2VOIc○
■ VO-1-C-→ V1-3 CO■ V 203 + 3 V C→5 v 1-3 CO■
These reactions i, (summarizing V, O!, to Q) metal vanadium and carbide \・norsium...
Reduction of L: LIIlIj is expressed by the following two formulas: Reduction to metal vanadium (■, ■, ■ヱ0V205 +
5C-2V 1-5C○ ■Reduction to vanadium carbide (
■,■,■,(■j, 0V 20 s +7 C→ 2
V C-15CO■ Therefore, the final iYI product 1, -p is a mixture of metal halide and sium carbide, containing mostly impurities other than vanadium and carbon. It is of high purity. When the obtained yellowtail is crushed, the product becomes a porous body that is easy to handle.

得られた製品は用途に応じて必要であれ番I後処■里を
行う。たとえば、製鉄業界における特殊ε岡の製造のた
めの添加物として使用する場合にはそのままでよいが、
触媒として使用する場合には、反応表面を大きくするた
めに微粉砕することが必要である。また、炭素の共存が
好ましくない用途に使用する場合には、例えば、真空下
で一定時間、約1000℃以上の高温で保持することに
より生成物を脱炭することができる。
The obtained product is subjected to post-processing as necessary depending on the intended use. For example, when used as an additive for the production of special εoka in the steel industry, it may be used as is, but
When used as a catalyst, pulverization is necessary to increase the reaction surface. Furthermore, when the product is used in applications where the coexistence of carbon is undesirable, the product can be decarburized, for example, by holding it at a high temperature of about 1000° C. or higher for a certain period of time under vacuum.

次に実施例により本発明を例示する。The invention will now be illustrated by examples.

n貫 ソーダ灰スラグより回収したメタバナジン酸アンモニウ
ム200kgを約350°C7熱処理して得た酸化バナ
ジウム粉末をそれぞれ50kgづつ使用して、従来方法
であるデルミツト法と本発明方法である炭素還元法との
バナジウムの製造の比較実験を行った。使用した酸化バ
ナジウムのバナジウム含有率は55.6%であり、した
がってこの材料50kgは27.8kgのノリージウム
分を含有していた。また、このバナジウム含有率から、
酸化バナジウム原料中の■205の割合は約99.2%
と考えられる。各実験条件および結果を以下に示す。
Using 50 kg each of vanadium oxide powder obtained by heat-treating 200 kg of ammonium metavanadate recovered from n-sized soda ash slag at about 350° C., the conventional Dermit method and the carbon reduction method of the present invention were tested. A comparative experiment was conducted on the production of vanadium. The vanadium content of the vanadium oxide used was 55.6%, so that 50 kg of this material contained 27.8 kg of Noridium. Also, from this vanadium content,
■The proportion of 205 in the vanadium oxide raw material is approximately 99.2%
it is conceivable that. The experimental conditions and results are shown below.

(11テルミツト法(比較例) 原料:酸化バナジウム50kgとAQ 7.5kg上記
混合物を審決により着火し、に元シ7ナコ。
(11 Thermite method (comparative example) Raw materials: 50 kg of vanadium oxide and 7.5 kg of AQ The above mixture was ignited according to the trial decision, and 7.5 kg of raw material was produced.

得られた製品重量: 62.6kB 製品中のAQ203量: 49.2に8製品中のバナジ
ウム量: 13.4kg(2)炭素還元法(本発明例) 原料二 酸化バナジウム5 Q k gと炭ヌ用5 k
 il真空条件: 0.0001気圧 高温保持条件: 1650°Cl2O分間得られた製品
重量: 26.5kg 製品中のバナジウム量: 19.2kg製品中の炭素量
: 7.3kg このように、本発明によりり、4鉛で還元した方力く、
バナジウムの回収率および製品の品質、’l!l:4k
 (取1及性)のいずれの面でも優れていた。
Obtained product weight: 62.6 kB Amount of AQ203 in the product: 49.2 Amount of vanadium in the 8 product: 13.4 kg (2) Carbon reduction method (example of the present invention) Raw material vanadium dioxide 5 Q kg and charcoal 5k for Nu
il vacuum conditions: 0.0001 atm high temperature holding conditions: 1650° Cl2O minute product weight: 26.5 kg Vanadium amount in the product: 19.2 kg Carbon amount in the product: 7.3 kg As described above, according to the present invention It is better to reduce it with 4 lead,
Vanadium recovery rate and product quality,'l! l:4k
It was excellent in all aspects (excellence, performance, and performance).

(発明の効果) 以上に詳述したように、本発明により得られる製品は従
来法、例えばテルミy l’反応を利用しζ得られる製
品に比べてA(2203等の不純物が含まれておらず高
純度であり、取扱性にも優れている。また製造方法自体
についても、従来のテルミット法に比べて本発明の方法
は熱的損失が少なく、反応が激しくないために還元反応
の制御が容易であり、バナジウムの回収率も高く、非常
に簡便かつ実用的なバナジウムの製造方法である。さら
に、本発明の方法は、メタバナジン酸アンモニウムの熱
分解という最も一般的な方法で得られるV2O5を、低
次酸化物が共存していても支障なく使用できる点でも有
利である。
(Effects of the Invention) As detailed above, the product obtained by the present invention contains less impurities such as A(2203) than the product obtained by conventional methods, such as the Thermi yl' reaction. It has high purity and is easy to handle.As for the production method itself, compared to the conventional thermite method, the method of the present invention has less heat loss and the reaction is not violent, making it easier to control the reduction reaction. It is a very simple and practical method for producing vanadium, which is easy and has a high recovery rate of vanadium.Furthermore, the method of the present invention can produce V2O5, which is obtained by the most common method of thermal decomposition of ammonium metavanadate. It is also advantageous in that it can be used without any problem even if lower oxides are present.

出願人 住友金属工業株式会社 代理人 弁理士 広 瀬 章 −Applicant: Sumitomo Metal Industries, Ltd. Agent Patent Attorney Akira Hirose -

Claims (4)

【特許請求の範囲】[Claims] (1)酸化バナジウムと炭素とを混合し、この混合物を
真空条件下Gこおい一ζ高温保持することを特徴とする
バナジウムの¥A遣方法。
(1) A method for producing vanadium, which is characterized by mixing vanadium oxide and carbon and maintaining the mixture at a high temperature under vacuum conditions.
(2)前記酸化バナジウムがバナジン酸アンモニウムま
たはメタバナジン酸アンモニウムの熱分解によりj■I
だ酸化バナジウムであることを特徴とする特許請求の範
囲第1項記載の製造方法。
(2) The vanadium oxide is converted into j■I by thermal decomposition of ammonium vanadate or ammonium metavanadate.
2. The manufacturing method according to claim 1, wherein the material is vanadium oxide.
(3)酸化ハーノ・ジウムと炭素の比率が炭素/酸化ノ
\ナジウムの重量比で0,1〜5.0の範囲内であり、
前記具空条(’Iが0.01気圧以下、および前記高温
保持温度が+000°C以上であることを特徴とする特
許請求の範囲第1項記載の製造方法。
(3) The ratio of Hernodium oxide to carbon is within the range of 0.1 to 5.0 in terms of weight ratio of carbon/Nonadium oxide;
2. The manufacturing method according to claim 1, wherein said material ('I) is 0.01 atmosphere or less, and said high temperature holding temperature is +000°C or more.
(4)前記酸化ハ・ノージウムおよび炭素がいずれも3
0メノンユまたはそれより微細な粉体であり、粉体混合
物を反応前に50kg / o11以上の成形圧でブリ
ケットまたはタブレットに成形することを特徴とする特
許請求の範囲第1項記載の製造方法。
(4) The above-mentioned ha/nodium oxide and carbon are both 3
2. The manufacturing method according to claim 1, wherein the powder is a powder of 100 g/ml or finer than that, and the powder mixture is formed into briquettes or tablets at a molding pressure of 50 kg/o11 or more before the reaction.
JP23360383A 1983-12-13 1983-12-13 Production of vanadium Pending JPS60128230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23360383A JPS60128230A (en) 1983-12-13 1983-12-13 Production of vanadium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23360383A JPS60128230A (en) 1983-12-13 1983-12-13 Production of vanadium

Publications (1)

Publication Number Publication Date
JPS60128230A true JPS60128230A (en) 1985-07-09

Family

ID=16957637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23360383A Pending JPS60128230A (en) 1983-12-13 1983-12-13 Production of vanadium

Country Status (1)

Country Link
JP (1) JPS60128230A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453951U (en) * 1990-09-17 1992-05-08
JP2009209411A (en) * 2008-03-04 2009-09-17 Nippon Yakin Kogyo Co Ltd Method for reducing valuable metal raw material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453951U (en) * 1990-09-17 1992-05-08
JP2009209411A (en) * 2008-03-04 2009-09-17 Nippon Yakin Kogyo Co Ltd Method for reducing valuable metal raw material

Similar Documents

Publication Publication Date Title
US11247270B2 (en) Method for preparing vanadium and vanadium alloy powder from vanadium-containing materials through shortened process
CN109897962B (en) Method and device for recovering tungsten in tungsten-containing waste by adopting oxidation smelting method
CN113088683B (en) Method for preparing low-temperature titanium chloride slag by using low-grade titanium concentrate
CN105905902A (en) Production method of titanium carbide raw material
CN108998721A (en) A method of preparing ferrovanadium nitride
JPS63199832A (en) Manufacture of high-purity metallic chromium
US4029498A (en) Process for treating manganese nodules
JPS60128230A (en) Production of vanadium
US2085178A (en) Process for sludge treatment
CN114873569A (en) Method for preparing high-quality vanadium nitride by vanadium oxide reduction nitridation under reducing atmosphere
JPS60186407A (en) Preparation of finely powdered zirconium nitride
AU694893B2 (en) Process for the preparation of manganese sulphide
US4256708A (en) Process for recovering tungsten from cemented tungsten carbide
WO2002072473A1 (en) Method for producing tungsten carbide and tungsten carbide produced by said method
JP2000204420A (en) Recovery of valuable metal from vanadium-containing waste
JP2001098339A (en) Method of producing vanadium alloy iron and vanadium alloy steel
CN106430196B (en) A kind of method that Mn oxide gas-based reduction prepares manganess carbide
US3068090A (en) Alkali metal salts and base additions in non-titaniferous ore reductions
CN116102073B (en) Method for recycling pyrite cinder
US2441770A (en) Process for making iron powder
NL2029886B1 (en) Method for extracting vanadium from manganese-vanadium slag prepared through vanadium blowing in converter
JPS5943965B2 (en) Nitrogen additive in steel and its manufacturing method
WO2024024589A1 (en) Valuable element recovery method and metal production method
US5188810A (en) Process for making niobium oxide
US2716601A (en) Low temperature reduction of iron oxides in the presence of halide