JPS6013046B2 - Heat treatment method for welded joints - Google Patents

Heat treatment method for welded joints

Info

Publication number
JPS6013046B2
JPS6013046B2 JP7937177A JP7937177A JPS6013046B2 JP S6013046 B2 JPS6013046 B2 JP S6013046B2 JP 7937177 A JP7937177 A JP 7937177A JP 7937177 A JP7937177 A JP 7937177A JP S6013046 B2 JPS6013046 B2 JP S6013046B2
Authority
JP
Japan
Prior art keywords
temperature
welded
heat treatment
stress
residual stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7937177A
Other languages
Japanese (ja)
Other versions
JPS5413435A (en
Inventor
善美 佐藤
吉保 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7937177A priority Critical patent/JPS6013046B2/en
Publication of JPS5413435A publication Critical patent/JPS5413435A/en
Publication of JPS6013046B2 publication Critical patent/JPS6013046B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は溶接継手、特に低合金鋼と炭素鋼とを溶接した
溶接継手の熱処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for heat treating a welded joint, particularly a welded joint made by welding low alloy steel and carbon steel.

クロム・モリブデン(Cて−Mo)系低合金鋼と軟鋼と
を溶接して継手を形成する場合には、溶接により発生す
る残留応力を除去し、材質改善を行なうため熱処理を行
なっているが、従来の熱処理方法は、継手村を炉内で6
00℃付近まで徐々に温度上昇させる方法を用いていた
When forming a joint by welding chromium-molybdenum (C-Mo) based low alloy steel and mild steel, heat treatment is performed to remove residual stress generated by welding and improve the material quality. The conventional heat treatment method is to heat the joint village in a furnace for 6
A method was used in which the temperature was gradually raised to around 00°C.

この熱処理方法は、継手材を均一温度状態で加熱してい
るので、溶接時に生じた大さし、引張残留応力は初期枕
態をそのまま保持しながら温度上昇することになる。
In this heat treatment method, the joint material is heated at a uniform temperature, so the temperature increases while the initial pillow state is maintained for the residual tensile stress generated during welding.

このような状態で温度上昇させると、鋼材には300〜
55び○の温度領域で粒界割れを起す材質的特性がある
ため、この温度領域で材質が腕化し、降伏点を越える溶
接引張残留応力の生じている状態では応力緩和(Str
essRela幻ion)(以下、SRと略記する)割
れを生ずる欠点があった。本発明はこのような問題点を
除去し、SR割れを生ぜしめることなく応力除去および
材質改善の可能な溶接継手の熱処理方法を提供すること
を目的とするもので、低合金鎌と炭素鋼とを溶接した継
手に発生している降伏応力以上の引張残留応力の除去な
らびに材質改善を行なうための溶接継手の熱処理方法に
おいて、前記継手の溶接部と該溶接部以外の部分とを、
前記継手の溶接部の温度が該溶接部以外の部分の温度よ
り高温となる温度勾配を保持した状態で加熱して、該加
熱により生じた熱庇、力によって溶接時の前記降伏応力
以上の引張残留応力を打ち消し降伏応力以下の引張残留
応力又は圧縮残留応力とする操作と、該温度勾配を保持
した状態で温度上昇させる操作と、該操作により上昇し
た温度の最高温度が再結晶温度に達した後、該最高温度
を保持しながら低温部の温度を上昇させ全体を再結晶温
度にする操作と、該再結晶温度に所定時間保持する操作
を有することを特徴とするものである。
If the temperature is increased in such a state, the steel material will have a temperature of 300~
Since the material has a characteristic that intergranular cracking occurs in the temperature range of 55 to ○, the material becomes arms in this temperature range, and stress relaxation (Str
(hereinafter abbreviated as SR) had the drawback of causing cracks. The present invention aims to eliminate such problems and provide a heat treatment method for welded joints that can relieve stress and improve material quality without causing SR cracking. In a heat treatment method for a welded joint for removing tensile residual stress exceeding the yield stress occurring in a welded joint and improving the material quality, the welded part of the joint and the part other than the welded part are
The joint is heated while maintaining a temperature gradient such that the temperature of the welded part is higher than the temperature of the parts other than the welded part, and the thermal eaves and force generated by the heating cause a tensile stress that exceeds the yield stress during welding. An operation to cancel out the residual stress and make it a tensile or compressive residual stress below the yield stress, an operation to increase the temperature while maintaining the temperature gradient, and the highest temperature increased by this operation reaches the recrystallization temperature. After that, the method is characterized by comprising an operation of raising the temperature of the low temperature part while maintaining the maximum temperature to bring the entire temperature to the recrystallization temperature, and an operation of maintaining the recrystallization temperature for a predetermined period of time.

すなわち、本発明はSR割れを防止するには、溶接部の
引張残留応力を降伏点より小ならしめるか、あるいは溶
接部を逆の圧縮残留応力状態に保持することにより、粒
界割れが生じる300午0〜550℃の温度領域を通過
させることが必要である点に着目してなされたもので、
溶接部と溶接部以外の部分に温度勾配を与えて溶接時に
生じた引張残留応力を打ち消す熱応力を発生せしめるこ
とにより目的を達成するものである。
In other words, the present invention proposes that in order to prevent SR cracking, intergranular cracking can occur by reducing the tensile residual stress in the weld to less than the yield point, or by maintaining the weld in the opposite compressive residual stress state. This was done by focusing on the need to pass through a temperature range of 0 to 550 degrees Celsius.
This objective is achieved by creating a temperature gradient between the welded part and the parts other than the welded part to generate thermal stress that cancels out the tensile residual stress generated during welding.

例えば、溶接歯車は歯車本本体には衝撃等に対して柔軟
性のある軟鋼材を用い、歯には耐摩耗性の大きいCr−
Mo系低合金鋼を用いて、歯車本体に歯を溶接すること
によって製作されるが、歯車本体と歯の溶接部には、1
般に軟鋼の降伏点を越える25k9/肌2から35k9
/肋2程度の溶接引張残留応力が生じている。
For example, for welded gears, the main body of the gear is made of mild steel, which is flexible against impacts, etc., and the teeth are made of Cr-based material, which has high wear resistance.
It is manufactured by welding teeth to the gear body using Mo-based low alloy steel.
Generally 25k9/2 to 35k9, which exceeds the yield point of mild steel.
/ Welding tensile residual stress of about 2 ribs is generated.

しかも、溶接部は溶接時の急熱急冷によって材質的にか
なり劣化している場合が多い。このため、溶接歯車の溶
接残留応力を除去し材質を改善するためのSRと熱処理
を施こす必要がある。しかし、溶接したままの状態、す
なわち、溶接部に降伏点を越える引張残留応力を生じて
いるままの状態で溶接歯車を加熱した場合には、鋼材は
300o0〜55000の間で降伏点を越える引張残留
応力によって突然SR割れを生じる結果を生じることに
なる。このため、溶接歯車の温度が300oo〜550
00の温度領域を通過する際に降伏点以上の引張残留応
力が存在するのを防止してSR割れを防止する。例えば
、溶接部の温度を溶接部以外の温度より100oo高〈
すると、鋼の線膨張係数1.0xlo‐5/℃のとき熱
ひずみごは1000×10‐6山となり、この時溶接部
にはm式y=Eご ……(
11より求められる圧縮応力が作用する。すなわち、E
(ヤング率)=20,000kg/f/柳2 の時、y
=20,000×1,000×10‐6=20k9f/
柳2となり、溶接部の引張残留応力を20k9f/側2
低減することができ、溶接部に生じている25〜35k
9f/柵2の引張残留応力は5〜15kgf/柵2と小
さくなる。溶接部の降伏応力は15k9f/柵2以上の
ため、温度差を保って昇温することによりSR割れを防
止することができる。以下実施例について説明する。
Moreover, the material quality of the welded part is often considerably deteriorated due to rapid heating and cooling during welding. Therefore, it is necessary to perform SR and heat treatment to remove the welding residual stress of the welded gear and improve the material quality. However, if the welded gear is heated in the as-welded state, that is, with tensile residual stress exceeding the yield point in the welded part, the steel material will have tensile stress exceeding the yield point between 300o0 and 55000. This results in sudden SR cracking due to residual stress. For this reason, the temperature of the welding gear is 300oo~550℃.
SR cracking is prevented by preventing the presence of tensile residual stress exceeding the yield point when passing through the temperature range of 0.00. For example, the temperature of the welded part is 100 oo higher than the temperature of the other part.
Then, when the linear expansion coefficient of steel is 1.0xlo-5/℃, the thermal strainer becomes 1000x10-6 peaks, and at this time, the welded part has the m formula y=E......(
The compressive stress determined from 11 acts. That is, E
(Young's modulus) = 20,000kg/f/Yanagi2, y
=20,000×1,000×10-6=20k9f/
Willow 2, the tensile residual stress of the welded part is 20k9f/side 2
25-35k generated in the welded area can be reduced.
The tensile residual stress of 9f/fence 2 is as small as 5 to 15 kgf/fence 2. Since the yield stress of the welded part is 15k9f/fence 2 or more, SR cracking can be prevented by increasing the temperature while maintaining the temperature difference. Examples will be described below.

第1図および第2図は一実施例を実施するための熱処理
装置を示すもので、Cr−Mo低合金鋼材よりなる歯1
を軟鋼材よりなる歯車本体2に溶接部3で溶接してなる
溶接歯車の熱処理状況を示しており、第2図は第1図の
A一A断面を示している。
FIGS. 1 and 2 show a heat treatment apparatus for carrying out an embodiment, in which teeth 1 made of Cr-Mo low alloy steel
Fig. 2 shows the heat treatment state of a welded gear formed by welding the welded gear to a gear body 2 made of mild steel at a welding part 3, and Fig. 2 shows a cross section A--A of Fig. 1.

溶接歯車は熱処理炉5の固定台6上に載層され、溶接歯
車の溶接部3の両側には電熱線等よりなる加熱器7が近
接して設けられ、溶接歯車の藤穴4には冷却用空気を供
聯合するためのパイプ8が設けられている。また、熱処
理炉5中には炉内温度測定用の炉内熱電対9、溶接部の
温度測定用の溶接部熱電対10、低温部の温度測定用の
低温部熱電対1 1が設けられており熱電温度計12に
よって各部の温度測定が可能になっている。このような
熱処理炉5を用いて溶接歯車の熱処理を行なうには、溶
接歯車の熔接部3を加熱器7で加熱し、一方溶接部3よ
り離れた歯車本体2をパイプ8を通して冷却用の空気を
流して冷却し、歯車本体2の温度を溶接部3の温度より
100oo程度常に低い状態にする。
The welding gear is placed on a fixed table 6 of a heat treatment furnace 5, and heaters 7 made of heating wires are provided on both sides of the welded part 3 of the welding gear in close proximity to each other. A pipe 8 is provided for supplying air. Further, the heat treatment furnace 5 is provided with an in-furnace thermocouple 9 for measuring the temperature inside the furnace, a welding part thermocouple 10 for measuring the temperature of the welded part, and a low-temperature part thermocouple 11 for measuring the temperature of the low-temperature part. A thermocouple thermometer 12 makes it possible to measure the temperature of each part. In order to heat-treat a welded gear using such a heat treatment furnace 5, the welded part 3 of the welded gear is heated with a heater 7, and the gear body 2 that is away from the welded part 3 is heated with cooling air through a pipe 8. The temperature of the gear body 2 is always about 100 oo lower than the temperature of the welded part 3 by cooling the gear body 2.

これらの操作は溶接部熱亀対10、低温度熱電対11の
検出結果を熱電温度計12により測定し、加熱器7の電
力およびパイプ8中に供給される冷却用の空気の供孫舎
量などを調節して行なわれる。このように溶接部3と歯
車本体2との間に温度勾配をつけることによって生じる
熱応力によって溶接部3に生じている引張残留応力を約
20k9/柳2小さくすることができ、降伏点よりはる
かに小さな引張残留応力とすることができる。第3図お
よび第4図は、この過剰における溶接歯車の残留応力の
分布を模型的に示すもので、第1図および第2図と同一
部分には同一符号が付してあり、第3図が溶接のままの
場合の応力分布をを示し、第4図が溶接部と溶接部以外
の部分との間に溶接部を高温とする温度勾配を与えた場
合の応力分布を示しており、Tが引張り応力、Cが圧縮
応力を示している。
These operations are performed by measuring the detection results of the welding part thermocouple 10 and low temperature thermocouple 11 with the thermocouple thermometer 12, and measuring the power of the heater 7 and the amount of cooling air supplied to the pipe 8. It is done in a controlled manner. In this way, the tensile residual stress generated in the weld 3 due to the thermal stress generated by creating a temperature gradient between the weld 3 and the gear body 2 can be reduced by approximately 20k9/Yanagi2, far below the yield point. Can be with small tensile residual stress. Figures 3 and 4 schematically show the distribution of residual stress in the welded gear under this excess condition, and the same parts as in Figures 1 and 2 are given the same symbols, and Figure 3 Figure 4 shows the stress distribution when a temperature gradient is applied between the welded part and the part other than the welded part to make the welded part high temperature. indicates tensile stress and C indicates compressive stress.

次に、この温度勾配を保持した状態で溶接歯車を除々に
625℃(再結晶温度)まであげる。
Next, while maintaining this temperature gradient, the welding gear is gradually raised to 625° C. (recrystallization temperature).

この操作は炉内の温度を炉内熱蟹対9で検出して行ない
、溶接部3の温度が625℃まで上昇した時点で、溶接
部3の温度がそれ以上上昇しないように加熱器7を制御
して溶接部3の温度を625ooに保持する。この時点
で歯車本体2は52yoになっているが、ついで、パイ
プ8を流す冷却用の空気の供給をを停止または減少せし
め、歯車本体2の温度を徐々に上昇させ、溶接歯車全体
の温度を625℃の均一温度にして、その状態で3〜4
時間保持する。この再結晶温度による均一加熱により、
溶接時の急熱急冷によって材質が劣化している溶接部を
再結晶させ結晶組織を整えるとともに、溶接の残留応力
を完全に除去することができる。このような熱処理方法
においては溶接部と溶接部以外の部分との間に与えられ
た温度勾配によって溶接部に圧縮応力を発生させ、これ
によって溶接時に発生した残留引張応力を降伏点以下に
下げるか、あるいは残留引張応力を圧縮応力として、そ
の状態でSR割れを生ずる300午C〜550qoの温
度領域を通過させることができるため、SR割れを防止
することが可能となる。すなわち、この実施例の方法を
用いることにより、SR割れを発生せずに、溶接部の残
留応力の除去および材質の改善を行なうことが可能とな
り、製品の強度に対する信頼性が大きく向上する。
This operation is carried out by detecting the temperature inside the furnace with the furnace heat crab pair 9, and when the temperature of the welding part 3 rises to 625°C, the heater 7 is turned on to prevent the temperature of the welding part 3 from rising any further. The temperature of the welding part 3 is maintained at 625 oo by control. At this point, the temperature of the gear body 2 is 52yo, but next, the supply of cooling air flowing through the pipe 8 is stopped or reduced, and the temperature of the gear body 2 is gradually increased to lower the temperature of the entire welded gear. At a uniform temperature of 625℃, keep it at that temperature for 3 to 4 hours.
Hold time. Due to uniform heating at this recrystallization temperature,
It is possible to recrystallize a welded part where the material has deteriorated due to rapid heating and cooling during welding, adjust the crystal structure, and completely remove residual stress from welding. In such a heat treatment method, compressive stress is generated in the weld by a temperature gradient applied between the weld and the parts other than the weld, and this reduces the residual tensile stress generated during welding to below the yield point. Alternatively, the residual tensile stress can be converted into compressive stress and passed through a temperature range of 300 pm to 550 qo where SR cracking occurs in that state, making it possible to prevent SR cracking. That is, by using the method of this embodiment, it is possible to remove residual stress in the weld and improve the material quality without generating SR cracking, and the reliability of the strength of the product is greatly improved.

なお、実施例にはCr一Mo系低合金鋼の例を示したが
、SR割れは低マンガン鋼、シリコン・マンガン鋼、マ
ンガン・クロム鋼、マンガン、モリブデン鋼、マンガン
・クロム・モリブデン鋼、ニッケル・クロム・モリブデ
ン鋼などの低合金鋼には一般に起るので、この熱処理方
法は同様に適用することが可能である。
In addition, although the example shows an example of Cr-Mo based low alloy steel, SR cracking is applied to low manganese steel, silicon-manganese steel, manganese-chromium steel, manganese, molybdenum steel, manganese-chromium-molybdenum steel, and nickel.・This heat treatment method can be applied in the same way, as this generally occurs in low alloy steels such as chromium-molybdenum steels.

しかし、Cr−Mo鋼においてはSR割れが特に者るし
いため、その効果は特に顕著に表れる。また、この実施
例においては、溶接歯車の例をを示したが、低合金鋼と
炭素鋼とを溶接した溶接継手には広く適用可能であり、
同様のの効果を得ることができる。以上の如く、本発明
溶接継手の熱処理方法はSR割れを生ぜしめることなく
応力除去および材質改善を可能ならしめるもので、工業
的効果の大なるものである。
However, since SR cracking is particularly noticeable in Cr-Mo steel, the effect is particularly noticeable. In addition, although this example shows an example of a welded gear, it is widely applicable to welded joints made by welding low alloy steel and carbon steel.
A similar effect can be obtained. As described above, the heat treatment method for welded joints of the present invention enables stress relief and material quality improvement without causing SR cracking, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明溶接継手の熱処理方法の一実施例を実施
するための熱処理装置の断面図、第2図は第1図のA一
A断面図、第3図は溶接歯車の溶接時のままの残留応力
分布図、第4図は本発明溶接継手の熱処理方法の一工程
における溶接歯車の応力分布図である。 1…歯、2…歯車本体、3…溶接部、4…軸タ穴、5・
・・熱処理炉、7・・・加熱器、8・・・(冷却用空気
の供給用)パイプ。 多’図 多2図 多3図 多4図
Fig. 1 is a sectional view of a heat treatment apparatus for carrying out an embodiment of the heat treatment method for welded joints of the present invention, Fig. 2 is a sectional view taken along A-A in Fig. 1, and Fig. 3 is a sectional view of a welding gear during welding. Fig. 4 is a stress distribution diagram of a welded gear in one step of the heat treatment method for a welded joint according to the present invention. 1... Teeth, 2... Gear body, 3... Welded part, 4... Shaft hole, 5.
... Heat treatment furnace, 7 ... Heater, 8 ... (For supplying cooling air) pipe. Multi-figure multi-figure 2-figure multi-figure 3-figure multi-figure 4

Claims (1)

【特許請求の範囲】 1 低合金鋼と炭素鋼とを溶接した継手に発生している
降伏応力以上の引張残留応力の除去ならびに材質改善を
行なうための溶接継手の熱処理方法において、前記継手
の溶接部と該溶接部以外の部分とを、前記継手の溶接部
の温度が該溶接部以外の部分の温度より高温となる温度
勾配を保持した状態で加熱して、該加熱により生じた熱
応力によって溶接時の前記降伏応力以上の引張残留応力
を打ち消し降伏応力以下の引張残留応力又は圧縮残留応
力とする操作と、該温度勾配を保持した状態で温度上昇
させる操作と、該操作により上昇した温度の最高温度が
再結晶温度に達した後、該最高温度を保持しながら低温
部の温度を上昇させ全体を再結晶温度にする操作と、該
再結晶温度に所定寺間保持する操作を有することを特徴
とする溶接継手の熱処理方法。 2 前記低合金鋼がクロム・モリブデン系低合金鋼であ
り、前記炭素鋼が軟鋼である特許請求の範囲第1項記載
の溶接継手の熱処理方法。
[Scope of Claims] 1. A heat treatment method for a welded joint for removing tensile residual stress exceeding the yield stress occurring in a joint made by welding low alloy steel and carbon steel and improving the material quality, the method comprising: and a part other than the welded part are heated while maintaining a temperature gradient such that the temperature of the welded part of the joint is higher than the temperature of the part other than the welded part, and the thermal stress generated by the heating An operation to cancel the tensile residual stress above the yield stress during welding to a tensile residual stress or compressive residual stress below the yield stress, an operation to increase the temperature while maintaining the temperature gradient, and an operation to increase the temperature increased by the operation. After the maximum temperature reaches the recrystallization temperature, the method includes an operation of increasing the temperature of the low temperature part while maintaining the maximum temperature to bring the entire body to the recrystallization temperature, and an operation of maintaining the recrystallization temperature for a predetermined distance. Characteristic heat treatment method for welded joints. 2. The method of heat treating a welded joint according to claim 1, wherein the low alloy steel is a chromium-molybdenum based low alloy steel, and the carbon steel is a mild steel.
JP7937177A 1977-07-01 1977-07-01 Heat treatment method for welded joints Expired JPS6013046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7937177A JPS6013046B2 (en) 1977-07-01 1977-07-01 Heat treatment method for welded joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7937177A JPS6013046B2 (en) 1977-07-01 1977-07-01 Heat treatment method for welded joints

Publications (2)

Publication Number Publication Date
JPS5413435A JPS5413435A (en) 1979-01-31
JPS6013046B2 true JPS6013046B2 (en) 1985-04-04

Family

ID=13688010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7937177A Expired JPS6013046B2 (en) 1977-07-01 1977-07-01 Heat treatment method for welded joints

Country Status (1)

Country Link
JP (1) JPS6013046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345639U (en) * 1986-09-11 1988-03-28

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033492A (en) * 1995-07-25 2000-03-07 Henkel Corporation Composition and process for autodeposition with modifying rinse of wet autodeposited coating film
US6395336B1 (en) 1998-01-14 2002-05-28 Henkel Corporation Process for improving the corrosion resistance of a metal surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345639U (en) * 1986-09-11 1988-03-28

Also Published As

Publication number Publication date
JPS5413435A (en) 1979-01-31

Similar Documents

Publication Publication Date Title
KR100516010B1 (en) Welded joints in high strength, heat resistant steels, and welding method for the same
JPH06114564A (en) Method of joining high manganese cast steel switching member or manganese steel rail with carbon steel rail
KR20130012943A (en) Method for welding thin-walled tubes by means of peak temperature temper welding
JPS6013046B2 (en) Heat treatment method for welded joints
JPH02284777A (en) Manufacture of stainless steel cladded plate having excellent corrosion resistance and toughness
JPS6013047B2 (en) Heat treatment method for welded joints
Wang et al. Mechanical behavior in local post weld heat treatment. I. Visco-elastic-plastic FEM analysis of local PWHT
JP4392376B2 (en) Method for producing composite roll for hot rolling
JPS6053108B2 (en) Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance
JP2013072113A (en) Hollow member for vehicle reinforcement
JP2018524183A (en) Method of joining FeCrAl alloy and FeNiCr alloy by welding using filler metal
JPS63176434A (en) Heat treatment for welding zone
JPH04162985A (en) Method for joining spheroidal graphite cast iron material and stainless steel material
JPS5514833A (en) Heat-treating method
JPS5576025A (en) Structure improving heat treatment method of welding heat affected zone of low alloy steel
JPH0211654B2 (en)
JPS59153841A (en) Production of high-tension electric welded steel pipe having uniform strength
JPS5831270B2 (en) Austenite silicone stainless steel
JPS5832594A (en) Welding method
JPH01111820A (en) Method for adjusting liquid-phase distributed joining composition
JP2006051534A (en) Steel plate line-heating method
JPS6256524A (en) Manufacture of high strength rail providing weldability
SU733926A1 (en) Method of obtaining welded joints with preset mechanical properties
JPS62146247A (en) Cr-mo steel plate for multilayer vessel
JPS583776B2 (en) Manufacturing method for strong long chains