JPS6013047B2 - Heat treatment method for welded joints - Google Patents

Heat treatment method for welded joints

Info

Publication number
JPS6013047B2
JPS6013047B2 JP8070777A JP8070777A JPS6013047B2 JP S6013047 B2 JPS6013047 B2 JP S6013047B2 JP 8070777 A JP8070777 A JP 8070777A JP 8070777 A JP8070777 A JP 8070777A JP S6013047 B2 JPS6013047 B2 JP S6013047B2
Authority
JP
Japan
Prior art keywords
welded
temperature
joint
residual stress
welded joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8070777A
Other languages
Japanese (ja)
Other versions
JPS5414347A (en
Inventor
善美 佐藤
吉保 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8070777A priority Critical patent/JPS6013047B2/en
Publication of JPS5414347A publication Critical patent/JPS5414347A/en
Publication of JPS6013047B2 publication Critical patent/JPS6013047B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は溶接継手、特に低合金鋼と炭素麹とを溶接した
溶接継手の熱処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for heat treating a welded joint, particularly a welded joint made by welding low alloy steel and carbon koji.

クロム・モリブデン(Cr−Mo)系低合金鋼と軟鋼と
を溶接して継手を形成する場合には、溶接により発生す
る残留応力を除去し、材質改善を行なうため熱処理を行
なっているが、従来の熱処理方法は、継手材を炉内で6
00℃付近まで徐々に温度上昇させる方法を用いていた
When forming a joint by welding chromium-molybdenum (Cr-Mo) low alloy steel and mild steel, heat treatment is performed to remove residual stress generated by welding and improve the material quality. The heat treatment method is to heat the joint material in a furnace for 6
A method was used in which the temperature was gradually raised to around 00°C.

この熱処理方法は、継手材を均一温度状態で加熱してい
るので、溶接時に生じた大さし、引張残留応力は初期状
態をそのまま保持しながら温度上昇することになる。
In this heat treatment method, the joint material is heated at a uniform temperature, so the temperature increases while maintaining the initial state of the residual stress and tensile stress generated during welding.

このような状態で温度上昇させると、鋼材には300℃
〜550℃の温度領域で粒界割れれを起す材質的特性が
あるため、この温度領域で材質が腕化し、溶接により降
仇点を越える引張残留応力が生じている状態では応力緩
和(StressRela松tfon)(以下、SRと
略記する)割れを生ずるク0点があった。本発明はこの
ような問題点を除去し、SR割れを生ぜしめることなく
応力除去および材質改善の可能な溶接継手の熱処理方法
を提供することを目的とするもので、低合金鍵と炭素鋼
とを溶接した継手に発生している引張残留応力の除去な
らびに材質改善を行なうための溶接継継手の熱処理方法
において、前記継手の溶接部以外の部分のみを加熱して
溶接部との間に前記溶接継手に発生している引張残留応
力を引張側で降伏させる温度差を与え、その後常温まで
冷却して応力反転により溶接時に生じた引張残留応力を
圧縮残留応力に変化させる操作と、該操作の行なわれた
溶接継手の全体を再結晶温度まで徐々に昇温する操作と
、該再結晶温度に所定時間保持する操作を有することを
特徴とするものである。
If the temperature is increased under these conditions, the steel material will reach a temperature of 300°C.
Because the material has a characteristic that intergranular cracking occurs in the temperature range of ~550°C, the material becomes arms in this temperature range, and stress relaxation (Stress Rela Matsu) tfon) (hereinafter abbreviated as SR) There was a 0 point that caused cracking. The present invention aims to eliminate such problems and provide a heat treatment method for welded joints that can relieve stress and improve material quality without causing SR cracking. In a heat treatment method for a welded joint for removing tensile residual stress occurring in a welded joint and improving the material quality, only the parts of the joint other than the welded part are heated, and the welded joint is heated between the welded part and the welded joint. The process of applying a temperature difference that causes the tensile residual stress occurring in the joint to yield on the tensile side, and then cooling it to room temperature to change the tensile residual stress generated during welding into compressive residual stress by reversing the stress, and how to perform this operation. This method is characterized by comprising an operation of gradually raising the temperature of the entire welded joint to a recrystallization temperature, and an operation of holding the welded joint at the recrystallization temperature for a predetermined period of time.

本発明はSR割割れを防止するには〜溶接部の引張残留
応力を逆の圧縮残留応力にして、粒界割れが生じる30
0oo〜550qoの温度領域を通過させることを必要
である点に着目してなされたものである。
In order to prevent SR cracking, the present invention is to change the tensile residual stress in the weld zone to the opposite compressive residual stress, which will cause intergranular cracking.30
This was done by focusing on the fact that it is necessary to pass through a temperature range of 0oo to 550qo.

すなわち、溶接部の残留応力を引張側で降伏させる温度
差を与えれば、その後の室温までの冷却過程で応力反転
し溶接部は圧縮の残留応力状態とすることができる。
That is, if a temperature difference is applied that causes the residual stress in the weld to yield on the tensile side, the stress is reversed during the subsequent cooling process to room temperature, and the weld can be placed in a compressive residual stress state.

その為その後溶接継手を均一に加熱してもSR割れは発
生しない。例えば溶接部以外の温度を溶接部より150
qo高くすると、銭の線膨張数1.0×10‐5/℃の
とき熱みずみどは1500×10‐6仏となり、この時
、溶接部には‘1}式y=Eご
“””mより求められる引張り応力が作用する。すな
わちE(ヤング率);20,000k9/f/側2 の
時y=20,000×1500×10‐6=30k9f
/楓となり、溶接部は完全に30k9f/側2 では引
張降伏状態となる。その後、冷却することにより応力反
転が生じ溶接部は室温で圧縮の残留応力状態となるため
、その後に再結晶温度まで全体を均一加熱してもSR割
れを生じることはない。また、再結晶温度による均一加
熱によって、溶接時の急熱急冷によって材質が劣化して
いるのを再結晶させることにより、結晶組織を整え、合
せて熔接の残留応力を完全に除去することができる。
Therefore, even if the welded joint is heated uniformly thereafter, SR cracking will not occur. For example, the temperature of the area other than the welded area is 150° higher than that of the welded area.
If qo is increased, the thermal expansion will be 1500 x 10-6 when the linear expansion number of Qi is 1.0 x 10-5/℃, and at this time, the welded part will have a
A tensile stress calculated from """m acts. That is, E (Young's modulus); 20,000k9/f/side 2, y = 20,000 x 1500 x 10-6 = 30k9f
/Kaede, and the welded part is completely in a tensile yield state at 30k9f/side 2. Thereafter, by cooling, stress reversal occurs and the welded part becomes in a compressive residual stress state at room temperature, so even if the whole is uniformly heated to the recrystallization temperature afterwards, no SR cracking will occur. In addition, uniform heating at the recrystallization temperature can recrystallize the material that has deteriorated due to rapid heating and cooling during welding, adjusting the crystal structure and completely eliminating residual stress from welding. .

例えば、溶接歯車は歯車本体には衝撃等に対して柔軟性
のある軟鋼材を用い、歯には耐摩耗性の大きいCr−M
o系低合金鋼を用いて、歯車本体に歯を溶接することに
よって製作されるが、歯車本体と歯との溶接部には、一
般に欧鋼の降伏点を越える25k9/柵2 から35k
9/柳2程度の溶接引張残留応力が生じている。
For example, welded gears use mild steel for the gear body, which is flexible against impacts, etc., and the teeth are made of Cr-M, which has high wear resistance.
It is manufactured by welding the teeth to the gear body using o-series low alloy steel, but the weld between the gear body and the teeth is generally 25k9/fence 2 to 35k, which exceeds the yield point of European steel.
9/Yanagi Welding tensile residual stress of about 2 has occurred.

しかも溶接部は溶接時の急熱V急袷によって材質的にか
なり劣化している場合が多い。このため、歯車の妄援残
留応力を除去し材質を改善するためのSRと熱処理を施
こす必要がある。しかし、溶接したままの状態、すなわ
ち、溶接部に降仇点を越える引張残留応力を生じている
ままの状態で歯車を加熱した場合には、鋼材は300℃
〜550℃の間で降味点を越える引張残留応力によって
突然SR割れを生じる結果を生じることになる。このた
め、歯車の温度が300qo〜550℃の温度領域を通
過する際に降伏点以上の引張残留応力となるのを防止し
てSR割れを防止するのが本発明であって、以下に実施
例について説明する。第1図および第2図は一実施例の
実施情況を示すもので、Cr−Mo低合金鋼材よりなる
歯1を欧鋼材よりなる歯車本体2に溶接部3で溶接して
なる溶薮歯車の熱処理状況を示している。
Moreover, the material quality of the welded part is often considerably deteriorated due to the rapid heating during welding. Therefore, it is necessary to perform SR and heat treatment to remove the residual stress of the gear and improve the material quality. However, if the gear is heated as welded, that is, with tensile residual stress exceeding the drop point in the weld, the steel material will heat up to 300°C.
SR cracking suddenly occurs due to tensile residual stress exceeding the deterioration point between 550°C and 550°C. Therefore, the present invention prevents SR cracking by preventing tensile residual stress exceeding the yield point when the gear temperature passes through a temperature range of 300qo to 550°C. I will explain about it. Fig. 1 and Fig. 2 show the implementation status of one embodiment, which is a welded gear in which teeth 1 made of Cr-Mo low alloy steel are welded to a gear body 2 made of European steel at a welding part 3. Shows the heat treatment status.

溶接歯車の歯車本体2の鯛穴4には高周波加熱器あるい
は電熱線等よりなる発熱体5が設置され、電源6によっ
て蟹力を供聯合する。また歯1の周囲には冷却器7が設
置され、空気または水が供給口71から供給され排出口
72より排出される。溶接歯車は最初このような加熱手
段を用いて溶接部以外の部分を加熱する。
A heating element 5 made of a high frequency heater or a heating wire is installed in the hole 4 of the gear body 2 of the welding gear, and a power source 6 provides a heating element 5 . Further, a cooler 7 is installed around the teeth 1, and air or water is supplied from a supply port 71 and discharged from a discharge port 72. The welding gear initially uses such a heating means to heat the parts other than the welded part.

すなわち、歯車本体2を構成する軟鋼部の温度が300
qo以下で、溶接部3と歯車本体2との温度差が150
℃以上になるよう急加熱する。この150℃以上の温度
差を保持した急加熱のために、冷却器7に水または空気
を供給して溶接部3を低温とする。ついで、このように
溶接部3と歯車本体2との間に温度勾配の生じている溶
接歯車を常温に戻す。この加熱、冷却操作においては、
最初加熱により引張応力を生ずるが、その後の冷却によ
り、反力として圧縮応力が働く状態になる。
That is, the temperature of the mild steel part that constitutes the gear body 2 is 300°C.
Below qo, the temperature difference between the welded part 3 and the gear body 2 is 150
Rapidly heat to above ℃. For rapid heating while maintaining this temperature difference of 150° C. or more, water or air is supplied to the cooler 7 to lower the welded portion 3 to a low temperature. Next, the welded gear, in which a temperature gradient has occurred between the welded portion 3 and the gear body 2, is returned to room temperature. In this heating and cooling operation,
Initially, heating produces tensile stress, but subsequent cooling causes compressive stress to act as a reaction force.

第3図および第4図は、この過程における溶接歯車の残
留応力の分布を模型的に示すもので、第1図および第2
図と同一部分には同一符号が付してあり、第3図が溶鞍
のままの状態における応力分布を示し、第4図が溶接部
以外の部分を高温にした状態における応力分布を示して
おり、Tが引張応力、Cが圧縮応力を示している。
Figures 3 and 4 schematically show the distribution of residual stress in the welded gear during this process.
The same parts as in the figure are given the same reference numerals. Figure 3 shows the stress distribution when the molten saddle remains, and Figure 4 shows the stress distribution when the parts other than the weld are heated to high temperature. where T indicates tensile stress and C indicates compressive stress.

次に、前述の操作により圧縮残留応力を与えた溶接歯車
全体を炉内で徐々に60000〜6500C(再結晶温
度)まで温度上昇を行ない、この温度に3〜4時間保持
する。
Next, the temperature of the entire welded gear to which compressive residual stress has been applied by the above-described operation is gradually raised in a furnace to 60,000 to 6,500 C (recrystallization temperature), and held at this temperature for 3 to 4 hours.

このような熱処理方法においては溶接部以外の部分を一
旦高温として溶接部に圧縮応力を発生さけ、これによっ
て溶接時に発生した引張残留応力を降伏点以下に下げる
か、あるいは引張残留応力を圧縮残留応力として、その
状態でSR割れの生ずる300こ0〜55000の温度
領域を通過させることができるため、SR割れを防止す
ることが可能となる。
In such a heat treatment method, the parts other than the weld are heated to a high temperature to avoid generating compressive stress in the weld, and the tensile residual stress generated during welding is thereby reduced to below the yield point, or the tensile residual stress is reduced to compressive residual stress. In this state, it is possible to pass through a temperature range of 300 to 55,000 degrees Celsius, where SR cracking occurs, making it possible to prevent SR cracking.

すなわち、この実施例の方法を用いることにより、SR
割れを発生せずに、溶接部の残留応力の除去および材質
の改善を可能とすることができるので、製品の強度に対
する信頼性が大きく向上するのみならず、その熱処理操
作を簡単、容易に実施することができる。
That is, by using the method of this example, SR
Since it is possible to eliminate residual stress in the weld and improve the material quality without causing cracks, it not only greatly improves the reliability of the product's strength, but also makes the heat treatment process simple and easy. can do.

第5図は他の実施例を示すもので、第1図および第2図
と同一部分には同一符号が付してあり、これらの図の場
合と異なる点は、溶接部以外の部分の加熱手段としてガ
スバーナー8の火炎81を用いた点で、この場合にも同
様に作用し、同等の効果を有する。
Figure 5 shows another embodiment, in which the same parts as in Figures 1 and 2 are given the same reference numerals, and the difference from these figures is that heating of parts other than the welded part is In this case, the flame 81 of the gas burner 8 is used as the means, and the same effect can be obtained in this case as well.

なお、実施例にはCr−Mo系低合金鋼の例を示したが
、SR割れは低マンガン鋼、シリコン・マンガン鋼、マ
ンガン・クロム鋼、マンガン・モリブデン鋼、マンガン
クロム・モリブデン鋼、ニッケル・クロム・モリブデン
鋼などの低合金鋼には一般に起るので、この熱処理方法
は同様に適用することが可能である。
Although Cr-Mo based low alloy steel was shown in the examples, SR cracking was observed in low manganese steel, silicon manganese steel, manganese chromium steel, manganese molybdenum steel, manganese chromium molybdenum steel, nickel and chromium molybdenum steel. Since this generally occurs in low alloy steels such as chromium-molybdenum steels, this heat treatment method can be similarly applied.

しかし、Cr−Mo鋼におおし・てはSR割れが特に箸
るしいため、その効果は特に顕著に表れる。また、この
実施例においては、溶接歯車の例を示したが、低合金鋼
と炭素鋼を溶接した溶接継手には広く適用可能であり、
同様の効果を得ることができる。以上の如く、本発明溶
接継手の熱処理方法はSR割れを生ぜしめることなく応
力除去および材質改善を可能ならしめるもので、工業的
効果の大なるものである。
However, since SR cracking is particularly severe when applied to Cr-Mo steel, the effect is particularly noticeable. In addition, although this example shows an example of a welded gear, it is widely applicable to welded joints made by welding low alloy steel and carbon steel.
A similar effect can be obtained. As described above, the heat treatment method for welded joints of the present invention enables stress relief and material quality improvement without causing SR cracking, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明熔接継手の熱処理方法の一実施例の実施
情況を示す平面図、第2図は同じく断面図、第3図は溶
接歯車の溶接時のままの残留応力分布図、第4図は本発
明溶接継手の熱処理方法の一工程における溶接歯車の応
力分布図、第5図は同じく他の一実施例の実施情況を示
す断面図である1…歯、2…歯車本体、3…溶接部、4
・・・軸穴、5・・・発祢体、7・・・冷却器、8…ガ
スバーナ1ーー。 努′図 豹2図 衆3図 チ図 紫づ図
Fig. 1 is a plan view showing the implementation status of one embodiment of the heat treatment method for welded joints of the present invention, Fig. 2 is a sectional view of the same, Fig. 3 is a residual stress distribution diagram of the welded gear as it is welded, and Fig. 4 The figure is a stress distribution diagram of a welded gear in one step of the heat treatment method for a welded joint of the present invention, and FIG. 5 is a sectional view showing the implementation situation of another embodiment. Welded part, 4
...Shaft hole, 5...Sparkling body, 7...Cooler, 8...Gas burner 1--. Tsutomu' figure Leopard 2 figure 3 figure Chi figure purple figure

Claims (1)

【特許請求の範囲】 1 低合金鋼と炭素鋼とを溶接した継手に発生している
引張残留応力の除去ならびに材質改善を行なうための溶
接継手の熱処理方法において、前記継手の溶接部以外の
部分のみを加熱して溶接部との間に前記溶接継手に発生
している引張残留応力を引張側で降伏させる温度差を与
え、その後常温まで冷却して応力反転により溶接時に生
じた引張残留応力を圧縮残留応力に変化させる操作と、
該操作の行なわれた溶接継手の全体を再結晶温度まで徐
々に昇温する操作と、該再結晶温度に所定時間保持する
操作を有することを特徴とする溶接継手の熱処理方法。 2 前記低合金鋼がクロム・モリブデン系低合金鋼であ
り、前記炭素鋼が軟鋼である特許請求の範囲第1項記載
の溶接継手の熱処理方法。3 前記溶接部以外の加熱が
、300℃以下の急加熱によって行なわれ、前記溶接部
との間に生ぜしめる温度差が150℃以上であり、前記
所定の熱処理温度が600℃〜650℃である特許請求
の範囲第1項または第2項記載の溶接継手の熱処理方法
[Scope of Claims] 1. A heat treatment method for a welded joint for removing tensile residual stress generated in a joint made by welding low alloy steel and carbon steel and for improving the material quality, in which a portion of the joint other than the welded portion is provided. The joint is heated to create a temperature difference between the welded part and the welded joint that yields the tensile residual stress occurring in the welded joint on the tensile side, and then cooled to room temperature to eliminate the tensile residual stress generated during welding by stress reversal. An operation that changes the stress to compressive residual stress;
A method for heat treating a welded joint, comprising the steps of: gradually increasing the temperature of the entire welded joint to a recrystallization temperature; and holding the welded joint at the recrystallization temperature for a predetermined period of time. 2. The method of heat treating a welded joint according to claim 1, wherein the low alloy steel is a chromium-molybdenum based low alloy steel, and the carbon steel is a mild steel. 3. Heating other than the welded part is performed by rapid heating to 300°C or less, the temperature difference between the welded part and the welded part is 150°C or more, and the predetermined heat treatment temperature is 600°C to 650°C. A method for heat treating a welded joint according to claim 1 or 2.
JP8070777A 1977-07-05 1977-07-05 Heat treatment method for welded joints Expired JPS6013047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8070777A JPS6013047B2 (en) 1977-07-05 1977-07-05 Heat treatment method for welded joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8070777A JPS6013047B2 (en) 1977-07-05 1977-07-05 Heat treatment method for welded joints

Publications (2)

Publication Number Publication Date
JPS5414347A JPS5414347A (en) 1979-02-02
JPS6013047B2 true JPS6013047B2 (en) 1985-04-04

Family

ID=13725792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8070777A Expired JPS6013047B2 (en) 1977-07-05 1977-07-05 Heat treatment method for welded joints

Country Status (1)

Country Link
JP (1) JPS6013047B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447035U (en) * 1987-09-16 1989-03-23
JPH0357164Y2 (en) * 1985-03-20 1991-12-26

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0704118D0 (en) * 2007-03-02 2007-04-11 Welding Inst Method of relieving residual stress in a welded structure
WO2012112779A2 (en) 2011-02-16 2012-08-23 Keystone Synergistic Enterprises, Inc. Metal joining and strengthening methods utilizing microstructural enhancement
US11225868B1 (en) 2018-01-31 2022-01-18 Stresswave, Inc. Method for integral turbine blade repair

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357164Y2 (en) * 1985-03-20 1991-12-26
JPS6447035U (en) * 1987-09-16 1989-03-23

Also Published As

Publication number Publication date
JPS5414347A (en) 1979-02-02

Similar Documents

Publication Publication Date Title
MX2007013032A (en) Restotration method for deteriorated part and restoration apparatus for deteriorated part .
KR101254348B1 (en) Heat treatment method in press-fit connection
Kalyankar et al. Effect of post weld heat treatment on mechanical properties of pressure vessel steels
JPS6013047B2 (en) Heat treatment method for welded joints
US3615920A (en) High temperature braze heat treatment for precipitation hardening martensitic stainless steels
CN101784682A (en) Deteriorated portion reproducing method and deteriorated portion reproducing device
DE19729781C1 (en) Welding shaped components comprising carburised heat resistant steel
JPS6013046B2 (en) Heat treatment method for welded joints
US5407497A (en) Method of heat treatment for two welded-together parts of different steel alloy grades
CS196235B2 (en) Method for thermal treatment of weldable constructional steels with high tensile strength
JPH05132719A (en) Method for welding high carbon steel sheet or strip
CN113584294B (en) Post-weld stress relief treatment method for precipitation-strengthened high-temperature alloy
JPS63176434A (en) Heat treatment for welding zone
RU2129166C1 (en) Method of heat treatment of structures
JP3457768B2 (en) Joining method of martensitic stainless steel pipe
SU870459A1 (en) Method of thermal treatment of welded joints
NO770028L (en) PROCEDURES FOR THE MANUFACTURE OF AUSTENITIC HARD MANGANTS} L.
US4612070A (en) Method for welding chromium molybdenum steels
JPH01111820A (en) Method for adjusting liquid-phase distributed joining composition
JP3501922B2 (en) Prevention of peeling crack of pressure vessel
JPS61235516A (en) Heat treatment of welded stainless steel joint
RU2464142C1 (en) Method of machining part blanks made from refractory nickel alloys prior to jointing them by soldering-welding
RU2103382C1 (en) Method of thermally treating welded joints of maraging steels
CN116479227A (en) Method for improving high-temperature durable service life of martensitic heat-resistant steel welded joint and application thereof
JPS59110723A (en) Preparation of 12% cr type cast steel product