JPS63176434A - Heat treatment for welding zone - Google Patents

Heat treatment for welding zone

Info

Publication number
JPS63176434A
JPS63176434A JP725387A JP725387A JPS63176434A JP S63176434 A JPS63176434 A JP S63176434A JP 725387 A JP725387 A JP 725387A JP 725387 A JP725387 A JP 725387A JP S63176434 A JPS63176434 A JP S63176434A
Authority
JP
Japan
Prior art keywords
heat exchanger
welding
welded
heat
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP725387A
Other languages
Japanese (ja)
Other versions
JP2678230B2 (en
Inventor
Akiyuki Yamamoto
山本 昭幸
Shoichi Takeda
武田 祥一
Yasukimi Miura
三浦 康公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62007253A priority Critical patent/JP2678230B2/en
Publication of JPS63176434A publication Critical patent/JPS63176434A/en
Application granted granted Critical
Publication of JP2678230B2 publication Critical patent/JP2678230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve toughness in a weld zone and also to relieve residual welding stress, by subjecting a heat-transfer pipe of a heat exchanger and a hub of a pipe plate to butt welding and then applying heat treatment to the weld zone under specific conditions. CONSTITUTION:The heat-transfer pipe 2, composed of high-Cr steel containing, as principal components, 8.0-10.0wt.% Cr and 0.8-1.2wt.% Mo, of a heat exchanger and the hub 3a of a pipe plate 3 composed of high-Cr steel are allowed to abut each other and subjected to inert-gas tungsten-arc welding by the use of filler metal. Subsequently, the weld zone 4 is rapidly heated up to a temp. in a temp. region of the Ac3 transformation point or above, 900-960 deg.C, from the inside by means of a high-frequency heater 6, and the outside is cooled rapidly down to ordinary temp. by passing water 10. Further, high-frequency heaters 6, 7, 8 are electrified, and a residual welding stress zone 9 including the weld zone 4 is heated from the inside up to 700-760 deg.C and then cooled slowly. In this way, a coarse-grain zone in the weld zone 4 is refined and formed into a stable tempered martensite structure, so that toughness is improved and residual welding stress is relieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱交換器の溶接部の熱処理方法に係わり、特に
高速増殖炉、火力ボイラー又は化学プラント用の熱交換
器の高クロム鋼の溶接部の熱処理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for heat treatment of welded parts of heat exchangers, particularly for welding high chromium steel of heat exchangers for fast breeder reactors, thermal boilers or chemical plants. The present invention relates to a heat treatment method for parts.

〔従来の技術〕[Conventional technology]

熱交換器の構造は一般的に第3図に示すように熱交換器
1に管板3が固定され、その管板3に伝熱管2が溶接さ
れている。管内流体は管内流体人口11から入って伝熱
管2の内を通って、管外流体から熱を供給されて昇温し
た伝熱管から熱を吸収して管内流体出口12から出る。
Generally, the structure of a heat exchanger is as shown in FIG. 3, in which a tube plate 3 is fixed to a heat exchanger 1, and a heat transfer tube 2 is welded to the tube plate 3. The fluid in the tube enters from the fluid in the tube 11, passes through the heat exchanger tube 2, absorbs heat from the heat exchanger tube whose temperature is raised by being supplied with heat from the fluid outside the tube, and exits from the fluid outlet 12 in the tube.

一方、管外流体が管外流体入口13から入って伝熱管2
の間を通過しながら伝熱管2に熱を供給して管外流体出
口14から出る。
On the other hand, extratubular fluid enters the heat exchanger tube 2 from the extratubular fluid inlet 13.
Heat is supplied to the heat transfer tube 2 while passing between the tubes and exits from the extratubular fluid outlet 14.

この熱交換器1の伝熱管2と管板3との一般的な溶接継
手を第4A図〜第4D図に示す。
A general welded joint between the heat exchanger tubes 2 and the tube sheet 3 of this heat exchanger 1 is shown in FIGS. 4A to 4D.

第4A図に示された、管板の外側に設けたハブと伝熱管
との隅肉溶接継手では、ティグ溶接は容易に出来るが、
溶接部の肉厚が均一でないため溶接後の熱処理の温度コ
ントロールが容易でない。
In the fillet welded joint between the hub and the heat transfer tube provided on the outside of the tube sheet, as shown in Figure 4A, TIG welding can be easily performed.
Since the thickness of the welded part is not uniform, it is not easy to control the temperature during heat treatment after welding.

第4B図、第4C図に示す、伝熱管と管板との隅肉溶接
継手では、溶接時の温度分布の均衡をとるのが容易でな
く、また溶接後の熱処理においても溶接継手の熱処理温
度を均一なるようにコントロールするのが容易でない。
In the fillet welded joints between heat exchanger tubes and tube sheets shown in Figures 4B and 4C, it is not easy to balance the temperature distribution during welding, and the heat treatment temperature of the welded joints also increases during post-weld heat treatment. It is not easy to control it so that it is uniform.

第4D図に示す、管板の内側に設けたハブと伝熱管との
突合せ溶接継手では、この溶接継手に適用できる従来か
ら使用されている特別な寸法のティグ溶接装置を用いる
ことにより、溶接時に溶接部の温度分布の均衡をとるの
が容易で品質の高い溶接部が得やすく、溶接後の熱処理
においても溶接継手の熱処理温度を均一になるようにコ
ントロールし易すい。
In the butt welded joint between the hub and the heat exchanger tube provided inside the tube sheet, as shown in Figure 4D, by using a TIG welding device of special dimensions that has been used in the past and is applicable to this welded joint, it is possible to It is easy to balance the temperature distribution of the welded part, it is easy to obtain a high quality welded part, and it is also easy to control the heat treatment temperature of the welded joint so that it is uniform during heat treatment after welding.

ここで溶接継手は溶接部を含む、溶接残留応力の発生す
る領域を示し、溶接部は溶接金属と、溶接金属に隣接し
て溶接熱により組織の変化した溶接熱影響部とを含む。
Here, the welded joint indicates a region where welding residual stress occurs, including a welded portion, and the welded portion includes welded metal and a welded heat affected zone adjacent to the welded metal whose structure has changed due to welding heat.

溶接金属の組織は積層数によって大きな差が出るが、そ
の溶接金属の積層数の影響に関する説明図を第5A図〜
第5D図に示す。
The structure of weld metal varies greatly depending on the number of laminated layers, and Figures 5A to 5A show explanatory diagrams regarding the influence of the number of laminated layers of weld metal.
Shown in Figure 5D.

第5A図、第5B図に、管板の外側に設けたハブ3aと
伝熱管2とを溶加材を用いてティグ溶接を行った場合を
示すが、第5A図は1層盛りの場合であって粗粒組織で
ある原質部のみであり、第5B図は2層盛りの場合であ
って、2層目の溶接ビードの溶接熱により1層目ビード
の一部がAc3変態点以上の温度域に再加熱されて再結
晶化が促進されて、細粒化された組織となる。
Fig. 5A and Fig. 5B show the case where the hub 3a provided on the outside of the tube sheet and the heat transfer tube 2 are TIG welded using filler metal, but Fig. 5A shows the case of one layer welding. Figure 5B shows the case of two-layer welding, and the welding heat of the second-layer weld bead causes some of the first-layer bead to reach the Ac3 transformation point or higher. Recrystallization is promoted by reheating to a temperature range, resulting in a fine-grained structure.

第5C図、第5D図に、管板の内側に設けたハブ3aと
伝熱管2とを突合せ溶接を行った場合を示すが、第5C
図は溶加材の使用の有無にかかわらずティグ溶接による
1層盛りの場合であって粗粒組織である原質部のみであ
り、第5D図は溶加材を用いるティグ溶接による2層盛
りの場合であって、第5B図の場合と同様に一部細粒部
を含む。
Fig. 5C and Fig. 5D show the case where the hub 3a provided inside the tube sheet and the heat exchanger tube 2 are butt welded.
The figure shows the case of one-layer welding by TIG welding with or without the use of filler metal, and shows only the coarse grained part, and Figure 5D shows two-layer welding by TIG welding using filler metal. In this case, some fine grain portions are included as in the case of FIG. 5B.

一般に低合金鋼からなる溶接継手部は溶接のまま(以後
As−Weldと略称する)、又は溶接後熱処理(以後
PWHTと略称する)が行なわれて使用される。
Generally, welded joints made of low alloy steel are used as welded (hereinafter referred to as As-Weld) or after being subjected to post-weld heat treatment (hereinafter referred to as PWHT).

クロム0.5〜2.5重量%程度の低合金鋼の場合、そ
の溶接金属の組織はベーナイト組織であり、As−We
ld及びPWHTいずれの状態でも溶接金属の靭性値(
一般にはシャルピーWll試験による吸収エネルギー:
kg−mで評価する)は0℃で10〜201Cg−mと
高い靭性値を有しており、耐圧試験や運転中の比較的低
温領域で発生しうる脆性破壊に対し高い安全度を有して
いる。熱交換器において伝熱管の板厚を薄くして伝熱効
率を上げることを目的として、増殖炉の実験炉、将来の
実用炉等に使用される予定の熱交換器では、クリープ強
度の高い9%クロム系鋼の検討が進められている。
In the case of low alloy steel containing about 0.5 to 2.5% by weight of chromium, the structure of the weld metal is a bainitic structure, and As-We
The toughness value of weld metal (
In general, absorbed energy by Charpy Wll test:
(evaluated in kg-m) has a high toughness value of 10 to 201 Cg-m at 0℃, and has a high degree of safety against brittle fracture that can occur in relatively low-temperature regions during pressure tests and operation. ing. In order to increase the heat transfer efficiency by reducing the thickness of the heat transfer tubes in heat exchangers, heat exchangers that are scheduled to be used in experimental breeder reactors, future commercial reactors, etc., have a high creep strength of 9%. Chromium-based steel is being considered.

9%クロム系鋼は工業的には熱交換器として使用された
例はほとんどないが、火力用ボイラー等の管や伝熱管で
は使用実績があり、それらのデータによれば9%クロム
系鋼は金属組織的にはマルテンサイト組織であり、その
溶接金属の靭性値は溶接方法によってバラツキはあるが
0℃で3〜10kg−m8度と低いレベルにある。
Although 9% chromium steel has rarely been used industrially as a heat exchanger, it has been used in tubes and heat transfer tubes for thermal power boilers, etc., and according to those data, 9% chromium steel The metallographic structure is a martensitic structure, and the toughness of the weld metal varies depending on the welding method, but is at a low level of 3 to 10 kg-m8 degrees at 0°C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

主要成分としてクロム8.0〜10.0重量%、モリブ
デン0.8〜1.2重量%を含有する高クロム系鋼から
なる熱交換器の伝熱管と、前記高クロム鋼からなる管板
との溶接では、1〜3層盛りのティグ溶接方法が用いら
れるが、1層盛りの場合の溶接金属はすべて原質部で、
結晶粒の粗いマルテンサイト組織のみであって、その靭
性値はきわめて低くなるという特徴があり、2〜3層盛
りの場合もその溶接金属は次層ビードの溶接熱により細
粒化される部分は少なく、大部分が靭性値の低い原質部
で占められている。
A heat exchanger tube for a heat exchanger made of high chromium steel containing 8.0 to 10.0% by weight of chromium and 0.8 to 1.2% by weight of molybdenum as main components, and a tube sheet made of the high chromium steel. For welding, the TIG welding method with 1 to 3 layers is used, but in the case of 1 layer welding, all the weld metal is the raw material,
It has only a martensitic structure with coarse grains, and its toughness value is extremely low.Even in the case of two or three layers, the weld metal has a fine grained part due to the welding heat of the next layer bead. It is mostly occupied by the protoplasm, which has a low toughness value.

従って、前記伝熱管と前記管板との溶接部の靭性種は、
A 5−We l dでは低い値を示すという問題があ
る。
Therefore, the toughness of the weld between the heat exchanger tube and the tube sheet is as follows:
There is a problem that A5-Weld shows a low value.

本発明の目的は、上記の問題点を消除した、溶接部の靭
性値を高くする、熱交換器の伝熱管と管板との前記高ク
ロム鋼からなる溶接部の熱処理方法を提供することにあ
る。
An object of the present invention is to provide a method for heat treatment of a weld of a heat exchanger tube and a tube plate made of high chromium steel, which eliminates the above-mentioned problems and increases the toughness of the weld. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、主要成分としてクロム8.0〜10.
0重量%、モリブデン0.8〜1.2重量%を含有する
高クロム鋼からなる熱交換器の伝熱管と、前記高クロム
鋼からなるハブを有する管板とを溶接して溶接部が形成
され、その溶接部が前記高クロム鋼と同じ主要成分を有
する熱交換器の溶接部の熱処理方法において、相互に同
一の口径と肉厚を有する伝熱管と管板のハブとを突合せ
溶接することと、前記溶接部を900〜960℃に急速
に加熱して常温へ急速に冷却した後、700〜760℃
に加熱することを特徴とする溶接部の熱処理方法を提供
することにより達成される。
The object of the present invention is to have chromium as a main component of 8.0 to 10.
A welded portion is formed by welding a heat exchanger tube of a heat exchanger made of high chromium steel containing 0% by weight and 0.8 to 1.2% by weight of molybdenum and a tube sheet having a hub made of the high chromium steel. In the heat treatment method for a welded part of a heat exchanger whose welded part has the same main components as the high chromium steel, butt welding a heat exchanger tube and a hub of a tube sheet that have the same diameter and wall thickness. Then, the welded part was rapidly heated to 900 to 960°C, rapidly cooled to room temperature, and then heated to 700 to 760°C.
This is achieved by providing a method for heat treatment of a welded part, which is characterized by heating the welded part to

〔作用〕[Effect]

熱交換器の伝熱管と管板との溶接部において。 At the weld between the heat exchanger tube and tube sheet of a heat exchanger.

伝熱管と管板のハブの口径と肉厚とを相互に同一にする
ことにより、均一な肉厚の溶接部を形成することを容易
にするとともに、溶接部の熱処理において、900〜9
60℃への急速加熱あるいは700〜760℃への加熱
時の温度制御を容易にする。
By making the diameter and wall thickness of the hub of the heat exchanger tube and tube sheet the same, it is easy to form a welded part with a uniform wall thickness, and in heat treatment of the welded part, it is possible to
Facilitates temperature control during rapid heating to 60°C or heating to 700-760°C.

伝熱管と管板のハブとの溶接部を900〜960℃に急
速に加熱することにより、溶接部以外の領域の昇温か極
力押えられたまま溶接部がAc、変態点以上の温度域で
ある900〜960℃に昇温し、その昇温した溶接部は
再結晶化しかつオーステナイト組織に変態するとともに
溶接部残留応力が除去される。
By rapidly heating the weld between the heat exchanger tube and the hub of the tube sheet to 900-960°C, the temperature rise in the area other than the weld is suppressed as much as possible while the weld is in the AC, temperature range above the transformation point. The temperature is raised to 900 to 960°C, and the welded part at the raised temperature recrystallizes and transforms into an austenite structure, and the residual stress in the welded part is removed.

溶接部を900〜960℃の温度域から常温へ急速に冷
却することにより、溶接部はマルテンサイト組織に変態
するとともに、溶接部の粗い結晶粒は細粒化される。
By rapidly cooling the weld from a temperature range of 900 to 960° C. to room temperature, the weld transforms into a martensitic structure, and coarse grains in the weld become fine.

次いで溶接部を700〜760℃へ加熱することにより
マルテンサイト組織は焼戻されて安定した組織の焼戻し
マルテンサイト組織となり、溶接部の靭性値を高めると
ともに更に溶接残留応力を除去する。
Next, by heating the weld to 700 to 760° C., the martensite structure is tempered and becomes a stable tempered martensite structure, increasing the toughness of the weld and further eliminating welding residual stress.

〔実施例〕〔Example〕

本発明の実施例として熱交換器の伝熱管と管板の鋼材と
して用いたクロム8.0〜10.0重量%(以下%と略
称する)。モリブデン0.8〜1.2%を主要成分とす
る高クロム鋼は、クロム、モリブデン以外に例えば次の
成分組成を含んでいる。即ち、炭素0.08〜0.12
%、マンガン0.3〜0.6%、ニッケル0.4%以下
、アルミニウム0.04%以下、燐0.02%以下、硫
黄0.010%以下、シリコン0.2〜0.5%、バナ
ジウム0.1〜0.3%、ニオブ0.05〜0.1%、
窒素0.03〜0.07%を含有し、残量は鉄である。
8.0 to 10.0% by weight of chromium (hereinafter abbreviated as %) was used as a steel material for heat exchanger tubes and tube sheets of a heat exchanger as an example of the present invention. High chromium steel containing 0.8 to 1.2% molybdenum as a main component contains, for example, the following component composition in addition to chromium and molybdenum. That is, carbon 0.08-0.12
%, manganese 0.3-0.6%, nickel 0.4% or less, aluminum 0.04% or less, phosphorus 0.02% or less, sulfur 0.010% or less, silicon 0.2-0.5%, Vanadium 0.1-0.3%, niobium 0.05-0.1%,
Contains 0.03-0.07% nitrogen, with the remainder being iron.

熱交換器の伝熱管2と管板3とを溶接する時溶接部4と
溶接残留応力領域9とを包含する溶接継手部の温度分布
の均衡をとるためと、溶接継手部の熱処理時の温度分布
を均一にするためとにより、本発明では第1図に示すよ
うに、管板3に伝熱管2と同一の口径、肉厚を有するハ
ブ3aを設け、そのハブ3aの長さは伝熱管3とハブ3
aとの溶接部4の熱処理温度が均一になるのに必要な長
さとする。
In order to balance the temperature distribution of the welded joint including the welded part 4 and the welded residual stress region 9 when welding the heat exchanger tube 2 and tube sheet 3 of the heat exchanger, and to maintain the temperature during heat treatment of the welded joint. In order to make the distribution uniform, in the present invention, as shown in FIG. 3 and hub 3
The length is set so that the heat treatment temperature of the welded part 4 with a becomes uniform.

伝熱管2とハブ3aとを突合せて溶加材を用いないでテ
ィグ溶接を行い、肉厚の均一な溶接部が得られる。ここ
で用いたティグ溶接は溶接トーチの先端から流出するア
ルゴンガス等の不活性ガスによるシールドガスの中で、
負極のタングステン電極と正極の母材との間にアークを
発生させて母材を溶融し、必要によっては溶加材をアー
ク中へ挿入して溶融させて溶接金属を形成する溶接方法
であって、空気の遮断されたシールドガス中で溶接する
ので溶融金属が窒化、酸化することがないため、溶接部
が高い品質を必要とする場合によく用いられる溶接方法
である。
By butting the heat exchanger tube 2 and the hub 3a and performing TIG welding without using filler metal, a welded portion with a uniform wall thickness can be obtained. The TIG welding used here is performed in a shielding gas of inert gas such as argon gas flowing out from the tip of the welding torch.
A welding method in which an arc is generated between a negative tungsten electrode and a positive base metal to melt the base metal, and if necessary, a filler metal is inserted into the arc and melted to form weld metal. This welding method is often used when high quality welds are required because the molten metal is not nitrided or oxidized because the welding is performed in a shielding gas that is blocked from air.

伝熱管2と管板のハブ3aとを溶接後、溶接部4の内表
面近傍に高周波ヒーター6を、溶接部周辺の溶接残留応
力領域9の内表面近傍には、高周波ヒーター7.8をセ
ットし、まず高周波ヒーター6に通電し、第2図に示す
ように溶接部4をAc、変態点以上の温度域である90
0〜960℃に急速に加熱することにより、溶接部4が
オーステナイト組織に変態するとともに、溶接残留応力
が除去され、その後急速に冷却する。急速に加熱するこ
とにより、溶接部4以外の領域の昇温を極力押えさえた
まま溶接部を900〜960℃の温度域に到達させるこ
とができる。
After welding the heat exchanger tube 2 and the hub 3a of the tube plate, a high frequency heater 6 is set near the inner surface of the welded part 4, and a high frequency heater 7.8 is set near the inner surface of the weld residual stress region 9 around the welded part. First, the high-frequency heater 6 is energized, and the welded part 4 is heated to AC at 90°C, which is a temperature range above the transformation point, as shown in Fig. 2.
By rapidly heating to 0 to 960° C., the welded portion 4 transforms into an austenite structure and removes welding residual stress, and is then rapidly cooled. By heating rapidly, the welded part can reach a temperature range of 900 to 960°C while suppressing the temperature increase in areas other than the welded part 4 as much as possible.

溶接部を加熱後、急速に冷却する方法は水冷又は空冷に
よるが、水冷の場合は伝熱管外面の通水10により行な
われる。この急速冷却により、溶接金属の粗大粒は細粒
化されるとともに溶接部はマルテンサイト組織となり、
非常にかたくて脆い組織となる。
A method for rapidly cooling the welded portion after heating is by water cooling or air cooling. In the case of water cooling, water is passed through the outer surface of the heat exchanger tube 10. Due to this rapid cooling, the coarse grains of the weld metal become finer grains, and the welded part becomes a martensitic structure.
The tissue becomes extremely hard and brittle.

次いで高周波ヒーター6.7.8に通電し、溶接部4を
含む溶接残留応力領域9を700〜760℃の温度域に
加熱した後徐々に冷却することにより、溶接部のマルテ
ンサイト組織が焼戻しされて安定な組織である焼戻しマ
ルテンサイト組織となって高い靭性を付与されるととも
に、溶接残留応力領域9で溶接残留応力が除去される。
Next, the high frequency heater 6.7.8 is energized to heat the weld residual stress region 9 including the weld 4 to a temperature range of 700 to 760°C and then gradually cool it, thereby tempering the martensitic structure of the weld. This results in a tempered martensitic structure, which is a stable structure, imparting high toughness, and the welding residual stress is removed in the welding residual stress region 9.

また、溶接時に溶接材料として伝熱管2及び管板3と同
じ主要成分を有する溶加材を用いた場合も、更に前記主
要成分の他にマンガン1.0〜1.5%、ニッケル1.
0%以下を含有する溶加材を用いた場合も、夫々伝熱管
2とハブ3aとの突合せ溶接を行うことにより、前述の
溶加材なしのティグ溶接により得られた溶接部の場合と
同様に。
Also, when a filler metal having the same main components as those of the heat exchanger tube 2 and tube sheet 3 is used as a welding material during welding, in addition to the above main components, 1.0 to 1.5% of manganese and 1.5% of nickel.
Even when a filler metal containing 0% or less is used, by butt welding the heat exchanger tube 2 and the hub 3a, respectively, the welded part obtained by TIG welding without the filler metal described above can be obtained. To.

肉厚の均一な溶接部が得られるとともに、溶接後の前述
の熱処理により溶接部は焼戻しマルテンサイト組織とな
って靭性が高くなり、溶接残留応力領域9の残留応力は
除去される。
A welded portion with a uniform wall thickness is obtained, and the welded portion becomes a tempered martensitic structure due to the above-described heat treatment after welding, resulting in high toughness and residual stress in the welding residual stress region 9 is removed.

〔発明の効果〕〔Effect of the invention〕

本発明の構成によれば、主要成分としてクロム8.0〜
12.0重量%、モリブデン0.8〜1.2重量%を含
有する高クロム鋼からなる熱交換器の管板に、伝熱管と
同じ口径、肉厚のハブを設けて伝熱管と突合せ溶接する
ことにより溶接時の溶接部の温度分布の均衡をとり易く
なるので品質の良好な溶接部が得やすくなるとともに、
溶接後の溶接部の熱処理の時に溶接部の温度分布が均一
になるようにコントロールし易くなる。
According to the configuration of the present invention, the main component is chromium 8.0~
A hub with the same diameter and wall thickness as the heat transfer tubes is provided on the heat exchanger tube plate made of high chromium steel containing 12.0% by weight and 0.8 to 1.2% by weight of molybdenum, and butt welded to the heat transfer tubes. This makes it easier to balance the temperature distribution of the welded part during welding, making it easier to obtain a welded part of good quality, and
It becomes easier to control the temperature distribution of the welded part to be uniform during heat treatment of the welded part after welding.

また、溶接部を900〜960℃に急速に加熱し急速に
冷却し、次いで700〜760℃に加熱することにより
、溶接部の粗粒部は細粒化されるとともに、安定した組
織の焼戻しマルテンサイト組織となって高い靭性を得る
ことができ、また、溶接残留応力も除去される。
In addition, by rapidly heating the weld to 900-960°C, rapidly cooling it, and then heating it to 700-760°C, the coarse grains of the weld are made finer, and the tempered marten has a stable structure. It becomes a site structure, high toughness can be obtained, and welding residual stress is also removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における熱交換器の伝熱管と管
板のハブとの突合せ溶接部と溶接部周辺の溶接残留応力
領域の熱処理方法を示す図であり、第2図は本発明の熱
処理方法を行った場合の、溶接部と溶接部周辺の溶接残
留応力領域での熱処理温度を示す図であり、第3図は従
来から使用されている熱交換器を示す図であり、第4A
図〜第4D図は従来の熱交換器の伝熱管と管板との溶接
継手を示す図であり、第4A図は管仮に設けたハブと伝
熱管との隅肉溶接継手を示す図であり、第4B図及び第
4C図は伝熱管と管板との隅肉溶接継手を示す図であり
、第4D図は管仮に設けたハブと伝熱管との突合せ溶接
継手を示す図であり、第5A図〜第5D図は従来の熱交
換器の伝熱管と管板との溶接部の組織に関する説明図で
あり、第5A図は第4A図の隅肉溶接継手において一層
盛り溶接を行った場合の溶接部の組織の説明図であり、
第5B図は第4A図の隅肉溶接継手において二層盛り溶
接を行った場合の溶接部の組織の説明図であり、第5C
図は第4D図の突合せ溶接継手において溶加材を用いな
いティグ溶接により一層盛り溶接を行った場合の溶接部
の組織の説明図であり、第5D図は第4D図の突合せ溶
接継手において溶加材を用いてティグ溶接により二層盛
り溶接を行った場合の溶接部の組織の説明図である。 2・・・・・・伝熱管、  3・・・・・・管板、3a
・・・・・・ハブ、  4・・・・・・溶接部。
FIG. 1 is a diagram showing a heat treatment method for a butt weld between a heat exchanger tube and a hub of a tube sheet of a heat exchanger and a weld residual stress area around the weld in an embodiment of the present invention, and FIG. FIG. 3 is a diagram showing the heat treatment temperature in the welded part and the weld residual stress area around the welded part when the heat treatment method is performed; FIG. 3 is a diagram showing a conventionally used heat exchanger; 4A
4D to 4D are diagrams showing a welded joint between a heat exchanger tube and a tube plate of a conventional heat exchanger, and FIG. 4A is a diagram illustrating a fillet welded joint between a temporarily provided hub and a heat exchanger tube. , 4B and 4C are diagrams showing a fillet welded joint between a heat exchanger tube and a tube sheet, FIG. 4D is a diagram illustrating a butt welded joint between a temporarily provided hub and a heat exchanger tube, and FIG. Figures 5A to 5D are explanatory diagrams regarding the structure of the welded portion between the heat exchanger tube and the tube sheet of a conventional heat exchanger, and Figure 5A shows the case where one-layer welding is performed in the fillet weld joint of Figure 4A. It is an explanatory diagram of the structure of the welded part of
Figure 5B is an explanatory diagram of the structure of the welded part when two-layer build-up welding is performed on the fillet weld joint in Figure 4A;
The figure is an explanatory diagram of the structure of the weld when one-layer welding is performed by TIG welding without using filler metal in the butt welded joint in Fig. 4D, and Fig. 5D is an illustration of the structure of the weld in the butt welded joint in Fig. 4D. FIG. 2 is an explanatory diagram of the structure of a welded part when two-layer build-up welding is performed by TIG welding using filler material. 2... Heat exchanger tube, 3... Tube sheet, 3a
...Hub, 4...Welded part.

Claims (4)

【特許請求の範囲】[Claims] (1)主要成分としてクロム8.0〜10.0重量%、
モリブデン0.8〜1.2重量%を含有する高クロム鋼
からなる熱交換器の伝熱管と、前記高クロム鋼からなる
ハブを有する管板とを溶接して溶接部が形成され、この
溶接部が前記高クロム鋼と同じ主要成分を有する熱交換
器の溶接部の熱処理方法において、相互に同一の口径と
肉厚を有する伝熱管と管板の前記ハブとを突合せ溶接す
ることと、溶接部を900〜960℃に急速に加熱して
常温へ急速に冷却した後、700〜760℃に加熱する
こととを特徴とする溶接部の熱処理方法。
(1) Chromium 8.0 to 10.0% by weight as the main component,
A welded portion is formed by welding a heat exchanger tube made of high chromium steel containing 0.8 to 1.2% by weight of molybdenum and a tube plate having a hub made of the high chromium steel. A heat treatment method for a welded part of a heat exchanger having the same main components as the high chromium steel, comprising butt welding a heat exchanger tube having the same diameter and wall thickness to the hub of the tube sheet; A method for heat treatment of a welded part, which comprises rapidly heating the welded part to 900 to 960°C, rapidly cooling it to room temperature, and then heating it to 700 to 760°C.
(2)溶加材がクロム8.0〜10.0重量%、モリブ
デン0.8〜1.2重量%、マンガン1.0〜1.5重
量%、ニッケル1.0重量%以下の合金成分を含有する
ことを特徴とする特許請求の範囲第1項に記載の溶接部
の熱処理方法。
(2) Alloy components in which the filler metal is 8.0 to 10.0% by weight of chromium, 0.8 to 1.2% by weight of molybdenum, 1.0 to 1.5% by weight of manganese, and 1.0% by weight of nickel. The method for heat treatment of a welded part according to claim 1, characterized in that the method comprises:
(3)伝熱管と管板とを溶加材なしで溶接することを特
徴とする特許請求の範囲第1項ないし第2項に記載の溶
接部の熱処理方法。
(3) The method for heat treatment of a welded part according to claims 1 or 2, characterized in that the heat exchanger tube and the tube sheet are welded without a filler metal.
(4)伝熱管と管板との溶接部を高周波加熱方法を用い
て加熱することを特徴とする特許請求の範囲前項のうち
いずれかの1項に記載の溶接部の熱処理方法。
(4) The method for heat treatment of a welded part according to any one of the preceding claims, characterized in that the welded part between the heat exchanger tube and the tube sheet is heated using a high-frequency heating method.
JP62007253A 1987-01-14 1987-01-14 Heat treatment method for welds Expired - Fee Related JP2678230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62007253A JP2678230B2 (en) 1987-01-14 1987-01-14 Heat treatment method for welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007253A JP2678230B2 (en) 1987-01-14 1987-01-14 Heat treatment method for welds

Publications (2)

Publication Number Publication Date
JPS63176434A true JPS63176434A (en) 1988-07-20
JP2678230B2 JP2678230B2 (en) 1997-11-17

Family

ID=11660863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007253A Expired - Fee Related JP2678230B2 (en) 1987-01-14 1987-01-14 Heat treatment method for welds

Country Status (1)

Country Link
JP (1) JP2678230B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100323129B1 (en) * 1999-12-18 2002-02-06 윤영석 Heat treatment method and apparatus for inside wall of tubes of large-scale heat exchangers
CN102259227A (en) * 2010-05-25 2011-11-30 广东万和新电气股份有限公司 Method for welding heat exchanger in gas water heater
WO2012061670A2 (en) * 2010-11-04 2012-05-10 Nuscale Power, Llc Helical coil steam generator
CN112322886A (en) * 2020-11-19 2021-02-05 上海电气核电设备有限公司 Anti-deformation method suitable for heat treatment of heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143818A (en) * 1974-09-26 1976-04-14 Ichiro Sumisato
JPS5223608A (en) * 1975-08-15 1977-02-22 Hitachi Ltd Clutch motor
JPS53131245A (en) * 1977-04-22 1978-11-15 Ishikawajima Harima Heavy Ind Co Ltd Welding method for martensitic stainless steel
JPS53140217A (en) * 1977-05-12 1978-12-07 Mitsubishi Heavy Ind Ltd High chromium steel for high temperature member
JPS5691194A (en) * 1979-12-26 1981-07-23 Mitsubishi Heavy Ind Ltd Plugging of pipe hole of heat exchanger
JPS58187797A (en) * 1982-04-23 1983-11-02 Babcock Hitachi Kk Tube plate structure for heat exchanger
JPS59110723A (en) * 1982-12-16 1984-06-26 Toshiba Corp Preparation of 12% cr type cast steel product
JPS60180676A (en) * 1984-02-28 1985-09-14 Mitsubishi Heavy Ind Ltd Tube assembling structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143818A (en) * 1974-09-26 1976-04-14 Ichiro Sumisato
JPS5223608A (en) * 1975-08-15 1977-02-22 Hitachi Ltd Clutch motor
JPS53131245A (en) * 1977-04-22 1978-11-15 Ishikawajima Harima Heavy Ind Co Ltd Welding method for martensitic stainless steel
JPS53140217A (en) * 1977-05-12 1978-12-07 Mitsubishi Heavy Ind Ltd High chromium steel for high temperature member
JPS5691194A (en) * 1979-12-26 1981-07-23 Mitsubishi Heavy Ind Ltd Plugging of pipe hole of heat exchanger
JPS58187797A (en) * 1982-04-23 1983-11-02 Babcock Hitachi Kk Tube plate structure for heat exchanger
JPS59110723A (en) * 1982-12-16 1984-06-26 Toshiba Corp Preparation of 12% cr type cast steel product
JPS60180676A (en) * 1984-02-28 1985-09-14 Mitsubishi Heavy Ind Ltd Tube assembling structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100323129B1 (en) * 1999-12-18 2002-02-06 윤영석 Heat treatment method and apparatus for inside wall of tubes of large-scale heat exchangers
CN102259227A (en) * 2010-05-25 2011-11-30 广东万和新电气股份有限公司 Method for welding heat exchanger in gas water heater
WO2012061670A2 (en) * 2010-11-04 2012-05-10 Nuscale Power, Llc Helical coil steam generator
WO2012061670A3 (en) * 2010-11-04 2012-07-05 Nuscale Power, Llc Helical coil steam generator
US10512991B2 (en) 2010-11-04 2019-12-24 Nuscale Power, Llc Method of manufacturing a helical coil steam generator
CN112322886A (en) * 2020-11-19 2021-02-05 上海电气核电设备有限公司 Anti-deformation method suitable for heat treatment of heat exchanger
CN112322886B (en) * 2020-11-19 2022-02-15 上海电气核电设备有限公司 Anti-deformation method suitable for heat treatment of heat exchanger

Also Published As

Publication number Publication date
JP2678230B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US5118028A (en) Diffusion bonding method for corrosion-resistant materials
KR100516010B1 (en) Welded joints in high strength, heat resistant steels, and welding method for the same
US5683822A (en) Liquid-phase diffusion bonding alloy foils for joining heat-resistant metals in oxidizing atmospheres
Kotecki Welding of stainless steels
JPS63176434A (en) Heat treatment for welding zone
JP3077576B2 (en) Method for producing low carbon martensitic stainless steel welded pipe
JP2831051B2 (en) Austenitic stainless steel welding wire
JP4542361B2 (en) Ferritic ERW boiler tube with excellent reheat cracking resistance and its manufacturing method
JP2023516232A (en) Solid metal member and manufacturing method thereof
JPH08337813A (en) Production of high chromium ferritic steel excellent in creep characteristic of welded joint
JPH0636996B2 (en) Submerged arc welding wire for 9Cr-Mo steel
JPS59107068A (en) Treatment in weld zone of nickel alloy
JPH01150453A (en) Production of large diameter steel pipe having excellent ductility at low temperature
JP3327128B2 (en) Welding material
JPH0890239A (en) Seam welding method of clad steel tube
JP3064851B2 (en) Method for manufacturing martensitic stainless steel welded pipe
JPS63188492A (en) Tig-welding wire for 9cr-mo steel
JPH05148582A (en) High tensile strength steel plate for electron beam welding
JP3146918B2 (en) Manufacturing method of austenitic stainless steel welded pipe
JPS6245478A (en) Pipe welding method for two phase stainless steel
Musa et al. MICROSTRUCTURAL FEATURES AND MECHANICAL PROPERTIES OF AISI430 FERRITIC STAINLESS STEEL WELDS-A REVIEW
JPS6013046B2 (en) Heat treatment method for welded joints
JPH09155574A (en) Manufacture of martensitic stainless steel welded tube excellent in co2 gas corrosion resistance
JPH11254030A (en) Low carbon martensitic stainless steel made welded tube and its manufacture
JPH04314826A (en) Production of clad steel tube excellent in toughness at low temperature

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees