JPH04314826A - Production of clad steel tube excellent in toughness at low temperature - Google Patents

Production of clad steel tube excellent in toughness at low temperature

Info

Publication number
JPH04314826A
JPH04314826A JP8247391A JP8247391A JPH04314826A JP H04314826 A JPH04314826 A JP H04314826A JP 8247391 A JP8247391 A JP 8247391A JP 8247391 A JP8247391 A JP 8247391A JP H04314826 A JPH04314826 A JP H04314826A
Authority
JP
Japan
Prior art keywords
steel
low
alloy
welding
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8247391A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamehiro
為広 博
Yoshinori Ogata
尾形 佳紀
Yukihiko Horii
堀井 行彦
Yukiyoshi Kitamura
北村 征義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8247391A priority Critical patent/JPH04314826A/en
Publication of JPH04314826A publication Critical patent/JPH04314826A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a steel tube excellent in toughness at low temp. and corrosion resistance by using, as a stock, a slab consisting of a base material composed of low alloy steel and a cladding material composed of stainless steel or Ni alloy, forming the slab into a clad steel plate by means of heat treatment and rolling under respectively specified conditions, and then forming and welding into tubular state by positioning the cladding material inside. CONSTITUTION:A slab of clad material is formed by using stainless steel or Ni alloy as a cladding material and also using a low carbon low Nb-Ti steel which has a composition containing, by weight, 0.02-0.07% C, <0.5% Si, 1.0-1.8% Mn, <0.03% P, <0.005% S, 0.02-0.15& Nb, 0.005-0.03% Ti, <0.05% Al, and 0.002-0.006% N or further containing specific trace amounts of one or >=2 elements among V, Ni, Cu, Cr, Mo, and Ca as a base material, performing cladding, and then welding the four corners. The slab is heated to 1100-1250 deg.C, hot-rolled at >5% reduction ratio and 850-1000 deg.C rolling finishing temp., air- cooled for 100-200sec, and cooled from >=750 deg.C down to <=550 deg.C at 5-40 deg.C/sec cooling rate so as to be formed into a clad plate. Then, the clad plate is formed and welded into a clad steel tube by positioning the cladding material inside.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はステンレス鋼あるいはニ
ッケル合金などの耐食性の優れた高合金の合わせ材と低
合金鋼の母材からなる大径クラッド鋼管(UOE鋼管、
ベンヂングロール鋼管など)の高品質・高能率な製造方
法に関するものである。
[Industrial Application Field] The present invention is a large-diameter clad steel pipe (UOE steel pipe,
This relates to a high-quality, highly efficient manufacturing method for bending roll steel pipes, etc.).

【0002】0002

【従来の技術】安全性、経済性の観点から腐食性物質(
H2 S,CO2 ,Cl− )を多く含有する原油・
天然ガス輸送用大径ラインパイプに、ステンレス鋼、ニ
ッケル合金を合わせ材とする高合金クラッド鋼管の採用
が増加しつつある。従来、このような鋼管は圧延クラッ
ド鋼板を成形(UOE成形)、シーム溶接後、鋼管全体
を再加熱・冷却(溶体化処理)することにより製造され
ていたが、この方法は極めて生産性が悪い。そこで最近
、溶体化処理を省略し圧延ままで目標とする特性を達成
できる技術(たとえば特開昭60−216984、62
−16892、63−130283)が開発され、クラ
ッド鋼板の製造技術は大きく進歩した。しかし、これら
の技術で達成できる合わせ材の耐食性、母材の低温靭性
は必ずしも満足できるものではない。
[Prior art] Corrosive substances (
Crude oil containing a lot of H2S, CO2, Cl-)
High-alloy clad steel pipes made of stainless steel and nickel alloy are increasingly being used as large-diameter line pipes for natural gas transportation. Conventionally, such steel pipes were manufactured by forming rolled clad steel sheets (UOE forming), seam welding, and then reheating and cooling the entire steel pipe (solution treatment), but this method was extremely unproductive. . Therefore, recently, technologies have been developed that can omit solution treatment and achieve target properties as rolled (for example, JP-A No. 60-216984, 62
-16892, 63-130283) were developed, and the manufacturing technology of clad steel sheets has made great progress. However, the corrosion resistance of the composite material and the low-temperature toughness of the base material that can be achieved using these techniques are not necessarily satisfactory.

【0003】一方、そのシーム溶接においては、鋼管内
側の合わせ材の溶接法としてTIG溶接法(特開昭60
−154875)が多く適用されている。しかしTIG
溶接法は溶接速度が極めて遅く、クラッド鋼管の大量生
産上には大きな障害となっていた。これに対して高速の
溶接(たとえばMIG溶接)では、溶接エネルギーが大
きくなり、溶接終了後も溶接金属は長時間、高温にさら
され、ビード表面にCr,Tiなどの強固な酸化物皮膜
が生成する。その結果、ビード表面の手入れに多大の労
力を要し、高速化が困難であった。
On the other hand, in seam welding, the TIG welding method (Japanese Patent Application Laid-Open No. 1983-1998) is used as a welding method for the joining material inside the steel pipe.
-154875) is often applied. But T.I.G.
The welding method has an extremely slow welding speed, which has been a major obstacle to mass production of clad steel pipes. On the other hand, in high-speed welding (for example, MIG welding), the welding energy is large, and the weld metal is exposed to high temperatures for a long time even after welding is completed, forming a strong oxide film of Cr, Ti, etc. on the bead surface. do. As a result, it took a lot of effort to clean the bead surface, and it was difficult to increase the speed.

【0004】0004

【発明が解決しようとする課題】本発明は鋼管の溶体化
処理なしで優れた合わせ材の耐食性と母材の強度・低温
靭性を同時に達成できる高合金クラッド鋼管の製造技術
を提供するものである。さらに本発明は高速のMIG溶
接によるシーム溶接が適用され、高品質に加えて高生産
性であるという特徴を有する。
[Problems to be Solved by the Invention] The present invention provides a manufacturing technology for high-alloy clad steel pipes that can simultaneously achieve excellent corrosion resistance of the laminated material, strength and low-temperature toughness of the base material without solution treatment of the steel pipes. . Furthermore, the present invention applies seam welding by high-speed MIG welding, and is characterized by high productivity as well as high quality.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、ステン
レス鋼またはニッケル合金の合わせ材と重量%でC  
:0.02〜0.07、      Si:0.5以下
、Mn:1.0〜1.8、          P  
:0.03以下、 S  :0.005以下、          Nb:
0.02〜0.15、 Ti:0.005〜0.03、    Al:0.05
以下、 N  :0.002〜0.006、 に必要に応じて、さらに V  :0.01〜0.1、        Ni:0
.05〜1.0、 Cu:0.05〜1.0、        Cr:0.
05〜0.5、 Mo:0.05〜0.3、        Ca:0.
001〜0.005、 の1種または2種を含有し、残部が鉄および不可避的不
純物からなる鋼母材とを重ね合わせて四周を溶接してス
ラブを組立て、これを1100℃〜1250℃の温度範
囲に加熱後、圧下比5以上、圧延終了温度850〜10
00℃で圧延し、60〜200秒間空冷した後、750
℃以上の温度から5〜40℃/秒の冷却速度で550℃
以下の任意の温度まで冷却、その後空冷してクラッド鋼
板を製造、ついで合わせ材を内側にして鋼管に成形し、
そのシーム溶接において、内側から先行電極に低合金ワ
イヤ、中間電極にフラックス入り高合金ワイヤ、後行電
極に高合金ソリッドワイヤを配した3電極MIG溶接を
行なった後、外側から低合金成分ワイヤを使用して多電
極潜弧溶接することである。
[Means for Solving the Problems] The gist of the present invention is to provide a composite material of stainless steel or nickel alloy and carbon
: 0.02 to 0.07, Si: 0.5 or less, Mn: 1.0 to 1.8, P
: 0.03 or less, S: 0.005 or less, Nb:
0.02-0.15, Ti: 0.005-0.03, Al: 0.05
Hereinafter, N: 0.002 to 0.006, and if necessary, V: 0.01 to 0.1, Ni: 0
.. 05-1.0, Cu: 0.05-1.0, Cr: 0.
05-0.5, Mo: 0.05-0.3, Ca: 0.05-0.5, Mo: 0.05-0.3, Ca: 0.
001 to 0.005, with the remainder consisting of iron and unavoidable impurities, to assemble a slab by welding the four circumferences. After heating to a temperature range, reduction ratio of 5 or more, rolling end temperature of 850 to 10
After rolling at 00℃ and air cooling for 60 to 200 seconds, 750℃
From a temperature above ℃ to 550℃ at a cooling rate of 5 to 40℃/sec
Cool to the desired temperature below, then air cool to produce a clad steel plate, then form it into a steel pipe with the laminated material inside,
In seam welding, three-electrode MIG welding is performed from the inside with a low-alloy wire for the leading electrode, a flux-cored high-alloy wire for the intermediate electrode, and a high-alloy solid wire for the trailing electrode, and then a low-alloy wire is attached from the outside. It is used for multi-electrode submerged arc welding.

【0006】本発明のステンレス鋼とは、オーステナイ
ト系、フェライト系、マルテンサイト系および2相系を
指し、ニッケル合金とはインコロイ825、インコネル
625などのニッケル合金であり、耐食性の優れた材料
である。また母材は、その特性(圧延方向と直角方向で
の値)が強度X52以上(API規格)、低温靭性2v
E−30 ≧10kgf−m ,vTrs≦−40℃と
なるような高強度、高靭性の低合金鋼である。
[0006] The stainless steel of the present invention refers to austenitic, ferritic, martensitic, and two-phase stainless steel, and the nickel alloy is a nickel alloy such as Incoloy 825 or Inconel 625, which is a material with excellent corrosion resistance. . In addition, the properties of the base material (value in the direction perpendicular to the rolling direction) are strength X52 or more (API standard), low temperature toughness 2v
It is a low alloy steel with high strength and high toughness such that E-30≧10 kgf-m and vTrs≦-40°C.

【0007】本発明では、二つの方法でスラブを組立て
る。第1の方法は母材1の表面に合わせ材2を重ね合わ
せ四周を溶接してスラブを組立てる。この際、母材およ
び合わせ材の接着面はあらかじめ平削、研磨などによっ
て平滑にし、脱脂などによる清浄化や真空ポンプによる
脱気を行なうことが好ましい。第2の方法は第1の方法
で組立てた2つのスラブの合わせ材を分離材を介して密
着させ、四周を溶接してスラブ(サンドイッチスラブ)
を組立てる方法である。
In the present invention, slabs are assembled in two ways. The first method is to assemble a slab by overlapping the laminating material 2 on the surface of the base material 1 and welding the four circumferences. At this time, it is preferable that the bonding surfaces of the base material and the bonding material be smoothed in advance by planing, polishing, etc., and that they be cleaned by degreasing or degassed by a vacuum pump. The second method is to make a slab (sandwich slab) by bringing the two slabs assembled in the first method into close contact with each other through a separating material, and welding the four circumferences.
This is a method of assembling.

【0008】以下、本発明のクラッド鋼板製造方法につ
いて説明する。本発明鋼の特徴は母材成分を低C−Nb
−微量Ti系とし、高温で圧延を終了しても、合わせ材
の優れた耐食性と母材の優れた強度・靭性を同時に達成
できるところにある。合わせ材において優れた耐食性を
得るには、再加熱時に合金元素を溶体化し、これを高温
で圧延、適当な時間冷却してγ組織を再結晶させ、かつ
圧延後、急冷してσ,α′相(Cr炭化物)などの析出
を抑制しなければならない。しかしながら合わせ材のγ
組織が再結晶するような高温で圧延を行なうと、母材の
結晶粒の微細化が不十分となりラインパイプとして十分
な低温靭性を得ることができない。このため高温で圧延
を終了しても強度・靭性バランスの良好な成分系につい
て検討した。その結果、母材成分として低C−Nb−微
量Ti系(Ni,Cu,Mo添加が望ましい)が有効で
あることを見出し、これを圧延クラッド鋼へ適用するこ
とにより、まったく新しいクラッド鋼板の製造方法を発
明した。
[0008] The method for manufacturing a clad steel plate according to the present invention will be explained below. The feature of the steel of the present invention is that the base material composition is low in C-Nb.
- The use of a trace amount of Ti makes it possible to simultaneously achieve excellent corrosion resistance of the laminated material and excellent strength and toughness of the base material even if rolling is completed at high temperatures. In order to obtain excellent corrosion resistance in a composite material, the alloying elements are dissolved during reheating, rolled at a high temperature, and cooled for an appropriate period of time to recrystallize the γ structure. Precipitation of phases (Cr carbide) and the like must be suppressed. However, the γ of the laminated material
If rolling is carried out at such a high temperature that the structure recrystallizes, the crystal grains of the base material will not be sufficiently refined, making it impossible to obtain sufficient low-temperature toughness as a line pipe. For this reason, we investigated a composition system that provides a good balance of strength and toughness even after rolling is finished at high temperatures. As a result, we found that a low C-Nb-trace Ti system (preferably adding Ni, Cu, and Mo) is effective as a base material component, and by applying this to rolled clad steel, we can manufacture a completely new clad steel sheet. invented a method.

【0009】本発明の再加熱・圧延冷却条件について説
明する。本発明では、上記の組立スラブを1100〜1
250℃の範囲に再加熱する。これは合わせ材の耐食性
と母材の強度・靭性を同時に確保するため必要である。 下限温度1100℃は、合わせ材の優れた耐食性を得る
ために十分に溶体化し、圧延終了温度を850℃以上と
して圧延後、γ組織を再結晶させるのに必要な最低加熱
温度である。しかし再加熱温度が1250℃以上になる
と、オーステナイト(γ)粒が粗大化、圧延後の結晶粒
も大きくなって低温靭性が劣化する。したがって適切な
再加熱温度は1100〜1250℃である。
The reheating and rolling cooling conditions of the present invention will be explained. In the present invention, the above assembled slab is 1100 to 1
Reheat to a range of 250°C. This is necessary to simultaneously ensure the corrosion resistance of the laminated material and the strength and toughness of the base material. The lower limit temperature of 1100° C. is the minimum heating temperature necessary to sufficiently solutionize the laminated material to obtain excellent corrosion resistance and to recrystallize the γ structure after rolling at a rolling end temperature of 850° C. or higher. However, when the reheating temperature is 1250° C. or higher, the austenite (γ) grains become coarser, the crystal grains after rolling also become larger, and the low-temperature toughness deteriorates. Therefore, a suitable reheating temperature is 1100-1250°C.

【0010】再加熱したスラブは圧下比5以上で圧延し
、圧延終了温度を850〜1000℃としなければなら
ない。圧下比を5以上とした理由は、■合わせ材と母材
を冶金学的に完全に密着させると同時に、■母材の結晶
粒を微細化するためである。ラインパイプの使用性能と
して、合わせ材と母材が冶金学的に完全に密着している
ことが必要であり、このためには、圧下比は大きいほど
好ましい。最低圧下比は再加熱温度や圧延温度にも依存
するが、本発明のように圧延温度が高い場合、5以上で
ある。本発明では、圧延を850〜1000℃の範囲で
終了させる。圧延終了温度が850℃以下であると、合
わせ材のγ組織が再結晶せずに耐食性(たとえば耐孔食
性、試験条件:10%FeCl3 ・6H2 O溶液で
48hrs 浸漬)が著しく劣化する。合わせ材の耐食
性の観点からは圧延終了温度は高いほど好ましい。しか
し圧延終了温度が高過ぎると母材の結晶粒が微細化せず
、低温靭性の劣化を招く。このため圧延終了温度を10
00℃以下に限定した。
[0010] The reheated slab must be rolled at a reduction ratio of 5 or more, and the rolling end temperature must be 850 to 1000°C. The reason why the reduction ratio is set to 5 or more is to (1) completely metallurgically bond the laminated material and the base material, and (2) refine the crystal grains of the base material. For the usability of line pipes, it is necessary that the laminated material and the base material are in complete metallurgical contact, and for this purpose, it is preferable that the rolling reduction ratio be as large as possible. The minimum rolling ratio depends on the reheating temperature and the rolling temperature, but when the rolling temperature is high as in the present invention, it is 5 or more. In the present invention, rolling is completed at a temperature in the range of 850 to 1000°C. If the rolling end temperature is 850° C. or lower, the γ structure of the composite material does not recrystallize and the corrosion resistance (for example, pitting corrosion resistance, test conditions: 48 hrs immersion in 10% FeCl3.6H2 O solution) deteriorates significantly. From the viewpoint of corrosion resistance of the laminated material, the higher the rolling end temperature is, the more preferable. However, if the rolling end temperature is too high, the crystal grains of the base material will not become finer, leading to deterioration of low-temperature toughness. For this reason, the rolling end temperature was set at 10
The temperature was limited to 00°C or below.

【0011】さらに本発明では、圧延終了後60〜20
0秒間空冷し、750℃以上の温度から5〜40℃/秒
の冷却速度で550℃以下の任意の温度まで冷却、その
後空冷する。圧延後に空冷時間をもうける理由は、合わ
せ材のγ組織の再結晶を促進させ、耐食性を改善するた
めである。圧延直後に急冷すると良好な耐食性は得られ
ない。圧延終了温度が850℃以上の場合、最低60秒
の空冷時間が必要である(望ましくは100秒以上)。 しかし空冷時間の延長はクラッド鋼板の温度低下を招き
、σ,α′相(Cr炭化物)の析出を生じさせる。また
加速冷却による母材の強靭化にも支障をきたす。このた
め鋼板の厚みにも依存するが、空冷時間は200秒以下
とし、かつ750℃以上の温度から水冷しなければなら
ない。このとき、■σ,α′相(Cr炭化物)の析出を
抑制し、■加速冷却による母材の強靭化をはかるために
は、冷却条件として冷却速度5〜40℃/秒で550℃
以下まで冷却する必要がある。なお圧延後のクラッド鋼
板を低温靭性改善、脱水素などの目的で、Ac1 以下
の温度に再加熱(焼戻処理)することは、何ら本発明の
特徴を損なうものではない。
Furthermore, in the present invention, after the rolling is completed, 60 to 20
Air cooling is performed for 0 seconds, and cooling is performed from a temperature of 750° C. or higher to an arbitrary temperature of 550° C. or lower at a cooling rate of 5 to 40° C./second, and then air cooling is performed. The reason for allowing air cooling time after rolling is to promote recrystallization of the γ structure of the laminated material and improve corrosion resistance. If the steel is rapidly cooled immediately after rolling, good corrosion resistance cannot be obtained. When the rolling end temperature is 850°C or higher, an air cooling time of at least 60 seconds is required (preferably 100 seconds or more). However, extending the air-cooling time causes a decrease in the temperature of the clad steel sheet, causing precipitation of σ, α' phases (Cr carbides). It also interferes with the toughening of the base metal by accelerated cooling. Therefore, although it depends on the thickness of the steel plate, the air cooling time must be 200 seconds or less, and water cooling must be performed from a temperature of 750° C. or higher. At this time, in order to suppress the precipitation of the σ and α' phases (Cr carbides) and to strengthen the base material by accelerated cooling, the cooling conditions are 550°C at a cooling rate of 5 to 40°C/sec.
It is necessary to cool down to below. Note that reheating (tempering treatment) of the rolled clad steel plate to a temperature of Ac1 or lower for the purpose of improving low-temperature toughness, dehydrogenation, etc. does not impair the features of the present invention in any way.

【0012】以下、本発明の母材成分の限定理由につい
て説明する。母材の強度・低温靭性の確保および合わせ
材の耐食性確保のため、C,Mn,Nb,Ti量をそれ
ぞれ、0.02〜0.07%、1.0〜1.8%、0.
02〜0.15%、0.005〜0.03%に限定する
。C,Mn量の下限は目的とする母材、溶接部強度・靭
性やNb添加による析出硬化、結晶粒微細化効果を発揮
するための最小量である。また上限は母材の優れた低温
靭性・現地溶接性を得るための限界値である。母材のC
量が高過ぎると組立スラブの再加熱時に、母材のCが合
わせ材へ拡散し、耐食性が劣化する。したがって合わせ
材の耐食性の観点からも母材のC量を0.07%以下に
制限する必要がある。本発明鋼では、必須の元素として
Nb:0.02〜0.15%、Ti:0.005〜0.
03%を含有させる。Nbは制御圧延において結晶粒の
微細化や析出硬化に寄与し、鋼を強靭化する効果を有す
る。合わせ材の耐食性改善のため、850℃以上の高温
で圧延を終了しなければならない本発明鋼においては、
Nbは最低0.02%以上添加する必要がある。これに
よって本発明のように高温圧延を基本とする特殊な製造
条件においても結晶粒の微細化や析出硬化が進行し、従
来のクラッド鋼板に比較して優れた強度・靭性が得られ
る。しかしNbを0.15%以上添加すると、現地溶接
性や溶接部の靭性が劣化するので、その上限を0.15
%とした。またTi添加は微細なTiNを形成し、スラ
ブ再加熱時、溶接時のγ粒の粗大化を抑制して母材靭性
、溶接熱影響部(HAZ)靭性の改善に効果がある。こ
の効果は高温で圧延を終了する本発明鋼においてはとく
に重要である。TiNの効果を十分に発揮させるには、
最低0.005%のTi添加が必要である。しかしTi
量が多過ぎると、TiNの粗大化やTiCによる析出硬
化が起こり、低温靭性が劣化するので、その上限は0.
03%に制限する必要がある。
[0012] The reasons for limiting the base material components of the present invention will be explained below. In order to ensure the strength and low-temperature toughness of the base material and the corrosion resistance of the composite material, the amounts of C, Mn, Nb, and Ti are set to 0.02 to 0.07%, 1.0 to 1.8%, and 0.01%, respectively.
02-0.15%, 0.005-0.03%. The lower limit of the amount of C and Mn is the minimum amount in order to achieve the desired base metal, weld strength and toughness, precipitation hardening due to Nb addition, and crystal grain refinement effects. Furthermore, the upper limit is the limit value for obtaining excellent low-temperature toughness and on-site weldability of the base metal. Base material C
If the amount is too high, C in the base material will diffuse into the laminated material when the assembled slab is reheated, resulting in poor corrosion resistance. Therefore, from the viewpoint of corrosion resistance of the laminated material, it is necessary to limit the amount of C in the base material to 0.07% or less. In the steel of the present invention, Nb: 0.02-0.15%, Ti: 0.005-0.0% as essential elements.
03%. Nb contributes to grain refinement and precipitation hardening in controlled rolling, and has the effect of toughening steel. For the steel of the present invention, rolling must be completed at a high temperature of 850°C or higher in order to improve the corrosion resistance of the laminated material.
Nb needs to be added at least 0.02% or more. As a result, grain refinement and precipitation hardening progress even under special manufacturing conditions based on high-temperature rolling as in the present invention, resulting in superior strength and toughness compared to conventional clad steel sheets. However, if more than 0.15% of Nb is added, the on-site weldability and the toughness of the weld will deteriorate, so the upper limit should be set at 0.15% or more.
%. Furthermore, addition of Ti forms fine TiN, suppresses coarsening of γ grains during slab reheating and welding, and is effective in improving base metal toughness and weld heat affected zone (HAZ) toughness. This effect is particularly important in the steel of the present invention, which is finished rolling at a high temperature. In order to fully demonstrate the effect of TiN,
A minimum of 0.005% Ti addition is required. However, Ti
If the amount is too large, coarsening of TiN and precipitation hardening due to TiC will occur, resulting in deterioration of low temperature toughness, so the upper limit is 0.
It is necessary to limit it to 0.3%.

【0013】その他元素の限定理由について説明する。 Siは鋼を強靭化させる元素であるが、多く添加すると
溶接性、HAZ靭性を劣化させるため、上限を0.5%
とした。鋼の脱酸はTiのみでも十分であり、Siは必
ずしも添加する必要はない。
[0013] The reasons for limiting other elements will be explained. Si is an element that toughens steel, but if added in large quantities it deteriorates weldability and HAZ toughness, so the upper limit is set at 0.5%.
And so. Ti alone is sufficient for deoxidizing steel, and Si does not necessarily need to be added.

【0014】本発明鋼において不純物であるP,Sをそ
れぞれ0.03%,0.005%以下とした理由は、母
材、溶接部の低温靭性をより一層向上させるためである
。Pの低減は粒界破壊を防止し、S量の低減はMnSに
よる靭性の劣化を防止する。好ましいP,S量はそれぞ
れ0.01,0.003%以下である。
The reason why the impurities P and S in the steel of the present invention are set to 0.03% and 0.005% or less, respectively, is to further improve the low-temperature toughness of the base metal and the welded part. Reducing the amount of P prevents grain boundary fracture, and reducing the amount of S prevents deterioration of toughness due to MnS. The preferable amounts of P and S are 0.01% and 0.003% or less, respectively.

【0015】Alは通常脱酸剤として鋼に含まれる元素
であるが、脱酸はTiあるいはSiでも可能であり、必
ずしも添加する必要はない。Al量が0.05%以上に
なるとAl系非金属介在物が増加して鋼の清浄度を害す
るので、上限を0.05%とした。
Al is an element normally contained in steel as a deoxidizing agent, but deoxidizing can also be done with Ti or Si, and it is not necessary to add it. If the Al amount exceeds 0.05%, Al-based nonmetallic inclusions will increase and impair the cleanliness of the steel, so the upper limit was set at 0.05%.

【0016】NはTiNを形成しγ粒の粗大化抑制効果
を通じて母材靭性、HAZ靭性を向上させる。このため
の最小量は0.002%である。しかし多過ぎるとスラ
ブ表面疵や固溶NによるHAZ靭性の劣化原因となるの
で、その上限は0.006%以下に抑える必要がある。
[0016]N forms TiN and improves base material toughness and HAZ toughness through the effect of suppressing coarsening of γ grains. The minimum amount for this is 0.002%. However, if it is too large, it may cause cracks on the slab surface and deterioration of HAZ toughness due to solid solution N, so the upper limit needs to be suppressed to 0.006% or less.

【0017】V,Ni,Cu,Cr,Mo,Caを添加
する理由について説明する。基本となる成分にさらにこ
れらの元素を添加する主たる目的は本発明鋼の優れた特
徴を損なうことなく、母材の強度・靭性などの特性向上
をはかるためである。したがって、その添加量は自ら制
限される性質のものである。
The reason for adding V, Ni, Cu, Cr, Mo, and Ca will be explained. The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness of the base metal without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is self-limited.

【0018】VはほぼNbと同様の効果を有するが、そ
の効果はNbに比較して弱い。その上限は溶接性、HA
Z靭性の点から0.1%である。
Although V has almost the same effect as Nb, its effect is weaker than Nb. The upper limit is weldability, HA
From the point of view of Z toughness, it is 0.1%.

【0019】Niは溶接性、HAZ靭性に悪影響をおよ
ぼすことなく、強度・靭性をともに向上させるほか、C
u添加時の熱間割れ防止にも効果がある。しかし1.0
%を超えると経済性の点で好ましくないため、その上限
を1.0%とした。
[0019] Ni improves both strength and toughness without adversely affecting weldability and HAZ toughness.
It is also effective in preventing hot cracking when u is added. But 1.0
If it exceeds 1.0%, it is unfavorable from an economic point of view, so the upper limit was set at 1.0%.

【0020】Cuは耐食性、耐水素誘起割れ性にも効果
があるが、1.0%を超えると熱間圧延時にCu−クラ
ックが生じ、製造が困難になる。このため上限を1.0
%とした。Cr,Moはともに強度の向上に効果を有す
る。しかし多く添加すると溶接性やHAZ靭性を害する
ので、その上限をそれぞれ、0.5,0.3%とした。 なおV量の下限0.01%およびNi,Cu,Cr,M
o量の下限0.05%は、元素の添加による材質上の効
果を得るための最小量である。
[0020] Cu is effective in corrosion resistance and hydrogen-induced cracking resistance, but if it exceeds 1.0%, Cu-cracks occur during hot rolling, making manufacturing difficult. Therefore, the upper limit is set to 1.0
%. Both Cr and Mo are effective in improving strength. However, if added in large amounts, weldability and HAZ toughness will be impaired, so the upper limits were set at 0.5% and 0.3%, respectively. Note that the lower limit of V amount is 0.01% and Ni, Cu, Cr, M
The lower limit of 0.05% of the amount of o is the minimum amount for obtaining the effect on the material quality by adding the element.

【0021】Caは硫化物(MnS)の形態を制御し、
低温靭性を向上(シャルピー吸収エネルギーの増加など
)させるほか耐水素誘起割れ性の改善にも著しい効果を
発揮する。しかしCa量が0.001%以下では実用上
効果がなく、また0.005%を超えて添加するとCa
O,CaSが大量に生成して大型介在物となり、鋼の清
浄度を害するだけでなく靭性・現地溶接性に悪影響をお
よぼす。このためCa添加量を0.001〜0.005
%に制限した。なお耐水素誘起割れ性を改善するにはS
,O量をそれぞれ0.001,0.002%以下に低減
し、ESSP≧(Ca)〔1−124(O)〕/1.2
5(S)とすることが特に有効である。本発明では、上
記のようにして製造したクラッド鋼板を用いて鋼管を製
造する。
[0021]Ca controls the morphology of sulfide (MnS),
In addition to improving low-temperature toughness (increasing Charpy absorbed energy, etc.), it also has a remarkable effect on improving hydrogen-induced cracking resistance. However, if the amount of Ca is less than 0.001%, it has no practical effect, and if it exceeds 0.005%, Ca
A large amount of O and CaS are generated and become large inclusions, which not only impair the cleanliness of the steel but also adversely affect the toughness and on-site weldability. For this reason, the amount of Ca added is 0.001 to 0.005.
%. In addition, to improve hydrogen-induced cracking resistance, S
, O amount to 0.001% and 0.002% or less, respectively, and ESSP≧(Ca)[1-124(O)]/1.2
5(S) is particularly effective. In the present invention, a steel pipe is manufactured using the clad steel plate manufactured as described above.

【0022】図1は本発明にかかわる高合金クラッド鋼
管の内面シーム溶接を3パス、1ランで行なったときの
溶接部側面の模式図である。また図2は図1のA,A′
部分の横断面図である。ここで1,3,5はそれぞれ第
1,2,3電極、2,4,6はそれぞれ第1,2,3電
極ワイヤ、7は高合金層、8は低合金鋼母材、9,10
,11はそれぞれ第1,2,3電極アーク、12,13
,14はそれぞれ低合金第1パス(以下、初層という)
、高合金第2パス(以下、バッファー層という)、高合
金第3パス(以下、最終層という)、15はバッファー
層スラグ、16は最終スラグ、17は外面の仮付ビード
である。
FIG. 1 is a schematic view of the side surface of a welded part when internal seam welding of a high alloy clad steel pipe according to the present invention is performed in three passes and one run. Also, Figure 2 shows A and A' in Figure 1.
FIG. Here, 1, 3, and 5 are the first, second, and third electrodes, respectively, 2, 4, and 6 are the first, second, and third electrode wires, respectively, 7 is the high alloy layer, 8 is the low alloy steel base material, and 9, 10
, 11 are the first, second and third electrode arcs, 12 and 13 respectively.
, 14 are each low alloy first pass (hereinafter referred to as the first layer)
, a high alloy second pass (hereinafter referred to as a buffer layer), a high alloy third pass (hereinafter referred to as a final layer), 15 is a buffer layer slag, 16 is a final slag, and 17 is a temporary bead on the outer surface.

【0023】図1において、まず第1電極に低合金ソリ
ッドワイヤ2を用いて、低合金鋼母材8の開先をMIG
溶接で初層ビードを形成した後、第2電極に高合金フラ
ックス入りワイヤ4を用いてMIG溶接し、バッファー
層13およびスラグ層15を形成する。そして最終層の
第3電極では、高合金ソリッドワイヤ6を用い、MIG
溶接を行なって最終層ビードを形成する。このときバッ
ファー層溶接でできたスラグ15は第3電極アーク11
で再溶融され、最終層スラグ16となってビード表面を
覆うので、表面酸化皮膜のない、耐食性の優れた高合金
溶接ビードが得られる。
In FIG. 1, first, using the low alloy solid wire 2 as the first electrode, the groove of the low alloy steel base material 8 is subjected to MIG.
After forming a first layer bead by welding, MIG welding is performed using a high alloy flux-cored wire 4 as a second electrode to form a buffer layer 13 and a slag layer 15. In the third electrode of the final layer, a high alloy solid wire 6 is used, and MIG
Welding is performed to form the final layer bead. At this time, the slag 15 created by buffer layer welding is transferred to the third electrode arc 11.
The slag is remelted and becomes the final layer slag 16 that covers the bead surface, resulting in a high-alloy weld bead with no surface oxide film and excellent corrosion resistance.

【0024】ここで第1電極ワイヤ(初層)は低合金ワ
イヤでなければなららない。高合金ワイヤを使用すると
、最後に外面から潜弧溶接したとき、初層溶接の高合金
成分が希釈され、溶接金属に割れを生じる。第2電極ワ
イヤ(バッファー層)は高合金のフラックス入りワイヤ
を使用する。低合金ワイヤでは最終層溶接時の希釈が大
きくなって、優れた耐食性が得られない。このとき高合
金ソリットワイヤを使用するとビード表面の酸化皮膜を
防止できない。最終層では、当然ながら耐食性の観点か
ら高合金ワイヤを用いなければならないが、フラックス
入りワイヤを使用するとアークが不安定になって、スパ
ッターが発生、良好なビードが得られないため、高合金
のソリッドワイヤを使用する。
[0024] Here, the first electrode wire (initial layer) must be a low alloy wire. When high-alloy wire is used, the high-alloy component of the first layer weld is diluted during the final submerged arc welding from the outside surface, causing cracks in the weld metal. The second electrode wire (buffer layer) uses a high-alloy flux-cored wire. With low alloy wires, the dilution during final layer welding becomes large and excellent corrosion resistance cannot be obtained. At this time, if a high alloy solid wire is used, an oxide film on the bead surface cannot be prevented. Naturally, high-alloy wire must be used in the final layer from the viewpoint of corrosion resistance, but if flux-cored wire is used, the arc becomes unstable, spatter occurs, and a good bead cannot be obtained, so high-alloy wire must be used. Use solid wire.

【0025】内面溶接を行なった後、最後に外面から低
合金ワイヤを用いて、高能率の多電極潜弧溶接を行なう
。内面初層は低合金成分のため、希釈されても溶接割れ
はまったく生じない。この際、低合金ワイヤはソリッド
ワイヤ、フラックス入りワイヤいずれでも可能で限定し
ない。
After internal welding, high-efficiency multi-electrode latent arc welding is finally performed from the external surface using low-alloy wire. Since the inner first layer has a low alloy content, no weld cracks will occur even if it is diluted. At this time, the low-alloy wire may be either a solid wire or a flux-cored wire, and is not limited.

【0026】[0026]

【実施例】つぎに本発明の実施例について述べる。転炉
−連続鋳造で種々の鋼成分の母材スラブ(厚み240m
m)を製造した。このスラブを所定の厚みに圧延した後
、片表面を機械的に平削し、所定の厚みのSUS316
Lまたはインコロイ825合わせ材(圧延後の鋼板の合
わせ材厚みが3mmになるように調整)と重ねて四周を
溶接した。さらに、このようにして製造したスラブ2枚
の合わせ材を分離材を介して重ね合わせ、四周を溶接し
てサンドイッチスラブを組立てた。なお接着面はすべて
平滑にするとともに汚れを除去、脱脂し、空気を真空ポ
ンプで除去した。種々の条件でサンドイッチスラブを再
加熱・圧延・冷却してクラッド鋼板を製造し、これより
外径762mmのUOE鋼管を製造して母材の強度、低
温靭性(シャルピー衝撃試験)、合わせ材の耐食性(孔
食の有無で評価、試験条件:10%FeCl3 ・6H
2 O溶液にSUS316Lは15℃で48時間、イン
コロイ825は30℃で48時間浸漬)、母材と合わせ
材の密着性(超音波による探傷)を調査した。
[Example] Next, an example of the present invention will be described. Converter - Base material slabs of various steel compositions (thickness 240 m) are produced by continuous casting.
m) was produced. After rolling this slab to a predetermined thickness, one surface is mechanically planed and SUS316 of a predetermined thickness is
L or Incoloy 825 laminated material (adjusted so that the thickness of the laminated material of the steel plate after rolling was 3 mm) was overlapped and welded on all four sides. Furthermore, the two slabs produced in this manner were stacked together with a separating material in between, and the four circumferences were welded to assemble a sandwich slab. All adhesive surfaces were smoothed, dirt was removed, degreased, and air was removed using a vacuum pump. Sandwich slabs are reheated, rolled, and cooled under various conditions to produce clad steel plates, and from this, UOE steel pipes with an outer diameter of 762 mm are produced to evaluate the strength of the base material, low-temperature toughness (Charpy impact test), and corrosion resistance of the laminated material. (Evaluated by the presence or absence of pitting corrosion, test conditions: 10%FeCl3 ・6H
2 O solution for 48 hours at 15°C for SUS316L and 48 hours at 30°C for Incoloy 825), and the adhesion between the base material and the composite material (by ultrasonic flaw detection) was investigated.

【0027】表1に実施例を示す。本発明法にしたがっ
て製造したクラッド鋼板(鋼1〜10)は、母材、合わ
せ材ともにすべて良好な特性を有する。これに対して本
発明によらない比較鋼(鋼11〜26)は、母材あるい
は合わせ材の特性が劣る。
Examples are shown in Table 1. The clad steel plates (Steels 1 to 10) manufactured according to the method of the present invention have good properties in both the base material and the laminated material. On the other hand, the comparative steels (steels 11 to 26) that are not according to the present invention have inferior properties of the base material or the laminated material.

【0028】鋼11,12はC量が高くMn量が低いた
め、鋼12はNb量が少ないため、低温靭性が劣る。ま
た鋼13はTiが添加されていないため、鋼14はN量
が低いため、低温靭性が劣る。鋼15はN量が多すぎる
ため、やはり低温靭性が劣る。鋼16はSi,Mn量が
高いため、強度は良好であるが、低温靭性が劣る。鋼1
7は再加熱温度が低過ぎるため、強度、耐食性および合
わせ材と母材の密着性が劣る。鋼18は再加熱温度が高
過ぎるため、低温靭性が劣る。鋼19は圧延終了温度が
低過ぎるため、耐食性が劣る。鋼20は圧延終了温度が
高過ぎるため、低温靭性が悪い。鋼21は空冷時間が短
かく、耐食性が劣る。鋼22は空冷時間が長く、水冷開
始温度が低いため、強度、耐食性が劣る。鋼23は冷却
速度が小さ過ぎるため、強度、耐食性が劣る。鋼24は
冷却速度が大き過ぎるため、低温靭性が劣る。鋼25は
圧下比が小さいため、合わせ材と母材が十分に密着しな
い。鋼26は水冷停止温度が高いため、強度、耐食性が
劣る。
Steels 11 and 12 have a high C content and a low Mn content, and steel 12 has a low Nb content, resulting in poor low-temperature toughness. Further, since Ti is not added to Steel 13, Steel 14 has a low amount of N, and thus has poor low-temperature toughness. Steel 15 also has poor low-temperature toughness because the amount of N is too large. Steel 16 has high Si and Mn contents, so it has good strength but poor low-temperature toughness. steel 1
Sample No. 7 has poor strength, corrosion resistance, and adhesion between the laminated material and the base material because the reheating temperature is too low. Steel 18 has poor low-temperature toughness because the reheating temperature is too high. Steel 19 has poor corrosion resistance because the rolling end temperature is too low. Steel 20 has poor low-temperature toughness because the rolling end temperature is too high. Steel 21 requires a short air cooling time and has poor corrosion resistance. Since steel 22 requires a long air cooling time and a low water cooling start temperature, its strength and corrosion resistance are poor. Since the cooling rate of steel 23 is too low, its strength and corrosion resistance are poor. Since the cooling rate of Steel 24 is too high, its low-temperature toughness is poor. Steel 25 has a small reduction ratio, so the laminated material and the base material do not adhere sufficiently. Since steel 26 has a high water-cooling stop temperature, it has poor strength and corrosion resistance.

【0029】表2にMIG溶接の実施例を示す。外径7
62mm、厚み20mm(合わせ材厚さ3mm)のUO
E鋼管(表1の本発明鋼5,6、5はSUS316Lク
ラッド鋼管、6はインコロイ825クラッド鋼管)を用
い、図3に示す開先形状で溶接を行なった。高合金ワイ
ヤとしてはインコネル625系のものを使用した。
Table 2 shows examples of MIG welding. Outer diameter 7
UO of 62mm, thickness 20mm (laminated material thickness 3mm)
Using E steel pipes (invention steels 5, 6, and 5 in Table 1 are SUS316L clad steel pipes, and 6 is an Incoloy 825 clad steel pipe), welding was performed with the groove shape shown in FIG. 3. Inconel 625 series wire was used as the high alloy wire.

【0030】本発明にしたがって溶接した鋼1,2の溶
接金属は耐食性にすぐれ、ビード外観も良好で溶接割れ
も発生しない。これに対して比較鋼3,4では内面溶接
バッファー層、最終層の高合金ワイヤの組合わせが不適
なため、良好なビードが形成できない。また鋼5では、
内面溶接バッファー層に低合金ワイヤが使用され、耐食
性が悪く、最終層に溶接金属割れが発生している。鋼6
では、内面溶接がすべて高合金ワイヤで行なわれている
ために、内面ビード外観が悪いだけでなく、外面溶接金
属に割れが発生している。
The weld metals of steels 1 and 2 welded according to the present invention have excellent corrosion resistance, have good bead appearance, and do not cause weld cracks. On the other hand, in Comparative Steels 3 and 4, the combination of the inner weld buffer layer and the final layer of high-alloy wire was inappropriate, so a good bead could not be formed. Also, in steel 5,
Low-alloy wire is used for the inner weld buffer layer, which has poor corrosion resistance and weld metal cracking occurs in the final layer. steel 6
In this case, all internal welding is done with high-alloy wire, so not only does the internal bead look bad, but cracks occur in the external weld metal.

【0031】[0031]

【表1】[Table 1]

【0032】[0032]

【表2】[Table 2]

【0033】[0033]

【表3】[Table 3]

【0034】[0034]

【表4】[Table 4]

【0035】[0035]

【発明の効果】本発明により鋼管全体の溶体化処理する
ことなく、また高能率で母材の強度・低温靭性、合わせ
材の耐食性がともに優れた高品質のクラッド鋼板の製造
が可能になった。その結果、省エネルギー、省工程が可
能となった。また諸特性の向上により、パイプラインの
安全性が著しく向上した。
[Effects of the invention] The present invention has made it possible to manufacture high-quality clad steel plates with excellent strength and low-temperature toughness of the base material and corrosion resistance of the laminated material with high efficiency and without solution treatment of the entire steel pipe. . As a result, energy and process savings have become possible. Additionally, improvements in various properties have significantly improved the safety of pipelines.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明にかかわる高合金クラッド鋼管の内面シ
ーム溶接を3パス、1ランで行なったときの溶接部側面
の模式図である。
FIG. 1 is a schematic diagram of a side surface of a welded part when internal seam welding of a high-alloy clad steel pipe according to the present invention is performed in three passes and one run.

【図2】図1A,A′部分の横断面図である。FIG. 2 is a cross-sectional view of part A' in FIG. 1A.

【図3】外径762mm、厚み20mm(合わせ材厚み
3mm)のUOEクラッド鋼管の開先形状を示す。
FIG. 3 shows the groove shape of a UOE clad steel pipe with an outer diameter of 762 mm and a thickness of 20 mm (laminated material thickness: 3 mm).

【符号の説明】 1    第1電極 2    第1電極ワイヤ 3    第2電極 4    第2電極ワイヤ 5    第3電極 6    第3電極ワイヤ 7    高合金層 8    低合金鋼母材 9    第1電極アーク 10  第2電極アーク 11  第3電極アーク 12  低合金初層 13  高合金バッファー層 14  高合金最終層 15  バッファー層スラグ 16  最終層スラグ 17  外面の仮付ビード[Explanation of symbols] 1 First electrode 2 First electrode wire 3 Second electrode 4 Second electrode wire 5 Third electrode 6 Third electrode wire 7 High alloy layer 8 Low alloy steel base material 9 First electrode arc 10 Second electrode arc 11 Third electrode arc 12 Low alloy first layer 13 High alloy buffer layer 14 High alloy final layer 15 Buffer layer slag 16 Final layer slag 17 Temporary bead on outer surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ステンレス鋼またはニッケル合金の合
せ材と重量%で C  :0.02〜0.07、      Si:0.
5以下、Mn:1.0〜1.8、          
P  :0.03以下、 S  :0.005以下、          Nb:
0.02〜0.15、 Ti:0.005〜0.03、    Al:0.05
以下、 N  :0.002〜0.006、 に必要に応じて、さらに V  :0.01〜0.1、        Ni:0
.05〜1.0、 Cu:0.05〜1.0、        Cr:0.
05〜0.5、 Mo:0.05〜0.3、        Ca:0.
001〜0.005、 の1種または2種を含有し、残部が鉄および不可避的不
純物からなる鋼母材とを重ね合わせて四周を溶接してス
ラブを組立て、これを1100℃〜1250℃の温度範
囲に加熱後、圧下比5以上、圧延終了温度850〜10
00℃で圧延し、60〜200秒間空冷した後、750
℃以上の温度から5〜40℃/秒の冷却速度で550℃
以下の任意の温度まで冷却、その後空冷してクラッド鋼
板を製造、ついで合わせ材を内側にして鋼管に成形し、
そのシーム溶接において、内側から先行電極に低合金ワ
イヤ、中間電極にフラックス入り高合金ワイヤ、後行電
極に高合金ソリッドワイヤを配した3電極MIG溶接を
行なった後、外側から低合金成分ワイヤを使用して多電
極潜弧溶接することを特徴とする低温靭性の優れたクラ
ッド鋼管の製造方法。
Claim 1: C: 0.02 to 0.07, Si: 0.02 to 0.07 by weight with stainless steel or nickel alloy composite material.
5 or less, Mn: 1.0 to 1.8,
P: 0.03 or less, S: 0.005 or less, Nb:
0.02-0.15, Ti: 0.005-0.03, Al: 0.05
Hereinafter, N: 0.002 to 0.006, and if necessary, V: 0.01 to 0.1, Ni: 0
.. 05-1.0, Cu: 0.05-1.0, Cr: 0.
05-0.5, Mo: 0.05-0.3, Ca: 0.05-0.5, Mo: 0.05-0.3, Ca: 0.
001 to 0.005, with the remainder consisting of iron and unavoidable impurities, to assemble a slab by welding the four circumferences. After heating to a temperature range, reduction ratio of 5 or more, rolling end temperature of 850 to 10
After rolling at 00℃ and air cooling for 60 to 200 seconds, 750℃
From a temperature above ℃ to 550℃ at a cooling rate of 5 to 40℃/sec
Cool to the desired temperature below, then air cool to produce a clad steel plate, then form it into a steel pipe with the laminated material inside,
In seam welding, three-electrode MIG welding is performed from the inside with a low-alloy wire for the leading electrode, a flux-cored high-alloy wire for the intermediate electrode, and a high-alloy solid wire for the trailing electrode, and then a low-alloy wire is attached from the outside. A method for manufacturing clad steel pipes with excellent low-temperature toughness, characterized by using multi-electrode latent arc welding.
JP8247391A 1991-04-15 1991-04-15 Production of clad steel tube excellent in toughness at low temperature Withdrawn JPH04314826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8247391A JPH04314826A (en) 1991-04-15 1991-04-15 Production of clad steel tube excellent in toughness at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8247391A JPH04314826A (en) 1991-04-15 1991-04-15 Production of clad steel tube excellent in toughness at low temperature

Publications (1)

Publication Number Publication Date
JPH04314826A true JPH04314826A (en) 1992-11-06

Family

ID=13775483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8247391A Withdrawn JPH04314826A (en) 1991-04-15 1991-04-15 Production of clad steel tube excellent in toughness at low temperature

Country Status (1)

Country Link
JP (1) JPH04314826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482090A (en) * 1991-12-02 1996-01-09 Usui Kokusai Sangyo Kaisha Limited Welded tube with excellent corrosion-resistant inner surface
JP2014101568A (en) * 2012-11-22 2014-06-05 Jfe Steel Corp HIGH TOUGHNESS HIGH CORROSION RESISTANCE Ni ALLOY CLAD STEEL SHEET EXCELLENT IN WELD ZONE TOUGHNESS AND PRODUCTION METHOD THEREOF
EP3037567A4 (en) * 2013-10-21 2016-11-16 Jfe Steel Corp Austenitic stainless steel clad steel plate and process for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482090A (en) * 1991-12-02 1996-01-09 Usui Kokusai Sangyo Kaisha Limited Welded tube with excellent corrosion-resistant inner surface
JP2014101568A (en) * 2012-11-22 2014-06-05 Jfe Steel Corp HIGH TOUGHNESS HIGH CORROSION RESISTANCE Ni ALLOY CLAD STEEL SHEET EXCELLENT IN WELD ZONE TOUGHNESS AND PRODUCTION METHOD THEREOF
EP3037567A4 (en) * 2013-10-21 2016-11-16 Jfe Steel Corp Austenitic stainless steel clad steel plate and process for manufacturing same

Similar Documents

Publication Publication Date Title
JP2510783B2 (en) Method for producing clad steel sheet with excellent low temperature toughness
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
EP2130937B1 (en) High-strength welded steel pipe and process for manufacturing it
WO2007020826A1 (en) Ferritic stainless-steel sheet with excellent corrosion resistance and process for producing the same
JPH0825041B2 (en) Clad steel pipe manufacturing method
JPH1017980A (en) Welded steel pipe with low yield ratio, and its production
JPH07246481A (en) Production of high strength clad steel sheet
JPH07290245A (en) Production of large-diameter clad steel pipe
JPH09194998A (en) Welded steel tube and its production
JPH04314826A (en) Production of clad steel tube excellent in toughness at low temperature
JPH05261567A (en) Manufacture of clad steel plate having excellent low temperature toughness
JP2681591B2 (en) Manufacturing method of composite steel sheet with excellent corrosion resistance and low temperature toughness
JPH04263016A (en) Production of clad steel sheet excellent in low temperature touchness
JP7506305B2 (en) High-strength steel plate for large heat input welding
JP2502204B2 (en) Method for producing clad steel pipe with excellent low temperature toughness
JPH0475791A (en) Production of clad steel plate
JPS5811311B2 (en) High-efficiency multi-electrode automatic arc welding method for low-temperature, high-toughness steel
JP4522042B2 (en) Steel with excellent high-pass temperature weldability and its welded joint
JPH03229819A (en) Production of clad steel plate excellent in corrosion resistance
JPH0890239A (en) Seam welding method of clad steel tube
JPH03285016A (en) Manufacture of clad steel having superior corrosion resistance and toughness
JP2002309339A (en) Welded joint having heat affected zone with excellent toughness and fatigue resistance
JPH09194997A (en) Welded steel tube and its production
JPS5832583A (en) Tube welding method for large diameter steel tube
JP6950294B2 (en) Manufacturing method of joints by multi-layer welding

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711