JP6950294B2 - Manufacturing method of joints by multi-layer welding - Google Patents

Manufacturing method of joints by multi-layer welding Download PDF

Info

Publication number
JP6950294B2
JP6950294B2 JP2017121259A JP2017121259A JP6950294B2 JP 6950294 B2 JP6950294 B2 JP 6950294B2 JP 2017121259 A JP2017121259 A JP 2017121259A JP 2017121259 A JP2017121259 A JP 2017121259A JP 6950294 B2 JP6950294 B2 JP 6950294B2
Authority
JP
Japan
Prior art keywords
welding
amount
manufacturing
heat input
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017121259A
Other languages
Japanese (ja)
Other versions
JP2019005770A (en
Inventor
政昭 藤岡
政昭 藤岡
渡部 義之
義之 渡部
和洋 福永
和洋 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017121259A priority Critical patent/JP6950294B2/en
Publication of JP2019005770A publication Critical patent/JP2019005770A/en
Application granted granted Critical
Publication of JP6950294B2 publication Critical patent/JP6950294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は、多層盛り溶接による継手の製造方法、より詳しくは、海洋構造物、建築、橋梁、ペンストックなど高靭性が求められる構造物に供する板厚25mm以上の厚鋼板を用いる多層盛り溶接による継手の製造方法に関するものである。 The present invention is based on a method for manufacturing a joint by multi-layer welding, more specifically, multi-layer welding using a thick steel plate having a thickness of 25 mm or more for structures requiring high toughness such as marine structures, buildings, bridges, and penstocks. It relates to a method of manufacturing a joint.

一対の厚鋼板の端部同士を突き合わせて溶接する場合等、多層盛り溶接によって継手を製造するに際しては、多パス溶接で生じる「二相域加熱」を受けた鋼板の溶接熱影響部(HAZ:Heat−Affected Zone)に高炭素マルテンサイト−オーステナイト混合物(MA)が生成することが知られている。特に、先行する溶接パスで溶接線(FL:Fusion Line)近傍において加熱された「粗粒域」が次パスで「二相域加熱」を受けた場合には顕著な靭性の低下が生じることが指摘されている。 When manufacturing joints by multi-layer welding, such as when the ends of a pair of thick steel plates are butted against each other for welding, the weld heat-affected zone (HAZ:) of the steel plate that has undergone "two-phase region heating" caused by multi-pass welding. It is known that a high carbon martensite-austenite mixture (MA) is formed in the Heat-Affected Zone. In particular, when the "coarse grain region" heated in the vicinity of the welding line (FL: Fusion Line) in the preceding welding pass is subjected to "two-phase region heating" in the next pass, a significant decrease in toughness may occur. It has been pointed out.

このような「粗粒域」+「二相域加熱」部位の靭性改善策として、特許文献1〜4などにおいて幾つか提案がなされている。特許文献1に記載の発明は、主に鋼の成分の内、C量を0.001〜0.02%に低減し、MAの生成を抑制するものであるが、強度を補完するために多くの合金元素を必要とする。また、特許文献2に記載の発明は、Mnを2%以上に高めた上でTi酸化物を使うという特殊な合金成分とし、細粒化により靭性を改善しようとするものである。また、特許文献3に記載の発明は、さらに低C化でMAの生成を抑制するものである。また、特許文献4に記載の発明は、MAの生成を抑制するためにAlを多量に添加するものである。いずれの特許文献に記載の発明も「粗粒域」+「二相域加熱」の存在を許容した上で鋼の成分を工夫することにより細粒化やMAの生成を抑制し靭性の劣化を低減しようとするものであるが、高価な合金の添加が必要であったり、特殊な製造方法を必要としており製造負荷が高い。 Several proposals have been made in Patent Documents 1 to 4 and the like as measures for improving the toughness of such a "coarse grain region" + "two-phase region heating" region. The invention described in Patent Document 1 mainly reduces the amount of C to 0.001 to 0.02% among the components of steel and suppresses the formation of MA, but is often used to supplement the strength. Requires alloying elements. Further, the invention described in Patent Document 2 is to make a special alloy component in which Mn is increased to 2% or more and then Ti oxide is used, and the toughness is improved by fine granulation. Further, the invention described in Patent Document 3 suppresses the production of MA by further lowering the C content. Further, in the invention described in Patent Document 4, a large amount of Al is added in order to suppress the formation of MA. In all the inventions described in the patent documents, the existence of "coarse grain region" + "two-phase region heating" is allowed, and by devising the steel composition, fine graining and MA formation are suppressed and the toughness deteriorates. Although it is intended to be reduced, the production load is high because it requires the addition of an expensive alloy or a special manufacturing method.

一方、特許文献5には入熱量30kJ/cm以下の多パス溶接において3層6パス以下の積層を制御することが提案されている。しかし、これは溶接止端部の形状や残留応力を制御することで疲労特性を向上させることが目的であり、靭性改善とは目的が異なる。 On the other hand, Patent Document 5 proposes to control the lamination of 3 layers and 6 passes or less in multi-pass welding with a heat input amount of 30 kJ / cm or less. However, the purpose of this is to improve the fatigue characteristics by controlling the shape and residual stress of the weld toe, which is different from the toughness improvement.

特開平9−111337号公報Japanese Unexamined Patent Publication No. 9-11137 特開2010−248590号公報JP-A-2010-248590 特開2011−106014号公報Japanese Unexamined Patent Publication No. 2011-106014 特開2012−188749号公報Japanese Unexamined Patent Publication No. 2012-188749 特開2012−200782号公報Japanese Unexamined Patent Publication No. 2012-200782

そこで、本発明は、前記した従来技術とは異なり、新規の多層盛り溶接による継手の製造方法によって溶接熱影響部(HAZ)の靭性を改善することを課題とするものである。 Therefore, an object of the present invention is to improve the toughness of the weld heat-affected zone (HAZ) by a new method for manufacturing a joint by multi-layer welding, which is different from the above-mentioned conventional technique.

本発明者らは、前記課題の解決のために多パス溶接の溶接条件がHAZの靭性に与える影響を調査した。その結果、溶接の入熱量と積層間隔を一定の関係に制御することにより、溶接部の靭性を劣化させる「粗粒域」+「二相域加熱」の領域を排除できることを知見した。これによって、靭性劣化の根源であった「粗粒域」+「二相域加熱」部位がなくなるので高価な合金添加や金属組織を制御するための負荷の高い工程は不要となる。具体的には以下の多層盛り溶接による継手の製造方法を提供するものである。
(1)板厚25mm以上の厚鋼板を用いる多層盛り溶接による継手の製造方法であって、各溶接パスの入熱量と溶接金属の積層間隔が以下の式(1):
0<0.077・H-1.18・d3.26≦1.1 (1)
(式中、Hは入熱量(kJ/mm)であり、dは積層間隔(mm)である)
を満たす溶接を行うことを含むことを特徴とする、多層盛り溶接による継手の製造方法。
(2)板厚25mm以上の厚鋼板を用いる多層盛り溶接による継手の製造方法であって、溶接熱影響部に隣接する溶接部の溶接パスの入熱量と前記溶接部における溶接金属の積層間隔が以下の式(1):
0<0.077・H-1.18・d3.26≦1.1 (1)
(式中、Hは入熱量(kJ/mm)であり、dは積層間隔(mm)である)
を満たす溶接を行うことを含み、他の溶接部の少なくとも一部における溶接パスの入熱量と溶接金属の積層間隔が以下の式(2):
0.077・H-1.18・d3.26>1.1 (2)
(式中、Hは入熱量(kJ/mm)であり、dは積層間隔(mm)である)
を満たすことを特徴とする、多層盛り溶接による継手の製造方法。
In order to solve the above problems, the present inventors investigated the effect of welding conditions of multi-pass welding on the toughness of HAZ. As a result, it was found that by controlling the heat input amount of welding and the lamination interval to a certain relationship, the region of "coarse grain region" + "two-phase region heating" that deteriorates the toughness of the welded portion can be eliminated. This eliminates the "coarse grain region" + "two-phase region heating" region, which was the source of toughness deterioration, and eliminates the need for expensive alloy addition and high-load steps for controlling the metallographic structure. Specifically, the following method for manufacturing a joint by multi-layer welding is provided.
(1) A method for manufacturing a joint by multi-layer welding using a thick steel plate having a plate thickness of 25 mm or more, wherein the heat input amount of each welding pass and the lamination interval of the weld metal are as follows (1):
0 <0.077 ・ H -1.18・ d 3.26 ≦ 1.1 (1)
(In the formula, H is the amount of heat input (kJ / mm), and d is the stacking interval (mm).)
A method for manufacturing a joint by multi-layer welding, which comprises performing welding that satisfies the above conditions.
(2) A method for manufacturing a joint by multi-layer welding using a thick steel plate with a plate thickness of 25 mm or more, in which the amount of heat input in the welding path of the welded portion adjacent to the weld heat affected zone and the lamination interval of the weld metal in the welded portion are The following equation (1):
0 <0.077 ・ H -1.18・ d 3.26 ≦ 1.1 (1)
(In the formula, H is the amount of heat input (kJ / mm), and d is the stacking interval (mm).)
The following equation (2):
0.077 ・ H -1.18・ d 3.26 > 1.1 (2)
(In the formula, H is the amount of heat input (kJ / mm), and d is the stacking interval (mm).)
A method for manufacturing a joint by multi-layer welding, which is characterized by satisfying the above conditions.

本発明によれば、厚手の海洋構造物などの溶接時等、多層盛り溶接によって継手を製造するに際して、多パス溶接を実施する鋼材の溶接方法を工夫し、溶接時の溶接入熱と各パスの積層間隔を制御することにより、靭性の劣化が顕著となる部位を完全に排除することができる。これにより、厚手の海洋構造物などを溶接時に多パス溶接を実施する鋼材のHAZ靭性を大幅に改善し、溶接の生産性を落とすことなく構造物の安全性を高めることができる。また、高強度かつ高靭性などの要求値の過酷な材料の製造も可能となる。さらには、本発明の多層盛り溶接による継手の製造方法は、鋼板自体の組成や金属組織を改良してHAZ靱性を改善しようとするものではないため、先に述べた従来技術とは異なり、鋼板に高価な合金を多量に添加することや、鋼板の金属組織を制御するための負荷の高い工程を何ら必要とすることなしに、厚鋼板のHAZ靭性を顕著に改善することが可能である。 According to the present invention, when manufacturing a joint by multi-layer welding, such as when welding a thick marine structure, a welding method for a steel material for performing multi-pass welding is devised, and welding heat input and each pass during welding are devised. By controlling the stacking interval of the above, it is possible to completely eliminate the portion where the deterioration of the toughness is remarkable. As a result, the HAZ toughness of a steel material that is subjected to multi-pass welding at the time of welding a thick marine structure or the like can be significantly improved, and the safety of the structure can be enhanced without reducing the welding productivity. In addition, it is possible to manufacture harsh materials having high strength and high toughness and other required values. Furthermore, the method for manufacturing a joint by multi-layer welding of the present invention does not attempt to improve the composition or metal structure of the steel sheet itself to improve the HAZ toughness, and therefore, unlike the conventional technique described above, the steel sheet It is possible to significantly improve the HAZ toughness of a thick steel sheet without adding a large amount of expensive alloy to the steel sheet or requiring any high-load process for controlling the metallographic structure of the steel sheet.

本発明の継手の製造方法の1つの実施態様を説明する模式図である。It is a schematic diagram explaining one Embodiment of the manufacturing method of the joint of this invention. 本発明の継手の製造方法の別の実施態様を説明する模式図である。It is a schematic diagram explaining another embodiment of the manufacturing method of the joint of this invention.

本発明の方法においては、板厚25mm以上、例えば50mm以上、100mm以下の任意の組成を有する厚鋼板を他の鋼板等の被溶接部材に溶接する際に用いることができ、特に限定されないが、好ましくは、海洋構造物、建築、橋梁、ペンストックなど高靭性が求められる構造物に供する板厚25mm以上の厚鋼板が使用される。このような厚鋼板としては、例えば、質量%で、C:0.03〜0.15%、Mn:1.0〜2.5%、Si:0.01〜0.5%を含有し、P:0〜0.05%、S:0〜0.05%に制限し、残部がFeおよび不可避的不純物からなり、任意選択でCu:0〜2%、Ni:0〜3%、Cr:0〜0.75%、Mo:0〜0.75%、Nb:0〜0.05%、V:0〜0.1%、B:0〜0.002%、Ti:0〜0.02%、Al:0〜0.05%、N:0〜0.007%、およびO:0〜0.005%のうち1種または2種以上をさらに含有するものが挙げられる。 In the method of the present invention, a thick steel plate having an arbitrary composition having a plate thickness of 25 mm or more, for example, 50 mm or more and 100 mm or less can be used for welding to a member to be welded such as another steel plate, and is not particularly limited. Preferably, a thick steel plate having a thickness of 25 mm or more is used for structures requiring high toughness such as marine structures, buildings, bridges, and penstocks. Such a thick steel plate contains, for example, C: 0.03 to 0.15%, Mn: 1.0 to 2.5%, and Si: 0.01 to 0.5% in mass%. P: 0 to 0.05%, S: 0 to 0.05%, the balance consists of Fe and unavoidable impurities, Cu: 0 to 2%, Ni: 0 to 3%, Cr: 0 to 0.75%, Mo: 0 to 0.75%, Nb: 0 to 0.05%, V: 0 to 0.1%, B: 0 to 0.002%, Ti: 0 to 0.02 %, Al: 0 to 0.05%, N: 0 to 0.007%, and O: 0 to 0.005%, which further contain one or more.

また、溶接の方法としては、被覆アーク溶接、半自動アーク溶接、TIG溶接、MIG溶接、CO2ガスアーク溶接、MAG溶接、FCAW溶接、サブマージアーク溶接(SAW)など入熱量と積層間隔を変化させることのできる溶接方法であれば良い。また、継手としては突合せ継手、十字継手、T字継手、角継手のグルーブ溶接、すみ肉溶接などの多層盛り溶接であるものが対象となる。いずれも多層盛り溶接時の「粗粒域」+「二相域加熱」の領域が顕著な靭性の脆化部となるからである。 In addition, as the welding method, coating arc welding, semi-automatic arc welding, TIG welding, MIG welding, CO 2 gas arc welding, MAG welding, FCAW welding, submerged arc welding (SAW), etc. can be used to change the amount of heat input and the stacking interval. Any welding method that can be used will do. Further, as the joint, those that are multi-layer welding such as butt joints, cross joints, T-shaped joints, groove welding of square joints, and fillet welding are targeted. This is because in each case, the region of "coarse grain region" + "two-phase region heating" at the time of multi-layer welding becomes a remarkably tough embrittlement portion.

また、本発明の多層盛り溶接による継手の製造方法は、溶接熱影響部の靭性を改善することを目的として、全部の溶接パスの入熱量と溶接金属の積層間隔、または少なくとも溶接熱影響部に隣接する溶接部の溶接パスの入熱量と当該溶接部における溶接金属の積層間隔が以下の式(1):
0<0.077・H-1.18・d3.26≦1.1 (1)
(式中、Hは入熱量(kJ/mm)であり、dは積層間隔(mm)である)
を満たす溶接を行うことを含む。好ましくは、上記式(1)は、
0<0.077・H-1.18・d3.26≦0.6である。
Further, in the method of manufacturing a joint by multi-layer welding of the present invention, for the purpose of improving the toughness of the welding heat-affected zone, the heat input amount of all the welding passes and the welding interval of the welding metal, or at least the welding heat-affected zone. The heat input amount of the welding path of the adjacent welded portion and the lamination interval of the welded metal in the welded portion are calculated by the following equation (1):
0 <0.077 ・ H -1.18・ d 3.26 ≦ 1.1 (1)
(In the formula, H is the amount of heat input (kJ / mm), and d is the stacking interval (mm).)
Includes welding that meets the requirements. Preferably, the above formula (1) is
0 <0.077 · H -1.18 · d 3.26 ≤ 0.6.

少なくとも溶接熱影響部に隣接する溶接部の溶接パスの入熱量と当該溶接部における溶接金属の積層間隔が上記式(1)を満たす溶接を行う場合、他の溶接部については任意の適切な入熱量および積層間隔を選択して溶接を実施することが可能である。しかしながら、溶接効率を高めるという観点からは、他の溶接部の少なくとも一部又は全部における溶接パスの入熱量と溶接金属の積層間隔が、以下の式(2):
0.077・H-1.18・d3.26>1.1 (2)
(式中、Hは入熱量(kJ/mm)であり、dは積層間隔(mm)である)
を満たす溶接を行うことが好ましい。溶接熱影響部に隣接する溶接部については、式(1)を満たす溶接を行うことにより溶接熱影響部の靱性を改善するとともに、それ以外の溶接部の少なくとも一部又は全部については、例えば、式(2)に従ってより広い積層間隔で溶接することにより溶接効率を顕著に向上させることが可能となる。なお、式(2)について上限は特に規定しないが、積層間隔dが大きくなりすぎると溶接が困難になることから、一般的には0.077・H-1.18・d3.26≦200とし、上限については例えば100、50、30、20、15又は10とする。
When welding is performed in which at least the amount of heat input from the welding path of the welded portion adjacent to the weld heat affected zone and the lamination interval of the weld metal in the welded portion satisfy the above equation (1), any appropriate input is applied to the other welded portions. Welding can be performed by selecting the amount of heat and the lamination interval. However, from the viewpoint of increasing the welding efficiency, the heat input amount of the welding path and the lamination interval of the weld metal in at least a part or all of the other welded parts are determined by the following equation (2):
0.077 ・ H -1.18・ d 3.26 > 1.1 (2)
(In the formula, H is the amount of heat input (kJ / mm), and d is the stacking interval (mm).)
It is preferable to perform welding that satisfies the above conditions. For the welded portion adjacent to the welded heat-affected zone, the toughness of the welded heat-affected zone is improved by performing welding satisfying the formula (1), and at least a part or all of the other welded portions are, for example, for example. Welding efficiency can be remarkably improved by welding at a wider stacking interval according to the formula (2). Although the upper limit is not specified for equation (2), welding becomes difficult if the stacking interval d becomes too large. Therefore, in general, 0.077 · H -1.18 · d 3.26 ≤ 200 is set and the upper limit is set. Is, for example, 100, 50, 30, 20, 15 or 10.

図面を参照してより詳しく説明すると、本発明の多層盛り溶接による継手の製造方法の1つの実施態様では、図1に示すように、一対の厚鋼板の端部同士を突き合わせて多層盛り溶接によって継手を製造する場合に、第1の厚鋼板1Aの端面である第1の開先面1Aaと、第2の厚鋼板1Bの端部に設けられた、第1の開先面1Aaに対して一定の角度で傾斜している第2の開先面1Baとで形成されたレ形の開先部2において多層盛り溶接を実施する。その際、多層盛り溶接は、溶接熱影響部3に隣接する溶接部(溶接線4に沿った部位)だけでなく、他の全ての溶接パスにおいても入熱量と溶接金属5の積層間隔が上記式(1)を満たして実施される。このような継手の製造方法によれば、溶接金属5の積層間隔が比較的小さくかつ均一であり、溶接パスの数も比較的多いことから、溶接熱影響部2の靭性を改善できるだけでなく、非常に安全性の高い溶接による継手の製造を実現することができる。 More specifically with reference to the drawings, in one embodiment of the method for manufacturing a joint by multi-layer welding of the present invention, as shown in FIG. 1, the ends of a pair of thick steel plates are butted against each other by multi-layer welding. When manufacturing a joint, with respect to the first groove surface 1Aa which is the end surface of the first thick steel plate 1A and the first groove surface 1Aa provided at the end of the second thick steel plate 1B. Multi-layer welding is performed on the re-shaped groove portion 2 formed by the second groove surface 1Ba that is inclined at a constant angle. At that time, in the multi-layer welding, the heat input amount and the lamination interval of the weld metal 5 are the same not only in the welded portion (the portion along the weld line 4) adjacent to the weld heat affected zone 3 but also in all other welding paths. It is carried out by satisfying the formula (1). According to such a joint manufacturing method, the welding metal 5 stacking intervals are relatively small and uniform, and the number of welding passes is relatively large. Therefore, not only can the toughness of the welding heat-affected zone 2 be improved, but also the toughness of the welding heat-affected zone 2 can be improved. It is possible to realize the production of joints by welding with extremely high safety.

図2は、本発明の多層盛り溶接による継手の製造方法の別の実施態様を説明する模式図である。なお、一対の厚鋼板や開先部の各構成については基本的に図1と同じであるため、同様の符号を付して説明は省略する。 FIG. 2 is a schematic view illustrating another embodiment of the method for manufacturing a joint by multi-layer welding of the present invention. Since each configuration of the pair of thick steel plates and the groove portion is basically the same as that in FIG. 1, the same reference numerals are given and the description thereof will be omitted.

図2を参照すると、一対の厚鋼板1Aa,1Baの端部同士を突き合わせて開先部2において多層盛り溶接を実施することにより継手を製造する場合に、溶接熱影響部3に隣接する(つまり第1の厚鋼板1Aの開先面1Aa、第2の厚鋼板1Bの開先面1Baにそれぞれ接する)溶接部6については、図1の場合と同様の溶接を実施することで溶接熱影響部3の靱性を改善する。一方で、それ以外の溶接部7(つまり第1の厚鋼板1Aの開先面1Aa、第2の厚鋼板1Bの開先面1Baに接しない溶接部)においてはより広い積層間隔にて溶接し、溶接パスの数を少なくすることで溶接効率を向上させていることがわかる。 With reference to FIG. 2, when a joint is manufactured by abutting the ends of a pair of thick steel plates 1Aa and 1Ba and performing multi-layer welding at the groove portion 2, the joint is adjacent to the welding heat-affected zone 3 (that is,). The welded portion 6 (which is in contact with the groove surface 1Aa of the first thick steel plate 1A and the groove surface 1Ba of the second thick steel plate 1B, respectively) is welded in the same manner as in FIG. Improve the toughness of 3. On the other hand, the other welded portions 7 (that is, the welded portions that do not contact the groove surface 1Aa of the first thick steel plate 1A and the groove surface 1Ba of the second thick steel plate 1B) are welded at a wider laminating interval. , It can be seen that the welding efficiency is improved by reducing the number of welding passes.

ここで、本発明者らが多層盛り溶接時の最脆化部位の発生状況を調べたところ、最脆化部位の発生は、最終2パスが「粗粒または亜粗粒(温度域にして1150℃〜1550℃)」、次いで「α+γ二相域(特に700〜740℃の温度域)」となる場合であることが判った。また、多層盛りのHAZ温度履歴計算の結果、そのような部位は溶接入熱と各パスの積層間隔の条件によってHAZ中に存在し無くなることを知見した。これは、積層間隔を小さくすると先行パスと次パスの熱影響領域のオーバーラップが大きくなり、先行パスの「粗粒部」や「亜粗粒部」は後続パスの「細粒域」に変わっていくからである。また、同様に先行パスの「二相域加熱」部位は次パスで「テンパー域」に替えられていく。「テンパー域」は「二相域(約700℃)」以下かつ500℃以上の温度域であって、この温度域に加熱されると脆化相であるMAが分解されて靭性が顕著に改善される。また、溶接金属の積層間隔を小さくすることに加えて、溶接パスの入熱量を大きくすると、1パスの熱影響範囲が拡大することに伴って先行パスで生じた「粗粒部」や「亜粗粒部」、さらには「二相域加熱」部位が減少することを見出した。 Here, when the present inventors investigated the state of occurrence of the most embrittled portion during multi-layer welding, the final two passes of the occurrence of the most embrittled portion were "coarse grain or sub-coarse grain (1150 in the temperature range)". It was found that the case was "° C to 1550 ° C.)" followed by "α + γ two-phase region (particularly the temperature range of 700 to 740 ° C.)". In addition, as a result of the HAZ temperature history calculation of the multi-layered pile, it was found that such a portion does not exist in the HAZ depending on the conditions of the welding heat input and the stacking interval of each pass. This is because when the stacking interval is reduced, the overlap between the heat-affected areas of the preceding pass and the next pass becomes large, and the "coarse grain part" and "sub-coarse grain part" of the preceding pass change to the "fine grain area" of the succeeding pass. Because it goes on. Similarly, the "two-phase region heating" portion of the preceding pass is replaced with the "temper region" in the next pass. The "temper region" is a temperature region of "two-phase region (about 700 ° C.)" or less and 500 ° C. or higher, and when heated in this temperature region, MA, which is an embrittlement phase, is decomposed and toughness is significantly improved. Will be done. Further, in addition to reducing the lamination interval of the weld metal, if the heat input amount of the welding pass is increased, the "coarse grain portion" and "subgrain" generated in the preceding pass are expanded as the heat influence range of one pass is expanded. It was found that the "coarse grain part" and the "two-phase region heating" part were reduced.

このようにして見出された各パスの入熱量と積層間隔の満たすべき条件は、以下のとおりである。
0<0.077・H-1.18・d3.26≦1.1 (1)
(式中、Hは入熱量(kJ/mm)であり、dは積層間隔(mm)である)
好ましくは、上記式(1)は0<0.077・H-1.18・d3.26≦0.6である。
ここで、「0.077・H-1.18・d3.26」は溶接線1mmあたりに生成する「粗粒部」と「亜粗粒部」のうち「二相域加熱」を受けた脆化が顕著な部位の面積を表している。この値が1.1以下では、脆化部の面積が大変少なく、靭性は大きく改善する。また、0.6以下では脆化部はほとんど0であり、靭性への影響がほぼ無いレベルとなると予想される。以上のような理由から、上限を1.1以下、好ましくは0.6以下とした。一方、これらの値以下であれば本発明の効果は十分に得られることから、下限を0超とした。
The conditions to be satisfied for the heat input amount and the stacking interval of each pass found in this way are as follows.
0 <0.077 ・ H -1.18・ d 3.26 ≦ 1.1 (1)
(In the formula, H is the amount of heat input (kJ / mm), and d is the stacking interval (mm).)
Preferably, the above formula (1) is 0 <0.077 · H −1.18 · d 3.26 ≦ 0.6.
Here, "0.077 · H -1.18 · d 3.26 " is markedly embrittled by "two-phase region heating" among the "coarse grain part" and the "sub-coarse grain part" generated per 1 mm of the weld line. It represents the area of various parts. When this value is 1.1 or less, the area of the embrittled portion is very small and the toughness is greatly improved. Further, below 0.6, the embrittled portion is almost 0, and it is expected that the level will have almost no effect on toughness. For the above reasons, the upper limit is set to 1.1 or less, preferably 0.6 or less. On the other hand, if it is less than these values, the effect of the present invention can be sufficiently obtained, so the lower limit is set to more than 0.

なお、各パスの入熱量は、上記式(1)を満たす範囲において適切に選択すればよく、特に限定されないが、多層盛り溶接による継手の製造の際に一般的に適用される溶接方法での入熱量が最大400kJ/mmであるのでこれを上限とし、好ましくは5〜400kJ/mm、より好ましくは10〜400kJ/mm、最も好ましくは20〜400kJ/mmである。ここで、一般的な溶接部の品質は入熱量が大きいほど靱性が低下するという問題がある。したがって、本発明のように、10kJ/mmまたはそれ以上の比較的高い入熱量によっても、積層間隔との関係で上記式(1)を満たすことにより、溶接熱影響部の靱性を改善できるということは、極めて意外であり、また驚くべきことである。また、積層間隔についても同様に、上記式(1)を満たす範囲において適切に選択すればよく、特に限定されないが、一般的には1.0〜10mmであり、溶接の生産性の観点から、好ましくは3.0〜10mm、より好ましくは5.0〜10mmである。なお、本発明において「積層間隔」とは、溶接線(FL)に沿った溶接金属の積層数を溶接線(FL)の距離で除したもの、すなわち「FLに沿った溶接金属の積層数/FLの距離」を言うものであり、したがって板厚方向に沿ったFLの場合には「板厚方向の溶接金属の積層数/板厚」となる。 The amount of heat input to each pass may be appropriately selected within the range satisfying the above formula (1), and is not particularly limited, but is a welding method generally applied when manufacturing a joint by multi-layer welding. Since the maximum amount of heat input is 400 kJ / mm, this is the upper limit, preferably 5 to 400 kJ / mm, more preferably 10 to 400 kJ / mm, and most preferably 20 to 400 kJ / mm. Here, the quality of a general welded portion has a problem that the toughness decreases as the amount of heat input increases. Therefore, as in the present invention, the toughness of the weld heat-affected zone can be improved by satisfying the above formula (1) in relation to the stacking interval even with a relatively high heat input amount of 10 kJ / mm or more. Is extremely surprising and surprising. Similarly, the lamination interval may be appropriately selected within the range satisfying the above formula (1), and is not particularly limited, but is generally 1.0 to 10 mm, and from the viewpoint of welding productivity, it is generally 1.0 to 10 mm. It is preferably 3.0 to 10 mm, more preferably 5.0 to 10 mm. In the present invention, the "lamination interval" is the number of weld metals laminated along the welding line (FL) divided by the distance of the welding line (FL), that is, "the number of weld metals laminated along the FL / It refers to the "distance of FL", and therefore, in the case of FL along the plate thickness direction, it is "the number of laminated weld metals in the plate thickness direction / plate thickness".

次に、入熱量と積層間隔の制御方法について述べる。まず、入熱量H(kJ/mm)は以下の式によって表わされる。
H=(E・I)/1000V (3)
ここで、E:電圧(V)、I:電流(A)、V:溶接速度(mm/s)である。従って、入熱量を制御するには溶接に用いられる電圧、電流または溶接速度を適切に設定すれば良い。次に、積層間隔は溶接による溶着量(g/min)を制御することにより実施できる。ここで溶着量とは単位時間に溶融・凝固する溶接材料の質量であり、これが大きいと溶接ビードの嵩が大きくなり積層間隔が大きくなる。そして、溶着量の大小は主に電流、溶接ワイヤー直径、溶接ワイヤーの突き出し量によって決まることが知られている(藤田哲也、服部和徳、中込忠男、加賀美安男、小林光博、三村麻里:「突合せ継手における溶接金属部の強度評価の検証(その7 計画パス数と施工パス数)」、日本建築学会大会学術講演梗概集(東北)、(2009年8月)、p.683)。ここで、ワイヤーの突き出し量とはトーチ終端から溶接ワイヤー終端までの長さのことで、鋼板からトーチ終端までの所謂「トーチ高さ」を調整することで制御することができる((社)日本溶接協会ホームページJWES接合・溶接技術Q&A1000、No.Q07−02−03(2004))。溶接ワイヤーの突き出し量が多いと、その分電気抵抗が増加しジュール発熱が増加するので溶接ワイヤーの溶融量すなわち溶着量が増加することになる。その他にも溶接の電流、電圧、ワイヤー直径などを制御する方法も採用可能である。
Next, a method of controlling the amount of heat input and the stacking interval will be described. First, the amount of heat input H (kJ / mm) is expressed by the following formula.
H = (EI) / 1000V (3)
Here, E: voltage (V), I: current (A), V: welding speed (mm / s). Therefore, in order to control the amount of heat input, the voltage, current or welding speed used for welding may be appropriately set. Next, the lamination interval can be implemented by controlling the welding amount (g / min) by welding. Here, the welding amount is the mass of the welding material that melts and solidifies in a unit time, and if this is large, the bulk of the welding bead becomes large and the lamination interval becomes large. It is known that the amount of welding is mainly determined by the current, the diameter of the welding wire, and the amount of protrusion of the welding wire (Tetsuya Fujita, Kazunori Hattori, Tadao Nakagome, Miyasuo Kagami, Mitsuhiro Kobayashi, Mari Mimura: "Matching" Verification of Strength Evaluation of Welded Metal Parts in Joints (Part 7 Number of Planned Passes and Number of Construction Passes) ”, Abstracts of Academic Lectures of the Japan Society for Architecture (Tohoku), (August 2009), p.683). Here, the amount of wire protrusion is the length from the end of the torch to the end of the welded wire, and can be controlled by adjusting the so-called "torch height" from the steel plate to the end of the torch. Welding Engineering Society Homepage JWES Joining / Welding Technology Q & A1000, No.Q07-02-03 (2004)). If the amount of protrusion of the welding wire is large, the electric resistance increases and the Joule heat generation increases accordingly, so that the amount of melting, that is, the amount of welding of the welding wire increases. In addition, a method of controlling the welding current, voltage, wire diameter, etc. can be adopted.

以下、本発明の実施例を説明する。表1には、本実施例において使用した降伏強度(YS)420N/mm2および500N/mm2級の海洋構造物用厚鋼板(板厚50mmまたは75mm)の化学成分および製造条件を示す。ここで、表1中の製造方法を表す記号は、以下の熱処理方法を意味する。
ACC:加速冷却(制御圧延後に400〜600℃の温度域まで水冷後放冷)
ACC+T:加速冷却後に400〜600℃の温度域で焼き戻しを実施する。
DQ+T:圧延後に室温〜400℃の温度に直接焼入を行った後、400〜600℃の温度域で焼き戻しを実施する。
RQ+T:熱処理炉にてオーステナイト温度域に加熱後、室温に焼入を行った後、400〜600℃の温度域で焼き戻しを実施する。
Hereinafter, examples of the present invention will be described. Table 1 shows the chemical composition and production conditions of the yield strength (YS) 420 N / mm 2 and 500 N / mm class 2 thick steel sheets for offshore structures (plate thickness 50 mm or 75 mm) used in this example. Here, the symbols representing the manufacturing methods in Table 1 mean the following heat treatment methods.
ACC: Accelerated cooling (water cooling to a temperature range of 400 to 600 ° C after controlled rolling and then cooling)
ACC + T: Tempering is performed in a temperature range of 400 to 600 ° C. after accelerated cooling.
DQ + T: After rolling, quenching is performed directly at a temperature of room temperature to 400 ° C., and then tempering is performed in a temperature range of 400 to 600 ° C.
RQ + T: After heating to the austenite temperature range in a heat treatment furnace, quenching is performed at room temperature, and then tempering is performed in the temperature range of 400 to 600 ° C.

Figure 0006950294
Figure 0006950294

Figure 0006950294
Figure 0006950294

また、表2には、得られた厚鋼板を用いた多層盛り溶接による継手の製造を実施した際の溶接条件と溶接部の特性を示す。溶接には一般的に試験溶接として用いられている潜弧溶接(SAW)法を用い、溶接溶け込み線(FL)が垂直になるようにレ開先で溶接の入熱量を3.9〜30.0kJ/mmの範囲で変化させて溶接を実施した。なお、表2では、「HAZに隣接する溶接部」と「他の溶接部」とで溶接条件を変更した場合のみ、「他の溶接部」において「溶接入熱量(kJ/mm2)」、「積層間隔(mm)」および「0.077・H-1.18・d3.26」を記載している。また、溶接部の靭性の評価はシャルピー試験とCTOD(亀裂先端開口変位:Crack Tip Opening Displacement)試験で行った。シャルピー試験は2mmVノッチ試験片でノッチ位置FL(WM(溶接金属)とHAZの境界)およびIC(HAZとBM(母材)の境界)の2箇所として、−60℃の吸収エネルギー(vE−60℃(J))を測定した。なお、両方の吸収エネルギー値が100J以上の場合を合格とした。 In addition, Table 2 shows the welding conditions and the characteristics of the welded portion when the joint is manufactured by multi-layer welding using the obtained thick steel plate. Submerged arc welding (SAW), which is generally used as test welding, is used for welding, and the amount of heat input to the weld is 3.9 to 30 at the groove so that the weld penetration line (FL) is vertical. Welding was carried out with changes in the range of 0 kJ / mm. In Table 2, only when the welding conditions are changed between the "welded portion adjacent to the HAZ" and the "other welded portion", the "welded heat input amount (kJ / mm 2 )" in the "other welded portion", “Laminating interval (mm)” and “0.077 ・ H -1.18・ d 3.26 ” are described. The toughness of the weld was evaluated by the Charpy test and the CTOD (Crack Tip Opening Displacement) test. The Charpy test is a 2 mm V notch test piece with absorbed energy (vE-60) at -60 ° C at two locations, the notch position FL (boundary between WM (welded metal) and HAZ) and IC (boundary between HAZ and BM (base material)). ° C. (J)) was measured. The case where both absorbed energy values were 100 J or more was regarded as acceptable.

また、CTOD試験はt(板厚)×2tのサイズでノッチは50%疲労亀裂で実施し、ノッチ位置をFL(WMとHAZの境界)およびIC(HAZとBMの境界)の2箇所として−60℃でそれぞれ5本の試験を実施した。ここでδaveは亀裂開口変位(δ)の5本の試験結果の平均値を示し、δminは5本の試験のうちの最低値を示す。なお、これらの全ての値が0.3mm以上の場合を合格とした。 In addition, the CTOD test was carried out with a size of t (plate thickness) x 2t and the notch was 50% fatigue crack, and the notch positions were set to FL (boundary between WM and HAZ) and IC (boundary between HAZ and BM). Five tests were performed at 60 ° C. each. Here, δ ave indicates the average value of the five test results of the crack opening displacement (δ), and δ min indicates the lowest value among the five tests. In addition, the case where all these values were 0.3 mm or more was regarded as a pass.

表2で、No.1〜18が本発明によるものであり、No.19〜26が比較例である。ここで、実施例1〜18の場合は、溶接熱影響部の−60℃の吸収エネルギーが238J以上、CTOD値がFLノッチの場合のδminで0.70mm以上、ICノッチの場合のδminで0.84mm以上の良好な破壊靭性を示した。さらに、HAZに隣接する溶接部では上記式(1)を満たし、他の溶接部では上記式(2)を満たす溶接を行った実施例4および8では、同様に溶接熱影響部の良好な靱性を示すとともに、それぞれ対応する実施例3および7(全ての溶接部で実施例4および8のHAZに隣接する溶接部と同じ条件で溶接したもの)と比較して、合計の溶接パス数を大きく低減することができた。具体的には、実施例4では、実施例3の63から46へ約27%低減することができ、同様に実施例8では実施例7の95から59へ約38%低減することができ、それゆえ溶接効率を顕著に向上させることができた。 In Table 2, No. Nos. 1 to 18 are based on the present invention. 19 to 26 are comparative examples. Here, in the case of Examples 1 to 18, the absorbed energy at −60 ° C. of the welding heat affected zone is 238 J or more, the δ min when the CTOD value is FL notch is 0.70 mm or more, and δ min when the IC notch is used. Showed good fracture toughness of 0.84 mm or more. Further, in Examples 4 and 8 in which the welded portion adjacent to the HAZ satisfies the above formula (1) and the other welded portions satisfy the above formula (2), the weld heat-affected zone also has good toughness. The total number of welding passes is increased as compared with the corresponding examples 3 and 7 (all welds were welded under the same conditions as the welds adjacent to the HAZ of Examples 4 and 8). I was able to reduce it. Specifically, in Example 4, it can be reduced by about 27% from 63 to 46 in Example 3, and similarly, in Example 8, it can be reduced by about 38% from 95 to 59 in Example 7. Therefore, the welding efficiency could be remarkably improved.

一方、比較例は、何れも上記式(1):0<0.077・H-1.18・d3.26≦1.1を満たさないために二相域加熱によって生じたMAによる脆化が顕著であった。また、いずれもFLノッチの場合のシャルピー−60℃の吸収エネルギー値は100J未満であり、CTODの亀裂開口変位の平均値および最低値も非常に低く、特にFL部ではいずれも0.10mm未満の値であり、顕著な脆化が認められた。これらの比較によれば、本発明は靭性の改善に顕著な効果があることが判る。 On the other hand, in the comparative examples, the embrittlement due to MA caused by the two-phase region heating was remarkable because the above formula (1): 0 <0.077 · H -1.18 · d 3.26 ≤ 1.1 was not satisfied. rice field. In addition, the absorbed energy value at Charpy-60 ° C. in the case of the FL notch is less than 100 J, and the average value and the minimum value of the crack opening displacement of the CTOD are also very low, especially in the FL portion, both are less than 0.10 mm. It was a value, and remarkable embrittlement was observed. From these comparisons, it can be seen that the present invention has a remarkable effect on improving toughness.

1A、1B 厚鋼板
1Aa、1Ba 開先面
2 開先部
3 溶接熱影響部
4 溶接線
5 溶接金属
6、7 溶接部
1A, 1B thick steel plate 1Aa, 1Ba Groove surface 2 Groove part 3 Welding heat affected zone 4 Welding line 5 Welded metal 6, 7 Welding part

Claims (3)

板厚25mm以上の厚鋼板を用いる多層盛り溶接による継手の製造方法であって、各溶接パスの入熱量と溶接金属の積層間隔が以下の式(1):
0<0.077・H-1.18・d3.26≦1.1 (1)
(式中、Hは入熱量(kJ/mm)であり、dは積層間隔(mm)である)
を満たす溶接を行うことを含むことを特徴とする、多層盛り溶接による継手の製造方法(ただし、ガスシールドアーク溶接により下盛り溶接した後、サブマージアーク溶接により上盛り溶接する方法を除く)
It is a method of manufacturing a joint by multi-layer welding using a thick steel plate with a plate thickness of 25 mm or more, and the heat input amount of each welding pass and the lamination interval of the weld metal are as follows formula (1):
0 <0.077 ・ H -1.18・ d 3.26 ≦ 1.1 (1)
(In the formula, H is the amount of heat input (kJ / mm), and d is the stacking interval (mm).)
A method of manufacturing a joint by multi-layer welding, which comprises performing welding that satisfies the above conditions (excluding a method of performing bottom welding by gas shielded arc welding and then top welding by submerged arc welding) .
板厚25mm以上の厚鋼板を用いる多層盛り溶接による継手の製造方法であって、各溶接パスの入熱量と溶接金属の積層間隔が以下の式(1):It is a method of manufacturing a joint by multi-layer welding using a thick steel plate with a plate thickness of 25 mm or more, and the heat input amount of each welding pass and the lamination interval of the weld metal are as follows formula (1):
0.15≦0.077・H0.15 ≤ 0.077 · H -1.18-1.18 ・d・ D 3.263.26 ≦1.1 (1)≤1.1 (1)
(式中、Hは入熱量(kJ/mm)であり、dは積層間隔(mm)である)(In the formula, H is the amount of heat input (kJ / mm), and d is the stacking interval (mm).)
を満たす溶接を行うことを含むことを特徴とする、多層盛り溶接による継手の製造方法。A method for manufacturing a joint by multi-layer welding, which comprises performing welding that satisfies the above conditions.
板厚25mm以上の厚鋼板を用いる多層盛り溶接による継手の製造方法であって、溶接熱影響部に隣接する溶接部の溶接パスの入熱量と前記溶接部における溶接金属の積層間隔が以下の式(1):
0<0.077・H-1.18・d3.26≦1.1 (1)
(式中、Hは入熱量(kJ/mm)であり、dは積層間隔(mm)である)
を満たす溶接を行うことを含み、他の溶接部の少なくとも一部における溶接パスの入熱量と溶接金属の積層間隔が以下の式(2):
0.077・H-1.18・d3.26>1.1 (2)
(式中、Hは入熱量(kJ/mm)であり、dは積層間隔(mm)である)
を満たすことを特徴とする、多層盛り溶接による継手の製造方法。
It is a method of manufacturing a joint by multi-layer welding using a thick steel plate with a plate thickness of 25 mm or more. (1):
0 <0.077 ・ H -1.18・ d 3.26 ≦ 1.1 (1)
(In the formula, H is the amount of heat input (kJ / mm), and d is the stacking interval (mm).)
The following equation (2):
0.077 ・ H -1.18・ d 3.26 > 1.1 (2)
(In the formula, H is the amount of heat input (kJ / mm), and d is the stacking interval (mm).)
A method for manufacturing a joint by multi-layer welding, which is characterized by satisfying the above conditions.
JP2017121259A 2017-06-21 2017-06-21 Manufacturing method of joints by multi-layer welding Active JP6950294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017121259A JP6950294B2 (en) 2017-06-21 2017-06-21 Manufacturing method of joints by multi-layer welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017121259A JP6950294B2 (en) 2017-06-21 2017-06-21 Manufacturing method of joints by multi-layer welding

Publications (2)

Publication Number Publication Date
JP2019005770A JP2019005770A (en) 2019-01-17
JP6950294B2 true JP6950294B2 (en) 2021-10-13

Family

ID=65026401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121259A Active JP6950294B2 (en) 2017-06-21 2017-06-21 Manufacturing method of joints by multi-layer welding

Country Status (1)

Country Link
JP (1) JP6950294B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137880U (en) * 1980-03-14 1981-10-19
JP4469226B2 (en) * 2004-06-15 2010-05-26 新日本製鐵株式会社 Solid wire for gas shielded arc welding for underlay welding.
JP2012188749A (en) * 2011-02-23 2012-10-04 Jfe Steel Corp Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint

Also Published As

Publication number Publication date
JP2019005770A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
EP0867520B1 (en) Welded high-strength steel structures and methods of manufacturing the same
EP2130937B1 (en) High-strength welded steel pipe and process for manufacturing it
WO2013051249A1 (en) Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
JP2008161932A (en) Wire, flux and process of welding steel cotaining nickel in high content
JP2000199036A (en) Superhigh strength linepipe excellent in low temperature toughness and its production
WO2012108517A1 (en) Weld metal with excellent creep characteristics
JP4760299B2 (en) Welded joint and manufacturing method thereof
JP2005144552A (en) High heat input butt-welded joint excellent in resistance to brittle fracture generation
JP5000476B2 (en) Fillet welded joints with excellent fatigue crack initiation characteristics
US8623154B2 (en) Electron-beam welded joint, steel for electron-beam welding, and manufacturing method
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JPH0825041B2 (en) Clad steel pipe manufacturing method
JP4319886B2 (en) Large heat input butt weld joint with brittle fracture resistance
JP4469226B2 (en) Solid wire for gas shielded arc welding for underlay welding.
JP6950294B2 (en) Manufacturing method of joints by multi-layer welding
JP6782580B2 (en) Arc spot welding method
EP2644732B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP7423395B2 (en) Manufacturing method of austenitic stainless steel welded joints
JP2002224835A (en) Method of welding high toughness high tension steel having excellent weld heat influence zone toughness
EP2644733B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP2004269905A (en) H-section steel for multilayer welding in high interpass temperature having high toughness in fillet part, and manufacturing method therefor
EP2644731B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP2004011008A (en) Steel member and structure excellent in weld zone toughness
TWI846149B (en) Manufacturing method of laser-arc hybrid welding joint
JP2005288504A (en) Welded joint excellent in fatigue strength and its welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R151 Written notification of patent or utility model registration

Ref document number: 6950294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151