JPS60129418A - Thrust bearing device - Google Patents

Thrust bearing device

Info

Publication number
JPS60129418A
JPS60129418A JP58236256A JP23625683A JPS60129418A JP S60129418 A JPS60129418 A JP S60129418A JP 58236256 A JP58236256 A JP 58236256A JP 23625683 A JP23625683 A JP 23625683A JP S60129418 A JPS60129418 A JP S60129418A
Authority
JP
Japan
Prior art keywords
bearing
shoe
oil film
bearing shoe
runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58236256A
Other languages
Japanese (ja)
Inventor
Isao Ishida
功 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58236256A priority Critical patent/JPS60129418A/en
Publication of JPS60129418A publication Critical patent/JPS60129418A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/06Sliding-contact bearings for exclusively rotary movement for axial load only with tiltably-supported segments, e.g. Michell bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To enhance the capability of oil-film creation, in a water turbine generator, etc., by supporting bearing shoes with their radial inclinations being reduced, so that an oil film created on the side surface of each shoe is uniform and increased. CONSTITUTION:The support point P of each bearing shoe 4, that is, the rotating center of a support member 10, is set between the inner and outer diameter R1, R2 sections of the bearing shoe 4 so that it comes to a point on the outer diameter side, B1>B2, but on the inner diameter side of the geometrical center thereof. Thus, the ratio of radial support point position BS/B which is the ratio of the diameter BS which is a difference between the diameter RS at the support point P of the bearing shoe 4 and the diameter of the inner diameter R1, and the radial length B of the bearing shoe 4, is set at a value such that the maximum thickness of an oil film between the bearing shoe 4 and a runner 3 is made large, but the highest temperature of the oil film is made low. With this arrangement, the bearing shoe 4 is supported being reduced in its radial inclination, the thickness of an oil film created on the slide surface with respect to the runner 3 is made uniform and increased, ranging from the inner diameter side M to the outer diameter side N, thereby the performance of the bearing is made satisfactory.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は推力軸受装置に係り、特に回転軸の周囲に同心
円状に配置された分割形の扇形状の軸受シューを支持体
で揺動自在に支持している推力軸受装置に関するもので
ある。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a thrust bearing device, and in particular to a thrust bearing device in which split fan-shaped bearing shoes arranged concentrically around a rotating shaft are swingably supported by a support. This relates to a supporting thrust bearing device.

〔発明の背景〕[Background of the invention]

第1図および第2図には水車発電機等に使用される推力
軸受装置の従来例が示されている。同図に示されている
。同図に示されているように推力軸受装置は回転軸1に
カラー2を介して固着され。
1 and 2 show conventional examples of thrust bearing devices used in water turbine generators and the like. It is shown in the same figure. As shown in the figure, the thrust bearing device is fixed to a rotating shaft 1 via a collar 2.

かつ回転軸1と共に回動するランナー3.このランナー
3に摺動接触し、かつ回転軸1の周囲に同心円状に配置
される複数の扇形状の軸受シュー4゜この軸受シ子−4
を支持し、かつ油冷却器5を有する軸受油槽6の底部の
床7にボルト等で固着された支持体8等より構成される
。この支持体8は上方に所定間隔を介して突出した2個
のピボット9a、gbおよび下方に突出した円筒状また
は球面状の支持部材10を有する板ばね11より構成さ
れ、板ばね11は隣接する軸受シュー4a、4bに跨っ
て配置されている。そして軸受シュー4は、支持体8の
支持部材10を支点として板ばね11およびビポッ)9
a、9bを介してあらゆる方向へ傾きが可能なように、
揺動自在に支持されている。
and a runner 3 that rotates together with the rotating shaft 1. A plurality of fan-shaped bearing shoes 4° that are in sliding contact with this runner 3 and arranged concentrically around the rotating shaft 1.
The bearing oil tank 6 supports a bearing oil tank 6 and has an oil cooler 5. This support body 8 is composed of a leaf spring 11 having two pivots 9a and gb that project upward at a predetermined distance and a cylindrical or spherical support member 10 that projects downward. It is arranged astride the bearing shoes 4a and 4b. The bearing shoe 4 is connected to the leaf spring 11 and the bipot 9 with the support member 10 of the support body 8 as a fulcrum.
so that it can tilt in any direction via a, 9b,
It is supported so that it can swing freely.

このように構成された推力軸受装置下軸受シュー4の支
持点の位置は軸受性能に大きく影響するので・円周方向
については一方向にだけ回転する所謂両方向回転機では
、軸受シュー4の円周方向中心より若干回転方向にずら
した所謂偏心支持方式が通常使用され、ランナー3が僅
かに回転しても速やかに軸受シュー4が傾き、楔状の油
膜を軸受シュー4とランナー3との間に形成して安定し
た油膜を形成するようにしである。そして両方向に回転
する揚水発電所用の発電電動機などの所謂両方向回転機
では、一般に軸受シュー4の円周方向の中心で支持して
いるが・当然のことながら油膜の形成能力が低下するの
で・電機の始動時あるいは停止時には軸受シュー4の摺
動面に強制的に高圧油を供給して油膜を生成し・摺動面
の金属接触による損傷を轡然に防止するようにしである
The position of the support point of the lower bearing shoe 4 of the thrust bearing device configured in this way greatly affects bearing performance. A so-called eccentric support system in which the runner 3 is slightly shifted in the direction of rotation from the center of rotation is normally used, and even if the runner 3 rotates slightly, the bearing shoe 4 immediately tilts, forming a wedge-shaped oil film between the bearing shoe 4 and the runner 3. to form a stable oil film. In so-called bidirectional rotating machines such as generator motors for pumped storage power plants that rotate in both directions, they are generally supported at the circumferential center of the bearing shoe 4, but this naturally reduces the ability to form an oil film. When the bearing shoe 4 is started or stopped, high-pressure oil is forcibly supplied to the sliding surface of the bearing shoe 4 to form an oil film to prevent damage caused by metal contact on the sliding surface.

これに対し軸受シュー4の半径方向の支持点については
従来、一方向回転機および両方向回転機共に第3図に示
されているように、軸受シュー4の半径方向の中心位置
(この場合に軸受シュー4の内径Mまでの内半径knl
−外径Nまでの外半几璽+R2 径をR2とすると、−9−一が中心位置となる)を支持
点(支点)Pとして支持していたが・これでは軸受シ:
x−−4が外径側に傾きすぎて図中点線表示の油膜圧力
分布曲線にのように・軸受シュー4の内径M側の油膜は
薄くなり・油膜圧力は内径M側が高くなっている。これ
に対して支授点Pを第4図に示されているように軸受シ
ュー4の外径 ′N側に極端にずらすと、上述のM3図
の場合とは逆に軸受シュー4の外径N側の油膜が極端に
薄くなり、油膜圧力は外径N側が高くなる。
On the other hand, regarding the radial support point of the bearing shoe 4, conventionally the radial center position of the bearing shoe 4 (in this case the bearing Inner radius knl to inner diameter M of shoe 4
- Outer half ring up to outer diameter N + R2 If the diameter is R2, -9-1 is the center position) was supported as the support point (fulcrum) P. In this case, the bearing is:
x-4 is tilted too much toward the outer diameter side, as shown in the oil film pressure distribution curve indicated by the dotted line in the figure.The oil film on the inner diameter M side of the bearing shoe 4 becomes thinner.The oil film pressure is higher on the inner diameter M side. On the other hand, if the supporting point P is extremely shifted toward the outer diameter 'N side of the bearing shoe 4 as shown in Fig. 4, the outer diameter of the bearing shoe 4 will be The oil film on the N side becomes extremely thin, and the oil film pressure becomes higher on the outer diameter N side.

このうち上述の第3図の場合について軸受シュー4の寸
法記号すなわち支持点P、角度θ、内半径R1−外半径
R2−支持点Pの平径R@b内径側の面積8t ・外径
側の面積Sz−径方向長さBおよび内径側から支持点P
までの長さB[等が示されている第5図を参照にして説
明すると次のようになる。支持点Pまでの半径Rih内
径内径面積Sm 、外径側の面積Stおよび内、後側の
面積S。
For the case shown in Fig. 3 above, the dimension symbol of the bearing shoe 4 is the support point P, the angle θ, the inner radius R1 - the outer radius R2 - the flat diameter of the support point P R@b, the area on the inner diameter side 8t - the outer diameter side area Sz - radial length B and support point P from the inner diameter side
The explanation will be as follows with reference to FIG. 5, which shows the length B[, etc. The radius Rih to the support point P, the inner diameter area Sm, the area St on the outer diameter side, and the area S on the inner and rear sides.

と外径側の面積S2との比は夫々 Rg ” 2 (R1+R2) ・・・・・・・・−7
−!(,1)゛・・・・・・ (4) となるが、−例として300 MVA級水車発電機を例
にとって(4)式に軸受シュー4の内半径Rs=60t
yn−外半径R111= 160cm’fr代入し、試
算すると となり、軸受シュー4の外径側の面積S2が内径側の面
積Stの1.59倍と極端に大きいため、軸受シュー4
は外径N側に傾くのである。軸受シュー4が円周方向に
傾いて楔状の油膜を生成するのは望ましいことであるが
・半径方向には傾かないのが望ましく、それが上述のよ
うに半径方向に傾きすぎると油膜生成能力が低下して十
分な油膜が生成されず、軸受が損傷する恐れがあった。
and the area S2 on the outer diameter side are respectively Rg ” 2 (R1+R2) ・・・7
-! (,1)゛・・・・・・ (4) However, using a 300 MVA class water turbine generator as an example, the inner radius of the bearing shoe 4 Rs = 60t in equation (4).
By substituting yn - outer radius R111 = 160 cm'fr, the trial calculation becomes, and since the area S2 on the outer diameter side of the bearing shoe 4 is extremely large at 1.59 times the area St on the inner diameter side, the bearing shoe 4
is inclined toward the outer diameter N side. It is desirable for the bearing shoe 4 to tilt in the circumferential direction and generate a wedge-shaped oil film, but it is desirable that the bearing shoe 4 not tilt in the radial direction, and as mentioned above, if it tilts too much in the radial direction, the ability to generate an oil film will be reduced. There was a risk that a sufficient oil film would not be generated and the bearings would be damaged.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたものであり・軸受シュ
ーとランナーとの摺動面における油膜の生成能力増大を
可能とした推力軸受装置を提供することを目的とするも
のである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between a bearing shoe and a runner.

〔発明の概要〕 すなわち本発明は回転軸にカラーを介して固着され、か
つ前記回転軸と共に回動するランナーと。
[Summary of the Invention] That is, the present invention provides a runner that is fixed to a rotating shaft via a collar and rotates together with the rotating shaft.

このランナーに摺動接触し・かつ前記回転軸の周囲に同
心円状に配置される複数の扇形状の軸受シューと、この
軸受シューとヤカ受油槽の底部との間に配置され・かつ
上方に所定間隔を介して突出した2個のピボットおよび
下方に突出した円筒状または球面状の支持部材を有する
板ばねより構成されると共に、前記板ばねが隣接する前
記軸受シューに跨って配置された支持体とを備え、前記
軸受シ=−が晶記支持部材を支点として前記板ばねおよ
び前記ピボットを介して揺動自在に支持されている推力
軸受装置において、前記支持部材の回転軸心からの距離
をR[+、軸受シューの内半径を&−外半径をR2−角
度をθとした場合に・前記支持部材の回転軸心からの距
離Raを(0,’52Ri+のであり、これによって軸
受シューは半径方向の傾きが低減される支持点で支持さ
れるようになる。
A plurality of fan-shaped bearing shoes are in sliding contact with the runner and are arranged concentrically around the rotating shaft; A support body composed of a leaf spring having two pivots protruding from each other at a distance and a cylindrical or spherical support member protruding downward, and the leaf spring is disposed astride the adjacent bearing shoe. In the thrust bearing device, the bearing shaft is swingably supported via the leaf spring and the pivot with the support member as a fulcrum, the distance from the rotation axis of the support member being When R[+, the inner radius of the bearing shoe is &- the outer radius R2- the angle is θ, the distance Ra from the rotational axis of the support member is (0,'52Ri+), so that the bearing shoe is It is now supported at a support point where the radial tilt is reduced.

軸受シューの傾きを低減させるには支点(支持点)を半
径方向のどの位置に設定すればよいかを、300MVA
級水車発電機の推力軸受について検討した。検討結果を
第6図に示したが、これは内半径60cm、外半径16
0cW1−角度が22°の軸受シューの性能計算結果を
、横軸に支持点の半径Rsおよび内半径R1の差13g
と軸受シューの半径方向の長さBとの比、すなわち半径
方向支点位置比B s ’/ Bをとり、縦軸に軸受シ
ューとランナーとの間の最高油膜温度および最小油膜厚
さをとって示したものである。同図に示されている半径
方向支点位置比Bs/Bによる最高油膜温度曲線Xおよ
び最小油膜厚さ曲線Yから明らかなように、半径方向支
点位置比Bll/Bが0.54付近で最小油膜厚さが最
大で、最高油膜温度が最小となっている。これは軸受シ
ューの半径方向の傾きが小さくなって、軸受シューとラ
ンナーとの摺動面における油膜が内径側から外径側にわ
たり一様で、かつ大きく形成されるためである。これに
比べこの半径方向支点位置比Bs/Bが0.50.すな
わち従来の支持点では最小油膜厚さはかなり減少し。
300 MVA
The thrust bearings of class water turbine generators were investigated. The study results are shown in Figure 6, which shows that the inner radius is 60 cm and the outer radius is 16 cm.
0cW1 - The performance calculation results of a bearing shoe with an angle of 22° are shown on the horizontal axis, and the difference between the radius Rs of the support point and the inner radius R1 is 13g.
and the radial length B of the bearing shoe, that is, the radial fulcrum position ratio Bs'/B, and the maximum oil film temperature and minimum oil film thickness between the bearing shoe and the runner on the vertical axis. This is what is shown. As is clear from the maximum oil film temperature curve The thickness is maximum and the maximum oil film temperature is minimum. This is because the inclination of the bearing shoe in the radial direction becomes smaller, and the oil film on the sliding surface between the bearing shoe and the runner becomes uniform and large from the inner diameter side to the outer diameter side. In comparison, this radial fulcrum position ratio Bs/B is 0.50. That is, with conventional support points, the minimum oil film thickness is significantly reduced.

最高油膜温度は高くなっている。これらに関し更に第5
図の半径方向支持位置比Bs/Bを変えた場合について
検討した。まず内径側の面積S1と外径側の面積S2と
が等しくなる支持点半径Rsをめると、(2)および(
3)式にシいてS5−8gとおけばよいので、 Rs ” 汀(R: + 請= 1 ’20.8 (c
rn) ”’(5)となり・この場合の半径方向支点位
置比Bg/Bは0.608となるが・この場合の最高油
膜温度および最小油膜厚さは第6図から明らかなように
、半径方向支点位置比B s / Bが0.54のそれ
に比較して最小油膜厚さはかなり小さく、最高油膜温度
は高くなる。次いで軸受シューの重心位置の支点を計算
すると・軸受シューの重心位置の半径gFi となり・半径方向支点位置比Bs/Bが0.54のそれ
よりも最小油膜厚さは低下する。
The maximum oil film temperature is high. Regarding these, please refer to the fifth
The case where the radial direction support position ratio Bs/B shown in the figure was changed was studied. First, if we find the support point radius Rs where the area S1 on the inner diameter side and the area S2 on the outer diameter side are equal, we get (2) and (
3) Since it is sufficient to write S5-8g in the formula, Rs ”  (R: +
rn) "' (5) - In this case, the radial fulcrum position ratio Bg/B is 0.608. - As is clear from Figure 6, the maximum oil film temperature and minimum oil film thickness in this case are Compared to that when the directional fulcrum position ratio B s / B is 0.54, the minimum oil film thickness is considerably smaller and the maximum oil film temperature is higher.Next, when calculating the fulcrum at the center of gravity of the bearing shoe, The radius is gFi, and the minimum oil film thickness is lower than that when the radial support point position ratio Bs/B is 0.54.

これらより軸受シューの軸受性能よりみた半径方向の最
適支持位置は、(1)式のような寸法的な中心位置・(
5)式のような幾何学的な面積中心位置および(6)式
のような幾何学的重心位置と異なって、油膜の流体力学
的な重心位置に基づいており、軸受シューの荷重1周速
および寸法によって異なるぞ・大体(1)式、!−(6
)式との間に存在し、かつ半径方、向支点位置比Bs<
Bは0.52よりも大きくすればよいことが明らか勺な
つfcoこの半径方向支点位置比Bg/BがB日/B>
0.52の条件を、満たす、軸、受シューの支持部材で
支持される支持点の半径R,sはRs>(0,5,2R
z+0.48Rt)となるので。
From these, the optimal radial support position of the bearing shoe in terms of bearing performance is determined by the dimensional center position and (
Unlike the geometric center of area position as shown in equation 5) and the geometric center of gravity position as shown in equation (6), it is based on the hydrodynamic center of gravity position of the oil film, and the bearing shoe load per circumferential speed is It varies depending on the size and size. Roughly formula (1)! -(6
), and the radial and direction fulcrum position ratios Bs<
It is clear that B should be larger than 0.52. This radial direction fulcrum position ratio Bg/B is B day/B>
The radius R, s of the support point supported by the support member of the shaft and the receiving shoe satisfies the condition of 0.52.Rs>(0,5,2R
z+0.48Rt).

本発明では支持部材の回転軸心からの距離葡R8、軸受
シューの内半径tRt−外半径をR,z −角度をθと
した場合に、支持部材の回転軸心からの距このようにす
ることにより軸受シューとランナーとの摺動面における
油膜の生、成能力増大を可能とした推力軸受装置を得る
ことを可能としたものである。
In the present invention, the distance from the rotation axis of the support member is set as follows, where the distance from the rotation axis of the support member is R8, the inner radius tRt of the bearing shoe - the outer radius R,z - the angle θ This makes it possible to obtain a thrust bearing device that can increase the ability to form an oil film on the sliding surface between the bearing shoe and the runner.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明する。第
7図から第9図には本発明の一実施例が示されている。
The present invention will be explained below based on the illustrated embodiments. An embodiment of the present invention is shown in FIGS. 7-9.

なお従来と同じ部品には同じ符号を付したので説明を省
略する。本実施例では支持部材100回転軸心からの距
離t’Rs−軸受シュー4の内半径をR1、外半径をR
1・角度を0とした場合(第5図参照)K、支持部材1
0の回転より小さくした。このようにすることにより軸
受シュー4とランナー3との摺動面における油膜の生成
能力増大を可能とした推力軸受装置を得ることがで―る
Note that parts that are the same as those in the conventional system are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the distance t'Rs from the rotation axis of the support member 100 - the inner radius of the bearing shoe 4 is R1, and the outer radius is R
1. When the angle is 0 (see Figure 5) K, support member 1
The rotation was made smaller than 0. By doing so, it is possible to obtain a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between the bearing shoe 4 and the runner 3.

すなわち油膜の流体力学的な重心位置を計算して軸受シ
ュー4の支持点Pの位置を、軸受シュー40内半径R1
と外半径R2との中心、すなわち(1)式の位置よりも
外径側Bl>B! とし、かつ(6)式の幾何学的重心
位置よりも内径側にくるようにし念。このようにするこ
とにより軸受シュー4の支持点Pの半径RI+および内
半径R1の差Bsと軸受シュー4の半径方向長さBとの
比である半径方向支点位置比Bs/Bが・軸受シュー4
とランナー3との間の最小油膜厚さが大きく、最高油膜
温度が小さくなるような値となる。すなわち軸受シュー
4は半径方向の傾きを低減して支持されるよう罠なって
、ランナー3との摺動面に生成される油膜厚さが内径M
側から外径N側にわ九り一様で、かつ増加するようにな
り、軸受性能を良好にして回転電機の運転を安全にする
ことができる。
That is, by calculating the hydrodynamic center of gravity position of the oil film, the position of the support point P of the bearing shoe 4 is determined by the inner radius R1 of the bearing shoe 40.
and the center of the outer radius R2, that is, the outer radius side Bl>B! And make sure that it is on the inner diameter side than the geometric center of gravity position of equation (6). By doing this, the radial fulcrum position ratio Bs/B, which is the ratio of the difference Bs between the radius RI+ and the inner radius R1 of the support point P of the bearing shoe 4 and the radial length B of the bearing shoe 4, is 4
The minimum oil film thickness between the runner 3 and the runner 3 is large, and the maximum oil film temperature is small. In other words, the bearing shoe 4 is supported with a reduced inclination in the radial direction, and the thickness of the oil film generated on the sliding surface with the runner 3 is reduced by the inner diameter M.
The radius increases uniformly and increases from the side to the outer diameter N side, and the bearing performance can be improved and the rotating electric machine can be operated safely.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は軸受シューをその半径方向の傾き
を低減して支持できるようになって、軸受シューとラン
ナーとの間の摺動面に生成される油膜を一様で・かつ増
加させることができるようKなり、軸受シューとランナ
ーとの摺動面における油膜の生成能力増大を可能とした
推力軸受装置を得ることができる。
As described above, the present invention enables the bearing shoe to be supported with a reduced radial inclination, thereby making it possible to uniformly and increase the oil film generated on the sliding surface between the bearing shoe and the runner. Therefore, it is possible to obtain a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between the bearing shoe and the runner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の推力軸受装置の縦断側面図、第2図は従
来の推力軸受装置の軸受シュー周りの縦断側面図、第3
図は従来の推力軸受装置の軸受シ′ニーとランナーとの
間の油膜生成状況を示す説明図、第4図は従来の推力軸
受装置の他の例の軸受シューとランナーとの間の油膜生
成状況を示す説明図、第5図は推力軸受装置の軸受シュ
ーの寸法記号を示す説明図、第6図は推力軸受装置の半
径方向支持位置と最小油膜厚さおiび最高油膜温度との
関係を示す特性図・第7図は本発明の推力軸受装置の一
実施例の軸受シューの支持を示す軸受シューの平面図、
第8図は第7図のI−I線に沿う軸受シューの部分拡大
図]第9図は本発明の推力軸受装置の一実施例の軸受シ
ューとランナーとの間の油膜生成状況を示す説明iであ
る。 1・・・回転軸、2・・・カラー、3・・・ランナー、
4,4a。 4b、4C,4d・・・軸受シュー、6・・・軸受油槽
・7・・・軸受油槽の底部(床)、8・・・支持体4.
9a。 9b・・・ピボット、10・・・支持部材、11・・・
板ばね、P・・・支持点。 代理人 弁理士 高橋明夫 桔1霞 招7m ノ− も3図 第4m M FN 弔 6閃 半脛方市支点イiz比 Bs/B 箔′70 B+ > 82 も80 ノ伯 躬9(¥1
Figure 1 is a vertical side view of a conventional thrust bearing device, Figure 2 is a vertical side view of the area around the bearing shoe of a conventional thrust bearing device, and Figure 3 is a vertical side view of a conventional thrust bearing device.
The figure is an explanatory diagram showing the state of oil film formation between the bearing knee and runner of a conventional thrust bearing device, and Fig. 4 is an explanatory diagram showing the oil film formation between the bearing shoe and runner of another example of the conventional thrust bearing device. An explanatory diagram showing the situation, Fig. 5 is an explanatory diagram showing the dimension symbols of the bearing shoe of the thrust bearing device, and Fig. 6 is the relationship between the radial support position of the thrust bearing device, the minimum oil film thickness i, and the maximum oil film temperature. FIG. 7 is a plan view of the bearing shoe showing the support of the bearing shoe in one embodiment of the thrust bearing device of the present invention;
FIG. 8 is a partially enlarged view of the bearing shoe taken along line I-I in FIG. 7] FIG. 9 is an explanation showing the state of oil film formation between the bearing shoe and the runner in one embodiment of the thrust bearing device of the present invention It is i. 1... Rotation axis, 2... Collar, 3... Runner,
4,4a. 4b, 4C, 4d... Bearing shoe, 6... Bearing oil tank, 7... Bottom (floor) of the bearing oil tank, 8... Support body 4.
9a. 9b... Pivot, 10... Support member, 11...
Leaf spring, P...support point. Agent Patent Attorney Akio Takahashi Ki 1 Kasumi 7m No - Mo 3 Fig. 4m M FN Condolence 6 Senkou Hikata Ichi fulcrum I iz ratio Bs/B Foil '70 B+ > 82 Mo 80 No Haku 9 (¥1

Claims (1)

【特許請求の範囲】 1、回転軸にカラーを介して固着され、かつ前記回転軸
と共に回動するラレナ」と・このランナーに摺動接触し
、かつ前記回転軸の周囲に同心円状に配置される複数の
扇形状の軸受シューと・この軸受シューと軸受油槽の底
部との間に配置され、かつ上方に所定間隔を介して突出
した2個のピボットおよび下方に突出した円筒状または
球面状の支持部材を有する板ばね上り構成されると共に
。 前記板ばねか隣接する前記軸□受シューに跨って配置さ
れた支持体とを備え、前記軸受シューが前記支持部材を
支点として前記板ばねおよび前記ピボットを介して揺動
自在に支持されてい・る推力軸受装置において、前記支
持部材の回転軸心からの距離tRs−前記軸受シューの
内生径t’Rt−外半径tRz、角度をθとし九場合に
・前記支持部材より小さくしたことを特徴とする推力軸
受装置◎2 前記2個のピボットが、前記支持部材の設
置位置に対して反対側の左右対称位置に夫々設けられた
ものである特許請求の範囲第1項記載の推力軸受装置。
[Claims] 1. A runner that is fixed to the rotating shaft via a collar and rotates together with the rotating shaft; and a runner that is in sliding contact with the runner and is arranged concentrically around the rotating shaft. a plurality of fan-shaped bearing shoes; two pivots arranged between the bearing shoes and the bottom of the bearing oil tank and projecting upward at a predetermined distance; and a cylindrical or spherical pivot projecting downward. It is constructed with a leaf spring having a support member. a support body disposed astride the leaf spring and the adjacent shaft receiving shoe, and the bearing shoe is swingably supported via the leaf spring and the pivot using the support member as a fulcrum; The thrust bearing device is characterized in that the distance tRs from the rotational axis of the support member - the inner diameter t'Rt of the bearing shoe - the outer radius tRz is smaller than the support member when the angle is θ. Thrust bearing device ◎2 The thrust bearing device according to claim 1, wherein the two pivots are provided at bilaterally symmetrical positions opposite to the installation position of the support member.
JP58236256A 1983-12-16 1983-12-16 Thrust bearing device Pending JPS60129418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236256A JPS60129418A (en) 1983-12-16 1983-12-16 Thrust bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236256A JPS60129418A (en) 1983-12-16 1983-12-16 Thrust bearing device

Publications (1)

Publication Number Publication Date
JPS60129418A true JPS60129418A (en) 1985-07-10

Family

ID=16998083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236256A Pending JPS60129418A (en) 1983-12-16 1983-12-16 Thrust bearing device

Country Status (1)

Country Link
JP (1) JPS60129418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175418A (en) * 2014-03-14 2015-10-05 三菱日立パワーシステムズ株式会社 Bearing device and rotary machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175418A (en) * 2014-03-14 2015-10-05 三菱日立パワーシステムズ株式会社 Bearing device and rotary machine

Similar Documents

Publication Publication Date Title
JPS62110017A (en) Inclination controller for tapered roller in tapered roller bearing
JP2008095703A (en) Thrust bearing device
SE7709786L (en) BEARING SHELL
JP2013228057A (en) Rotary shaft device and vertical shaft type fluid power generating device
JPH09507553A (en) Air bearing
JPS60129418A (en) Thrust bearing device
JPH10184668A (en) Fluid bearing device
KR101871043B1 (en) Tilting Pad Journal Bearings with Ball-Socket
JPH09273547A (en) Multiple bearing
JP6979332B2 (en) Tilting pad bearing
JP2004092715A (en) Rotation supporting apparatus and rotating machine apparatus
JPS61201917A (en) Floating bush bearing
US3748000A (en) Spherical bearings
JP3167047B2 (en) Protective bearing for magnetic bearing device
JP3294064B2 (en) Thrust bearing device
JP5812973B2 (en) Journal bearing and steam turbine
JPS6311531B2 (en)
JP2006300017A (en) Flywheel energy storage device
JP2589276B2 (en) Three degrees of freedom rolling bearing
JPS60116915A (en) Thrust bearing device
JP2620857B2 (en) Radial ball bearings for protection in magnetic bearing devices
JP3769757B2 (en) Turbo rotating machine bearing device
JP2001082464A (en) Cylindrical roller bearing
JP2563923Y2 (en) Protective bearing for magnetic bearing device
JP2007170465A (en) Caulked retainer for thrust ball bearing, its design method, and thrust ball bearing