JPS60116915A - Thrust bearing device - Google Patents

Thrust bearing device

Info

Publication number
JPS60116915A
JPS60116915A JP58224231A JP22423183A JPS60116915A JP S60116915 A JPS60116915 A JP S60116915A JP 58224231 A JP58224231 A JP 58224231A JP 22423183 A JP22423183 A JP 22423183A JP S60116915 A JPS60116915 A JP S60116915A
Authority
JP
Japan
Prior art keywords
bearing shoe
bearing
radius
shoe
runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58224231A
Other languages
Japanese (ja)
Inventor
Isao Ishida
功 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58224231A priority Critical patent/JPS60116915A/en
Publication of JPS60116915A publication Critical patent/JPS60116915A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/06Sliding-contact bearings for exclusively rotary movement for axial load only with tiltably-supported segments, e.g. Michell bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To increase an ability to form an oil film on a sliding surface between a bearing shoe and a runner, by a method wherein the bearing shoe is positioned so that it can be supported through reduction of inclination in the direction of radius. CONSTITUTION:Provided a radius supported by a retainer member 10 of a bearing shoe 4 is RS, the inner radius of the bearing shoe 4 is R1, the outer radius thereof is R2, and an angle is theta, the radius R4 supported by the retainer member 10 is formed such that it is longer than (0.52R2+0.48R1) and is shorter than 4/3.(R2<3>-R1<3>)/(R2<2>-R1<2>).180sin(theta/2)/pitheta. This causes the bearing shoe 4 to be supported at a fulcrum P where inclination in the direction of radius is reduced, and enables improvement of an ability to form an oil film on a sliding surface between the bearing shoe 4 and a runner 3.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は推力軸受装置に係り、特に回転軸の周囲に同心
円状に配置された分割形の扇形状の軸受シューを支持体
で揺動自在に支持している推力軸受装置に関するもので
ある。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a thrust bearing device, and in particular to a thrust bearing device in which split fan-shaped bearing shoes arranged concentrically around a rotating shaft are swingably supported by a support. This relates to a supporting thrust bearing device.

〔発明の背景〕[Background of the invention]

第1図および第2図には水車発電機等に使用される推力
軸受装置の従来例が示されている。同図に示されている
ように推力軸受装置は回転軸lにカラー2を介して固着
され、かつ回転軸lと共に回動するランナー3、この2
ンナー3に摺動接触し、かつ回転l14111の周囲に
同心円状に配置される軸受シュー4、この軸受シュー4
を支持し、かつ油冷却器5を有する軸受油槽6の底部の
床7にボルト等で固着された支持体8等より構成される
1 and 2 show conventional examples of thrust bearing devices used in water turbine generators and the like. As shown in the figure, the thrust bearing device includes a runner 3 fixed to the rotating shaft l via a collar 2, and a runner 3 that rotates together with the rotating shaft l.
a bearing shoe 4 in sliding contact with the bearing 3 and arranged concentrically around the rotation l14111;
The bearing oil tank 6 supports a bearing oil tank 6 and has an oil cooler 5.

そして軸受シュー4は、上方に所定間隔を介して突出し
た2個のピボット9お工び下方に突出した円筒状または
球面状の支持部材10倉有する板ばねiiよシ構成され
る支持体8の支持部材lOを支点として板ばね11お工
びビポッ)9に介してあらゆる方向へ傾きが可能なよう
に、揺動自在に支持されている。なお第2図において1
2は円板状サポートである。
The bearing shoe 4 has two pivots 9 projecting upward at a predetermined distance, and a support body 8 consisting of a leaf spring II having two pivots 9 projecting upward at a predetermined distance and a cylindrical or spherical support member 10 projecting downward. It is swingably supported by a leaf spring 11 and a support member 10 as a fulcrum so as to be able to tilt in any direction. In addition, in Figure 2, 1
2 is a disk-shaped support.

このように構成された推力軸受装置で軸受シュー4の支
持点の位置は軸受性能に大きく影響するので、円周方向
については、一方向にだけ回転する所謂一方向回転機で
は軸受シュー4の円周方向中心よりも若干回転方向にず
らした所謂偏心支持方式が通常使用され、ランナー3が
僅かに回転しても速やかに軸受シュー4が傾き、楔状の
油膜を軸受シュー4とランナー3との間に形成して安定
した油膜を形成するようにしである。そして両方向に回
転する揚水発電所用の発電電動機などの所謂両方向回転
機では一般に軸受シュー4の円周方向の中心で支持して
いるが、当然のことながら油膜の形成能力が低下するの
で、電機の始動時あるいは停止時には軸受シュー4の摺
動面に強制的に高圧油を供給して油膜全生成し、摺vJ
面の金属接触による損傷を未然に防止するようにしであ
る。
In a thrust bearing device configured in this way, the position of the support point of the bearing shoe 4 has a great influence on bearing performance. A so-called eccentric support system in which the runner 3 is slightly shifted in the rotational direction from the center in the circumferential direction is usually used, and even if the runner 3 rotates slightly, the bearing shoe 4 immediately tilts, creating a wedge-shaped oil film between the bearing shoe 4 and the runner 3. to form a stable oil film. So-called bidirectional rotating machines, such as generator motors for pumped storage power plants that rotate in both directions, are generally supported at the circumferential center of the bearing shoe 4, but this naturally reduces the ability to form an oil film. When starting or stopping, high-pressure oil is forcibly supplied to the sliding surface of the bearing shoe 4 to form a full oil film and prevent the sliding vJ.
This is to prevent damage caused by metal contact between surfaces.

これに対し軸受シュー4の半径方向の支持点については
従来、一方向回転機および両方向回転機共に第3図に示
されているように、軸受シュー4の半径方向の中心位置
(この場合に軸受シュー4の内径Mまでの内半径全n、
、外径Nまでの外生R,+R2 径tR2とすると’7−が中心位置となる)を支持点(
支点)Pとして支持していたが、これでは軸受シュー4
が外径側に傾きすぎて図中点線表示の油膜圧力分布曲線
にのように5.軸受シュー4の内径M側の油膜は薄くな
り、油膜圧力は内径M側が高くなっている。これに対し
て支持点P?第4図に示されているように軸受シュー4
の外径N側に極端にずらすと、上述の第3図の場合とは
逆に軸受シュー4の外径N側の油膜が極端に薄くなり、
油膜圧力は外径N側が高くなる。
On the other hand, regarding the radial support point of the bearing shoe 4, conventionally the radial center position of the bearing shoe 4 (in this case the bearing The total inner radius n up to the inner diameter M of the shoe 4,
, External R up to outer diameter N, +R2 If diameter tR2, '7- is the center position) is the support point (
It was supported as a fulcrum) P, but in this case, the bearing shoe 4
5. is too tilted toward the outer diameter side, as shown in the oil film pressure distribution curve shown by the dotted line in the figure. The oil film on the inner diameter M side of the bearing shoe 4 is thinner, and the oil film pressure is higher on the inner diameter M side. Support point P for this? Bearing shoe 4 as shown in FIG.
If the bearing shoe 4 is shifted extremely toward the outside diameter N side, the oil film on the outside diameter N side of the bearing shoe 4 becomes extremely thin, contrary to the case shown in FIG. 3 above.
The oil film pressure is higher on the outer diameter N side.

このうち上述の第3図の場合について軸受シュー4の支
持点P、角度θ、内半径R3、外生径几2、支持点Pの
半径Rs、内径細径側積S8、外径側の面積82 %径
方向長さBお工び内径側から支持点Pまでの長さBs等
が示されている第5図?参照にして説明すると次のよう
になる。支持点Pまでの半径Rs、内径側の面積81%
外径側の面積S2お工び内径側の面積S、と外径側の面
aS2 との比は夫々 となるが、−例として300MVA級水車発電機?例に
とって(4)式に軸受ンユー4の内半径81 =60C
rnx外半径Rt = 160 cmk代入し、試算す
ると、 となシ、軸受シュー4の外径側の面積S2が内径側の面
積S1の1.59倍と極端に大きいため、軸受シュー4
は外径側に傾くのである。軸受シュー4が円周方向に傾
いて楔状の油膜を生成するのは望ましいことであるが、
半径方向には傾かないのが望ましく、それが上述のよう
に半径方向に傾きすぎると油膜生成11目力が低下して
十分な油膜が生成されず、軸受が損傷する恐れがあった
Among these, for the case shown in FIG. 3 above, the bearing shoe 4 has a supporting point P, an angle θ, an inner radius R3, an outer radius 2, a radius Rs of the supporting point P, an inner diameter smaller diameter side area S8, and an outer diameter side area. 82% radial length B Figure 5 shows the length Bs from the inner diameter side of the machining to the support point P, etc.? For reference, the explanation is as follows. Radius Rs to support point P, area on inner diameter side 81%
The ratio of the area S2 on the outside diameter side and the area S on the inside diameter side and the surface aS2 on the outside diameter side is different, but - for example, a 300MVA class water turbine generator? For example, in equation (4), the inner radius of bearing 4 is 81 = 60C.
By substituting rnx outer radius Rt = 160 cmk and making a trial calculation, the area S2 on the outer diameter side of the bearing shoe 4 is extremely large at 1.59 times the area S1 on the inner diameter side, so the bearing shoe 4
is inclined toward the outer diameter side. Although it is desirable that the bearing shoe 4 be tilted in the circumferential direction to produce a wedge-shaped oil film,
It is desirable that it not be tilted in the radial direction; if it is too tilted in the radial direction as described above, the oil film generation force will be reduced and a sufficient oil film will not be generated, leading to the risk of damaging the bearing.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたものであり、軸受シュ
ーとランナーとの摺動面における油膜の生成能力増大を
可能とした推力軸受装置を提供することを目的とするも
のである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between a bearing shoe and a runner.

〔発明の概要〕[Summary of the invention]

すなわち本発明は回転軸にカラー?介して固着され、か
つ回転軸と共に回動するランナーと、このランナーに摺
動接触し、かつ回転軸の周囲に同心円状に配置される扇
形状の軸受シューと、この軸受シューと軸受油槽の底部
との間に配置され、かつ上方に所定間隔ケ介して突出し
た2個のピボットおよび下方に突出した円筒状または球
面状の支持部材?有する板ばねより構成される支持体と
を備え、軸受シューが支持部材全支点として板ばねおよ
びピボットを介して揺動自在に支持されている推力軸受
装置において、軸受シューの支持部材で支持される半径
kRs、軸受シューの内半径をR1、外生径乞Ft、t
、角度をθとした場合に、支持部材で支持される半径R
s’?(0,52R2十よシ小さくしたことを特徴とす
るものであり、これによって軸受シューは半径方向の傾
きが低減される支持点で支持されるようになる。
In other words, does the present invention have a collar on the rotating shaft? A runner that is fixed through the runner and rotates together with the rotating shaft, a fan-shaped bearing shoe that is in sliding contact with the runner and arranged concentrically around the rotating shaft, and the bearing shoe and the bottom of the bearing oil tank. two pivots disposed between and projecting upward at a predetermined distance and a cylindrical or spherical support member projecting downward? In a thrust bearing device, the bearing shoe is swingably supported via the leaf spring and the pivot as a full fulcrum of the support member, and the bearing shoe is supported by the support member of the bearing shoe. radius kRs, inner radius of bearing shoe R1, outer diameter Ft, t
, when the angle is θ, the radius R supported by the support member
s'? (0.52R2) is characterized by being smaller than 0.52R2, so that the bearing shoe is supported at a support point where the radial inclination is reduced.

軸受シューの傾きを低減させるには支点(支持点)を半
径方向のどの位置に設定させればよいが(+−1300
MVA級水車発電機の推力軸受につぃて検討した。検討
結果を第6図に示したが、これは内半径60cm*外半
径160crn、角度が22゜の軸受シューの性能計算
結果會、横軸に支持点の半径Rsおよび内半径R3の差
Bsと軸受シューの半径方向の長さBsとの比、すなわ
ち半径方向支点位置比Bs/Bkとシ、縦軸に軸受シュ
ーとランナーとの間の最高油膜温度および最小油膜厚さ
ケとって、半径方向支点位置比B s / Bと最高油
膜温度および最小油膜厚さとの関係金示したものである
。同図に示されている半径方向支点位置比B s / 
Bによる最高油膜温度曲線Xおよび最小油膜厚さ曲線Y
から明らかなように、半径方向支点位置比B s / 
Bが0.54付近で最小油膜厚さが最大で、最高油膜温
度が最小となっている。これは軸受シューの半径方向の
傾きが小さくなって、軸受シューとランナーとの摺動面
における油膜が内径側から外径側にわたり一様で、大き
く形成されるためである。これに比べこの半径方向支点
位置比Bs/Bが0.50 、すなわち従来の支持点で
は最小油膜厚さはかなり減少し、最高温油温度は高くな
っている。これらに関し更に第5図の半径方向・支点位
置比Bs/Bk変えた場合について検討した。
In order to reduce the inclination of the bearing shoe, the fulcrum (support point) should be set at any position in the radial direction (+-1300
We investigated the thrust bearings of MVA class water turbine generators. The study results are shown in Figure 6, which is the performance calculation result of a bearing shoe with an inner radius of 60 cm * outer radius of 160 crn, and an angle of 22 degrees. The ratio to the radial length Bs of the bearing shoe, that is, the radial fulcrum position ratio Bs/Bk, and the maximum oil film temperature and minimum oil film thickness between the bearing shoe and the runner on the vertical axis, The relationship between the fulcrum position ratio B s / B and the maximum oil film temperature and minimum oil film thickness is shown. The radial fulcrum position ratio B s /
Maximum oil film temperature curve X and minimum oil film thickness curve Y according to B
As is clear from , the radial fulcrum position ratio B s /
When B is around 0.54, the minimum oil film thickness is maximum and the maximum oil film temperature is minimum. This is because the inclination of the bearing shoe in the radial direction becomes smaller and the oil film on the sliding surface between the bearing shoe and the runner is uniform and large from the inner diameter side to the outer diameter side. In comparison, at the radial support point position ratio Bs/B of 0.50, that is, at the conventional support point, the minimum oil film thickness is considerably reduced and the maximum oil temperature is high. Regarding these, we further investigated the case where the radial direction/fulcrum position ratio Bs/Bk in FIG. 5 was changed.

まず内径側面積S、と外径側面積S2 とが等しくなる
支持点半径ask求めると、(2)および(3)式にお
いてS、=S、とおけばよいので、 となり、この場合の半径方向支点位置比B s / B
は0.608となるが、この場合の最高油膜温度および
最小油膜厚さは第6図から明らかなように、半径方向支
点位置比B s / Bが0.54のそれに比較して最
小油膜厚さはかなり小さく、最高油膜温度は高くなる。
First, find the support point radius ask where the inner diameter surface area S and the outer diameter surface area S2 are equal. Since it is sufficient to set S, = S in equations (2) and (3), the following is obtained, and the radial direction in this case Fulcrum position ratio B s / B
is 0.608, but as is clear from Figure 6, the maximum oil film temperature and minimum oil film thickness in this case are smaller than those when the radial support position ratio B s / B is 0.54. The maximum oil film temperature will be high.

次いで軸受シュー4の重心位置の支点を計算すると、軸
受シューの重心位置の半径Rsは、 となり、これより半径方向支点位置比B s / B 
請求めると0.569となるが、この場合も半径方向支
点位置比Bs/Bが0.54のそれよりも最小油膜厚さ
は低下する。
Next, when the fulcrum of the center of gravity of the bearing shoe 4 is calculated, the radius Rs of the center of gravity of the bearing shoe is as follows, and from this, the radial fulcrum position ratio B s / B
The required value is 0.569, but in this case as well, the minimum oil film thickness is lower than that when the radial fulcrum position ratio Bs/B is 0.54.

これらより軸受シューの軸受性能よりみた半径方向の最
適支持位置は、(1)式のような寸法的な中心位置、(
5)式のような幾何学的な面積中心位置および(6)式
のような幾何学的重心位置と異なって、油膜の流体力学
的な重心位置に基づいており、軸受シューの荷重、周速
および寸法によって異なるが、大体α)式と(6)式と
の間に存在し、かつ半径方向支点位置比B s / B
 ?ま0.52よりも大きくすればよいことが明らかと
なった。この半径方向支点位置比B s / BがB 
s/B> 0.520粂件を満たす軸受シューの支持部
材で支持さJ″Lる支持点の半径R,sはRs>(0,
52几、+0.48R,)となるので、本発明では軸受
シューの支持部材で支持される半径’!1−Rs、軸受
7ユーの内半径*R,,外半径kR2、角度tθとした
場合に、支持部材で支持される半径Rg k (0,5
2R2十0.48几、ンより小さくした。このようにす
ることによシ、軸受シューとランナーとの摺動面におけ
る油膜の生成能力増大を可能とした推力軸受装置を得る
ことを可能としたものである。
From these, the optimal support position in the radial direction from the perspective of bearing performance of the bearing shoe is the dimensional center position as shown in equation (1), (
Unlike the geometric center of area position as shown in equation 5) and the geometric center of gravity position as shown in equation (6), it is based on the hydrodynamic center of gravity position of the oil film, and the bearing shoe load and circumferential speed are Although it differs depending on the dimensions, it generally exists between α) formula and (6) formula, and the radial fulcrum position ratio B s / B
? It has become clear that it is sufficient to make it larger than 0.52. This radial fulcrum position ratio B s / B is B
s/B > 0.520 The radius R of the support point supported by the support member of the bearing shoe that satisfies the condition R, s is Rs > (0,
52 几, +0.48R,) Therefore, in the present invention, the radius supported by the support member of the bearing shoe is '! 1-Rs, the inner radius *R of the bearing 7, the outer radius kR2, and the angle tθ, the radius supported by the support member Rg k (0,5
2R20.48L, smaller than N. By doing so, it is possible to obtain a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between the bearing shoe and the runner.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明する。第
7図から第9図には本発明の一実施例が示されている。
The present invention will be explained below based on the illustrated embodiments. An embodiment of the present invention is shown in FIGS. 7-9.

なお従来と同じ部品には同じ符号ケ付したので説明を省
略する。本実施例では軸受シュー4の支持部材lOで支
持される半径Rsk、軸受シュー4の内半径kR1−外
半径k Rz 、角度をθとした場合に、支持部材lo
で支持される半径Rs k (0,52FLz 十〇、
48R,)より太きした。このようにすることにより軸
受シュー4は半径方向の傾きが低減される支点Pで支持
されるようになって、軸受シュー4とランナー3との摺
動面における油膜の生成能力増大を可能とした推力軸受
装置を得ることができる。
Note that parts that are the same as those of the prior art are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, when the radius Rsk of the bearing shoe 4 supported by the support member lO, the inner radius kR1-outer radius kRz of the bearing shoe 4, and the angle θ, the support member lo
The radius Rs k (0,52FLz 10,
48R,) thicker. By doing this, the bearing shoe 4 is supported at the fulcrum P where the inclination in the radial direction is reduced, making it possible to increase the ability to generate an oil film on the sliding surface between the bearing shoe 4 and the runner 3. A thrust bearing device can be obtained.

すなわち油膜の流体力学的な重心位置を計算して軸受シ
ュー4の支持点Pの位置を、軸受シュー4の内半径R,
と外半径R2との中心、すなわち(1)式の位置よりも
外径側(B、 >332)とし、かつ(6)式の幾何的
重心位置よりも内径側にくるようにした。このようにす
ることにより軸受シュー4の支持点Pの半径Rsおよび
内半径R8の差B6と軸受シュー4の半径方向の長さB
との比である半径方向支点位置比B s / Bが、軸
受シュー4とランナー3との間の最小皮膜厚さが大きく
、最高温膜温度が小さくなるような値となる。すなわち
軸受シュー4は半径方向の傾きを低減して支持されるよ
うになって、ランナー3との摺動面に生成される油膜厚
さが内径M側から外径N側にわたり一様で、かつ増加す
るようになり、軸受性能を良好にして回転電機の運転を
安全にすることができる。
That is, by calculating the hydrodynamic center of gravity position of the oil film, the position of the support point P of the bearing shoe 4 is determined based on the inner radius R of the bearing shoe 4,
and the center of the outer radius R2, that is, the outer diameter side (B, >332) than the position of equation (1), and the inner diameter side of the geometric center of gravity position of equation (6). By doing this, the difference B6 between the radius Rs of the support point P of the bearing shoe 4 and the inner radius R8 and the radial length B of the bearing shoe 4
The radial fulcrum position ratio B s /B, which is the ratio between the bearing shoe 4 and the runner 3, has a value such that the minimum film thickness between the bearing shoe 4 and the runner 3 is large and the maximum film temperature is small. In other words, the bearing shoe 4 is supported with a reduced inclination in the radial direction, so that the thickness of the oil film generated on the sliding surface with the runner 3 is uniform from the inner diameter M side to the outer diameter N side, and As a result, the bearing performance can be improved and the rotating electric machine can be operated safely.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は軸受シューをその半径方向の傾き
を低減して支持できるようになって、軸受シューとラン
ナ゛−との間の摺動面に生成される油膜を径方向にわた
レ一様で、かつ増加させる。ことができるようになり、
軸受シューとランナーとの摺動面における油膜の生成能
力増大を可能とした推力軸受装置を得ることができる。
As described above, the present invention enables the bearing shoe to be supported with its radial inclination reduced, thereby reducing the oil film generated on the sliding surface between the bearing shoe and the runner in the radial direction. uniform and increasing. You will be able to
It is possible to obtain a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between the bearing shoe and the runner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の推力軸受装置の縦断側面図、第2図は従
来の推力軸受装置の軸受シュー周りの縦断側面図、第3
図は従来の推力軸受装置の軸受シューとランナーとの間
の油膜生成状況全示す説明図、第4図は従来の推力軸受
装置の他の例の軸受シューとランナーとの間の油膜生成
状況を示す説明図、第5図は推力軸受装置の軸受シュー
の寸法記号を示す説明図、第6図は推力軸受装置の軸受
シューの半径方向支持位置と最小油膜厚さおよび最高油
膜温度との関係を示す特性図、第7図は本発明の推力軸
受装置の一実施例の軸受シューの支持を示す部分拡大図
、第8図は第7図の入方向よりみた軸受シューの平面図
、第9図は本発明の推力軸受装置の一実施例の軸受シュ
ーとランナーとの間の油膜生成状況を示す説明図である
。 l・・・回転軸、2・・・カラー、3・・・ランナー、
4・・・軸受シュー、6・・・軸受油槽、7・・・軸受
油槽の底部(床)、8・・・支持体、9・・・ピボッ)
、10・・・支持部材、11・・・板ばね、P・・・支
持点。 ′$l 図 茅3 囚 茅 4 固 第f 口 午灸方藺支戻4立】北Bs/δ 竿りロ バ 茅q 固 /’I P N
Figure 1 is a vertical side view of a conventional thrust bearing device, Figure 2 is a vertical side view of the area around the bearing shoe of a conventional thrust bearing device, and Figure 3 is a vertical side view of a conventional thrust bearing device.
The figure is an explanatory diagram showing the entire state of oil film formation between the bearing shoe and runner of a conventional thrust bearing device, and Figure 4 shows the state of oil film formation between the bearing shoe and runner of another example of the conventional thrust bearing device. Fig. 5 is an explanatory drawing showing the dimension symbols of the bearing shoe of the thrust bearing device, and Fig. 6 shows the relationship between the radial support position of the bearing shoe of the thrust bearing device, the minimum oil film thickness, and the maximum oil film temperature. FIG. 7 is a partially enlarged view showing the support of the bearing shoe of an embodiment of the thrust bearing device of the present invention, FIG. 8 is a plan view of the bearing shoe seen from the input direction of FIG. 7, and FIG. 9 FIG. 2 is an explanatory diagram showing the state of oil film formation between a bearing shoe and a runner in an embodiment of the thrust bearing device of the present invention. l...rotation axis, 2...collar, 3...runner,
4...Bearing shoe, 6...Bearing oil tank, 7...Bottom (floor) of the bearing oil tank, 8...Support, 9...Pivot)
, 10... Support member, 11... Leaf spring, P... Support point. '$l Figure 茅 3 Prisoner 4 Hard No.

Claims (1)

【特許請求の範囲】 1、回転軸にカラーヶ介して固着され、かつ前記回転軸
と共に回動するランナーと、このランナーに摺動接触し
、かつ前記回転軸の周囲に同心円状に配置される扇形の
軸受シューと、この軸受シューと軸受油槽の底部との間
に配置され、かつ上方に所に間隔ヶ介して突出した2個
のピボットおよび下方に突出した円筒状または球面状の
支持部材?有する板ばねより構成される支持体と全備え
、前記軸受シューが前記支持部材茫支点として前記板ば
ねおよび前記ピボツ)Th介して揺動自在に支持されて
いる推力軸受装置において、前記軸受シューの前記支持
部材で支持される半径?R8、前記軸受シューの内半径
kR+s外半径eat、角度をθとした場合に、前記支
持部材で支持される半径Rsk(0,52Rz +0.
48Rt )より太きくしたことを特徴とする推力軸受
装置。 2 前記2個めピボットが、前記支持部材の設置位置に
対して反対側の左右対称位置に夫々設けられたものであ
る特許請求の範囲第1項記載の推力軸受装置。
[Scope of Claims] 1. A runner that is fixed to a rotating shaft through a collar and rotates together with the rotating shaft, and a sector-shaped runner that is in sliding contact with the runner and is arranged concentrically around the rotating shaft. A bearing shoe, two pivots disposed between the bearing shoe and the bottom of the bearing oil tank, projecting upwardly at a distance, and a cylindrical or spherical support member projecting downwardly? In the thrust bearing device, the bearing shoe is swingably supported via the leaf spring and the pivot (Th) as a fulcrum of the support member, wherein the bearing shoe is The radius supported by the support member? R8, the inner radius kR+s of the bearing shoe, the outer radius eat, and the angle θ, the radius supported by the support member Rsk(0,52Rz+0.
A thrust bearing device characterized by being thicker than 48Rt). 2. The thrust bearing device according to claim 1, wherein the second pivot is provided at a left-right symmetrical position opposite to the installation position of the support member.
JP58224231A 1983-11-30 1983-11-30 Thrust bearing device Pending JPS60116915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224231A JPS60116915A (en) 1983-11-30 1983-11-30 Thrust bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224231A JPS60116915A (en) 1983-11-30 1983-11-30 Thrust bearing device

Publications (1)

Publication Number Publication Date
JPS60116915A true JPS60116915A (en) 1985-06-24

Family

ID=16810553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224231A Pending JPS60116915A (en) 1983-11-30 1983-11-30 Thrust bearing device

Country Status (1)

Country Link
JP (1) JPS60116915A (en)

Similar Documents

Publication Publication Date Title
JPS5913369Y2 (en) cylindrical roller bearing
JP2008095703A (en) Thrust bearing device
JPH10131955A (en) Journal bearing device
JPH09163677A (en) Spindle motor
JPS60116915A (en) Thrust bearing device
JPS60241518A (en) Dynamic pressure spindle unit
JPH10131954A (en) Dynamic pressure type fluid bearing device
JP2002213248A (en) Bearing device of turbocharger
JP3892995B2 (en) Hydrodynamic bearing unit
GB2266009A (en) Air bearing in brushless electric motor.
JPS61201917A (en) Floating bush bearing
JP2006300017A (en) Flywheel energy storage device
JP2556759Y2 (en) Half bearing prevention type journal bearing
JP2003269443A (en) Thrust dynamic pressure bearing
JP3693749B2 (en) Thrust dynamic pressure bearing
JPS6184412A (en) Hydrodynamic thrust bearing
JPS6322334Y2 (en)
JPH0240882B2 (en) HAIBURITSUDOKEIJIKUKESOCHI
JP3145820B2 (en) Spindle motor
JPS60129418A (en) Thrust bearing device
JP3095139B2 (en) Fluid bearing device
JPH10292818A (en) High-speed rotating machine
JPH0516408Y2 (en)
JPH03292414A (en) Air bearing for high speed revolution
JPS6343606B2 (en)