JP2004092715A - Rotation supporting apparatus and rotating machine apparatus - Google Patents

Rotation supporting apparatus and rotating machine apparatus Download PDF

Info

Publication number
JP2004092715A
JP2004092715A JP2002252395A JP2002252395A JP2004092715A JP 2004092715 A JP2004092715 A JP 2004092715A JP 2002252395 A JP2002252395 A JP 2002252395A JP 2002252395 A JP2002252395 A JP 2002252395A JP 2004092715 A JP2004092715 A JP 2004092715A
Authority
JP
Japan
Prior art keywords
pair
center
hub
ball bearings
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002252395A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishiwada
石和田 博
Mamoru Aoki
青木 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002252395A priority Critical patent/JP2004092715A/en
Publication of JP2004092715A publication Critical patent/JP2004092715A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To restrain the amount of whirling in a hub 3 in a structure where the center-of-gravity position of a rotary member comprising the hub 3 and a hard disk fixed to the hub 3, and the position of a center M in the axial direction between a pair of ball bearings 5, 5a are shifted each other in the axial direction. <P>SOLUTION: The stiffness of one ball bearing 5a being provided at a position where distance from the center of gravity is larger in the pair of ball bearings 5, 5a is made larger than that of the other ball bearing 5 being provided at a position where distance from the center of gravity is smaller. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明に係る回転支持装置及び回転機械装置は、例えばハードディスクドライブ装置(HDD)、フレキシブルディスクドライブ装置(FDD)、デジタルビデオディスク(DVD)、ミニディスク(MD)等の磁気、光、光磁気のディスクドライブ装置に組み込むスピンドルモータを構成する部材を回転自在に支持する構造の改良に関する。
【0002】
【従来の技術】
例えば、コンピュータの記憶装置等として使用されるHDDは、フレーム等に固定されるハウジングに固定した内側部材である、支持軸の周囲に、軸受装置を介して、外側部材であるハブを、回転自在に支持している。円輪状に形成した1乃至複数枚のハードディスクは、上記ハブの一部に結合支持して、このハブと共に回転する。
【0003】
上記ハードディスクにデータを記録するトラックの幅は極く狭い為、上記ハブは上記支持軸に、ぶれが生じない状態で、回転自在に支持する必要がある。この為従来から、上記支持軸の外周面とハブの内周面との間に設ける軸受装置として、1対の玉軸受を組み合わせ、それぞれの玉軸受を構成する各玉に予圧を付与する事で軸受剛性を確保したものを、広く使用している。
【0004】
又、近年、HDDに組み込むスピンドルモータの薄型化を図る為に、ハウジングに固定した、外側部材である固定部材の内側に、内側部材であるハブを、軸受装置を介して回転自在に支持する事も行なわれている。図3は、この様に従来から使用している、軸方向長さが極く小さいスピンドルモータの1例を示している。このスピンドルモータ1は、外側部材である固定部材(ハウジング)2の内周面と、内側部材であるハブ3の中心部に設けた軸部4の外周面との間に、1対の玉軸受5、5を設けている。これら各玉軸受5、5は、外周面に内輪軌道6を有する内輪7と、内周面に外輪軌道8を有する外輪9と、上記内輪軌道6と外輪軌道8との間にそれぞれ複数個ずつ転動自在に設けた、それぞれが転動体である玉10、10とを備える。これら各玉10、10は、図示しない保持器により転動自在に保持している。又、複数枚のハードディスク12、12の内周縁部は、上記ハブ3の外径側に設けた円筒部11に支持している。
【0005】
そして、上記各内輪7、7を上記軸部4の外周面の軸方向に離隔した2個所位置に、接着或は締り嵌めにより外嵌固定している。又、上記各内輪7、7の軸方向端面同士を、これら軸方向両端面同士の間に隙間13を設けた状態で対向させている。これに対して、上記各外輪9、9は、互いに対向する軸方向端面同士の間に間座14を挟持した状態で、上記固定部材2の内周面に、それぞれ接着或は締り嵌めにより内嵌固定している。尚、上記ハブ3の円筒部11の内周面にロータ15を固定し、このロータ15と上記固定部材2の外周面に固定したステータ16とを対向させている。
【0006】
上述の様に構成するスピンドルモータ1は、上記各内輪6、6を、互いに対向する軸方向端面同士の間に隙間13を介在させた状態のまま互いに近づき合う方向に押圧しつつ、上記ハブ3に外嵌固定する事により、上記各玉10、10に所望の予圧を付与している。そして、この様に予圧を付与した状態で、上記ハブ3は、上記固定部材2の内側に、がたつきなく回転自在に支持される。又、上記スピンドルモータ1の使用時には、上記ステータ16を構成するコイル18、18の導線に通電する事により、上記ハブ3を上記固定部材2に対し相対回転させる事ができる。
【0007】
【発明が解決しようとする課題】
上述した様な従来のスピンドルモータ1に組み込んで、ハブ3を回転自在に支持する回転支持装置の場合、円筒部11と軸部4とを連結する円輪部17を、図3の上端部に設けている為、ハブ3及びこのハブ3に固定したハードディスク12、12から成る回転部材の重心Gは、同図の上端寄りに位置する。又、上記回転支持装置の場合には、軸方向長さを極く小さくする為に、1対の玉軸受5、5を、図3の下端寄りに設けている。従って、上記重心Gと、上記1対の玉軸受5、5同士の間の軸方向中心Mとは、回転支持装置の軸方向に関して互いにずれている。又、従来構造の場合には、上記1対の玉軸受5、5の諸元(内輪7の内径、外輪9の外径、負の内部隙間等)を、互いに同じとしている。
【0008】
一方、スピンドルモータ1の使用時には、このスピンドルモータ1の固有振動数と、このスピンドルモータ1に組み込んだ玉軸受5、5の軌道面のうねり等に基づく、これら各玉軸受5、5の固有振動数とにより、上記スピンドルモータ1が特定の周波数で共振し、固定部材2に対してハブ3が振れ回り運動する可能性がある。この場合、スピンドルモータに組み込んだ1対の玉軸受5、5の間の軸方向中心Mの位置と、上記重心Gの位置とが軸方向に関して一致していれば、振れ回りにより上記各玉軸受5、5に加わる荷重を、これら各玉軸受5、5同士で均等にする事ができ、しかも上記ハブ3にモーメントが加わらない為、これら各玉軸受5、5が(弾性)変形する量を極く小さくできる。従って、この場合には、上記ハブ3が振れ回りする量(使用時にハブ3の中心軸が固定部材2の中心軸に対し傾斜する角度)を極く小さくできて、特に問題を生じる事はない。
【0009】
これに対して、上述の図3に示した従来のスピンドルモータ1の様に、1対の玉軸受5、5の間の軸方向中心Mの位置と、上記重心Gの位置とが軸方向に関して互いにずれている場合には、上記1対の玉軸受5、5のうち、上記重心Gからの距離が大きい位置に設けた、一方(図3の下方)の玉軸受5に、上記1対の玉軸受5、5のうち、上記重心Gからの距離が近い位置に設けた、他方(図3の上方)の玉軸受5よりも大きな荷重が加わる。これに対して従来構造の場合には、上記1対の玉軸受5、5の諸元を互いに同じとしており、これら1対の玉軸受5、5の剛性が互いに同じである為、上記一方の玉軸受5の(弾性)変形量が大きくなり、上記ハブ3が振れ回りする量が大きくなる可能性がある。この様にハブ3が振れ回りする量が大きくなった場合には、このハブ3に固定したハードディスク12、12のぶれが大きくなり、スピンドルモータ1を組み込んだHDDの性能が悪化する。
本発明は、この様な事情に鑑みて、使用時に回転する部材の重心と、1対の転がり軸受同士の間の軸方向中心とが軸方向に関して互いにずれている構造で、使用時に回転する部材が振れ回りする量を抑えるべく発明したものである。
【0010】
【課題を解決するための手段】
本発明の回転支持装置は、前述の図3に示した従来構造と同様に、外側部材の内周面と内側部材の外周面との間に設けた1対の転がり軸受を備え、使用時に上記外側部材又は内側部材に対し回転する部材の重心位置と、上記1対の転がり軸受同士の間の軸方向中心位置とが、軸方向に関して互いにずれている。
特に、本発明の回転支持装置に於いては、上記1対の転がり軸受のうち、上記重心からの距離が大きい位置に設けた一方の転がり軸受の剛性を、上記1対の転がり軸受のうち、上記重心からの距離が小さい位置に設けた他方の転がり軸受の剛性よりも大きくしている。
又、本発明の回転機械装置は、上記回転支持装置を組み込んでおり、使用時に、内側部材を外側部材に対し相対回転させる。
【0011】
【作用】
上述の様に構成する本発明の回転支持装置によれば、使用時に回転する部材の重心位置と、1対の転がり軸受同士の間の軸方向中心位置とが軸方向に関して互いにずれている構造で、これら1対の転がり軸受のうち、使用時に大きな荷重が作用する、一方の転がり軸受の変形量を小さくできる。この為、使用時に回転する部材が振れ回りする量を小さくできて、本発明の回転支持装置を組み込んだ各種回転機械装置の性能向上を図れる。しかも本発明の場合には、回転支持装置の回転抵抗を大きくする等の不都合を生じる事がない。
【0012】
【発明の実施の形態】
図1は、本発明の実施の形態の第1例として、本発明をスピンドルモータに適用した場合で、このスピンドルモータの固有振動数モードで、ハブ3が振れ回りする状態を、模式的に表している。尚、本発明の特徴は、使用時に回転する部材の重心位置と、1対の転がり軸受同士の間の軸方向中心位置とが軸方向に関して互いにずれている構造で、使用時に回転する部材が振れ回りする量を小さく抑えるべく、1対の転がり軸受同士の剛性を異ならせた点にある。その他の部分の構成及び作用は、前述の図3に示した従来構造の場合と同様である為、重複する説明は省略し、以下、本発明の特徴部分を中心に説明する。
【0013】
又、図1では、内側部材であるハブ3に設けた軸部4の外周面と、外側部材である固定部材2の内周面との間に設ける、1対の玉軸受5、5aを、ばねにより表している。尚、本例の場合には、これら各玉軸受5、5aを構成する内輪7(図3)の内径を4mm、外輪9(図3)の外径を9mm、これら内輪7及び外輪9の幅を2.6mm、各玉10、10(図3)の外径を1.588mm、上記各玉軸受5、5aに組み込む玉10、10の数を、それぞれ7個ずつとしている。
【0014】
特に、本発明の回転支持装置と、本発明の回転機械装置であるスピンドルモータとの場合には、上記1対の玉軸受5、5aのうち、ハブ3及びこのハブ3に固定したハードディスク12、12とから成る回転部材の重心G(図3)からの距離が大きい位置に設けた、一方(図1の下方)の玉軸受5aの、回転支持装置への組み付け前でのラジアル方向の内部隙間を0.016mmとし、上記1対の玉軸受5、5aのうち、上記重心Gからの距離が小さい位置に設けた、他方(図1の上方)の玉軸受5の、同じく組み付け前でのラジアル方向の内部隙間を0.010mmとしている。従って、本発明の場合には、これら1対の玉軸受5、5aを回転支持装置に組み付けた状態で、一方の玉軸受5aのモーメント剛性が、他方の玉軸受5のモーメント剛性よりも大きくなっている。
【0015】
上述の様に本発明の回転支持装置の場合には、1対の玉軸受5、5aのうち、上記回転部材の重心Gからの距離が大きい位置に設けた、一方の玉軸受5aの剛性を、上記1対の玉軸受5、5aのうち、上記重心Gからの距離が小さい位置に設けた、他方の玉軸受5の剛性よりも大きくしている。この為、上記重心Gの位置と、1対の玉軸受5、5a同士の間の軸方向中心Mの位置とが軸方向に関して互いにずれている構造で、上記1対の玉軸受5、5aのうち、使用時に大きな荷重が作用する、一方の玉軸受5aの変形量を小さくできる。この為、本発明によれば、使用時にハブ3が振れ回りする量を小さく抑える事ができて、本発明の回転支持装置を組み込んだ、スピンドルモータの性能向上を図れる。
【0016】
一方、本発明の場合と異なり、スピンドルモータに組み込む1対の玉軸受のうち、上記重心Gからの距離が小さい位置に設けた、他方の玉軸受の剛性を大きくしたり、上記1対の玉軸受の両方の剛性を大きくする事により、上記ハブ3が振れ回りする量を小さく抑える事も考えられる。但し、振れ回りにより小さい荷重が加わる、他方の玉軸受の剛性のみを大きくする事により、ハブ3の振れ回りを抑えられる効果は小さい。又、上記1対の玉軸受の両方の剛性を大きくした場合には、回転支持装置の回転抵抗が大きくなる等の不都合を生じる可能性がある。これに対して、本発明の場合には、この様な不都合の発生を抑えつつ、上記ハブ3が振れ回りする量を、有効に抑える事ができる。
【0017】
尚、図2は、前述した従来構造と同様に、ハブ3に設ける軸部4の外周面と、固定部材2の内周面との間に設ける1対の玉軸受5、5の剛性を互いに同じとした構造で、スピンドルモータの固有振動数モードで、ハブ3が振れ回りする状態を、模式的に表している。この図2に示した従来構造の場合、上記1対の玉軸受5、5の、回転支持装置への組み付け前でのラジアル方向の内部隙間を、何れも0.010mmとし、他の諸元も同じとする事により、これら両玉軸受5、5の剛性を互いに同じとしている。この様な図2に示した従来構造の場合には、上記1対の玉軸受5、5のうち、上記ハブ3とこのハブ3に固定したハードディスク12、12とから成る回転部材の重心G(図3)からの距離が大きい位置に設けた、一方の玉軸受5の変形量δが、前述の図1に示した、本発明の場合の変形量δ´よりも大きくなる。この為、この場合には、上記ハブ3が振れ回りする量が、本発明の場合に比較して大きくなる。
【0018】
又、本例の場合には、1対の玉軸受5、5aのうち、一方の玉軸受5aの、回転支持装置への組み付け前でのラジアル方向の内部隙間を大きくする事により、この一方の玉軸受5aのモーメント剛性を、他方の玉軸受5のモーメント剛性よりも大きくしている。この様に1対の玉軸受5、5aの内部隙間を互いに異ならせるには、上記各玉軸受5、5aの内部寸法の諸元を変える。例えば、これら両玉軸受5、5aの接触角を変えて、これら各玉軸受5、5aを回転支持装置へ組み付ける前の状態での、これら各玉軸受5、5aのラジアル方向の内部隙間を互いに異ならせれば、これら両玉軸受5、5aへの予圧付与を同時に行ない、しかも互いのモーメント剛性を異ならせる事ができる。但し、本発明は、この様にして剛性を大きくする場合に限定するものではない。即ち、本発明では、上記各玉軸受5、5aの玉の直径や個数、外輪軌道や内輪軌道の曲率半径、複数の玉のピッチ円直径(PCD)、内輪の内径、外輪の外径、玉の直径等の諸元を、上記一方の玉軸受5aと上記他方の玉軸受5とで異ならせる事により、この一方の玉軸受5aの剛性をこの他方の玉軸受5の剛性よりも大きくする事もできる。
【0019】
【発明の効果】
本発明の回転支持装置及び回転機械装置は、以上に述べた通り構成され作用するので使用時に回転する部材が振れ回りする量を、有効に抑える事ができて、HDD等の性能向上に寄与できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例に於いて、スピンドルモータの固有振動数モードで、ハブが振れ回りする状態を模式的に表した図。
【図2】従来構造の1例に於いて、スピンドルモータの固有振動数モードで、ハブが振れ回りする状態を模式的に表した図。
【図3】従来から使用している、薄型のスピンドルモータの1例を示す断面図。
【符号の説明】
1  スピンドルモータ
2  固定部材
3  ハブ
4  軸部
5、5a 玉軸受
6  内輪軌道
7  内輪
8  外輪軌道
9  外輪
10  玉
11  円筒部
12  ハードディスク
13  隙間
14  間座
15  ロータ
16  ステータ
17  円輪部
18  コイル
[0001]
TECHNICAL FIELD OF THE INVENTION
The rotating support device and the rotating mechanical device according to the present invention are, for example, magnetic, optical, magneto-optical such as a hard disk drive (HDD), a flexible disk drive (FDD), a digital video disk (DVD), and a mini disk (MD). The present invention relates to an improvement in a structure for rotatably supporting a member constituting a spindle motor incorporated in a disk drive device.
[0002]
[Prior art]
For example, an HDD used as a storage device of a computer or the like is configured such that a hub serving as an outer member is rotatable around a support shaft, which is an inner member fixed to a housing fixed to a frame or the like, via a bearing device. I support it. One or more hard disks formed in a ring shape are connected to and supported by a part of the hub, and rotate together with the hub.
[0003]
Since the width of a track for recording data on the hard disk is extremely narrow, the hub needs to be rotatably supported on the support shaft without causing blurring. For this reason, conventionally, as a bearing device provided between the outer peripheral surface of the support shaft and the inner peripheral surface of the hub, a pair of ball bearings is combined and a preload is applied to each ball constituting each ball bearing. Widely used bearing stiffness.
[0004]
In recent years, in order to reduce the thickness of a spindle motor incorporated in an HDD, a hub as an inner member is rotatably supported via a bearing device inside a fixed member as an outer member fixed to a housing. Has also been done. FIG. 3 shows an example of a spindle motor which is conventionally used and has a very small axial length. The spindle motor 1 has a pair of ball bearings between an inner peripheral surface of a fixed member (housing) 2 which is an outer member and an outer peripheral surface of a shaft portion 4 provided at the center of a hub 3 which is an inner member. 5 and 5 are provided. Each of these ball bearings 5, 5 has an inner ring 7 having an inner ring raceway 6 on the outer peripheral surface, an outer ring 9 having an outer raceway 8 on the inner peripheral surface, and a plurality of each between the inner raceway 6 and the outer raceway 8. Balls 10 and 10, each of which is a rolling element, are provided so as to freely roll. Each of the balls 10, 10 is rotatably held by a retainer (not shown). The inner peripheral edges of the plurality of hard disks 12 are supported by a cylindrical portion 11 provided on the outer diameter side of the hub 3.
[0005]
The inner rings 7, 7 are externally fixed to each other at two axially spaced positions on the outer peripheral surface of the shaft portion 4 by bonding or interference fitting. Also, the axial end faces of the inner rings 7, 7 are opposed to each other with a gap 13 provided between the axial end faces. On the other hand, the outer races 9 and 9 are bonded to each other on the inner peripheral surface of the fixing member 2 by bonding or interference fitting in a state where the spacer 14 is sandwiched between the axial end surfaces facing each other. It is fitted and fixed. The rotor 15 is fixed to the inner peripheral surface of the cylindrical portion 11 of the hub 3, and the rotor 15 faces the stator 16 fixed to the outer peripheral surface of the fixing member 2.
[0006]
The spindle motor 1 configured as described above presses each of the inner races 6, 6 in a direction approaching each other with a gap 13 interposed between the axial end faces facing each other, and A desired preload is applied to each of the balls 10 and 10 by external fitting and fixing. The hub 3 is rotatably supported inside the fixed member 2 without play in a state where the preload is applied in this manner. When the spindle motor 1 is used, the hub 3 can be relatively rotated with respect to the fixed member 2 by supplying electricity to the conductive wires of the coils 18 constituting the stator 16.
[0007]
[Problems to be solved by the invention]
In the case of a rotation supporting device which rotatably supports the hub 3 by being incorporated in the conventional spindle motor 1 as described above, a circular ring portion 17 connecting the cylindrical portion 11 and the shaft portion 4 is provided at the upper end portion in FIG. The center of gravity G of the hub 3 and the rotating member composed of the hard disks 12 fixed to the hub 3 is located near the upper end in FIG. Further, in the case of the rotation support device, a pair of ball bearings 5, 5 are provided near the lower end in FIG. 3 in order to minimize the axial length. Therefore, the center of gravity G and the axial center M between the pair of ball bearings 5, 5 are shifted from each other in the axial direction of the rotation support device. In the case of the conventional structure, the specifications (the inner diameter of the inner ring 7, the outer diameter of the outer ring 9, the negative internal clearance, and the like) of the pair of ball bearings 5, 5 are the same.
[0008]
On the other hand, when the spindle motor 1 is used, the natural frequency of each of the ball bearings 5, 5 based on the natural frequency of the spindle motor 1 and the waviness of the raceway surfaces of the ball bearings 5, 5 incorporated in the spindle motor 1. Depending on the number, there is a possibility that the spindle motor 1 resonates at a specific frequency, and the hub 3 oscillates with respect to the fixed member 2. In this case, if the position of the center M in the axial direction between the pair of ball bearings 5 and 5 incorporated in the spindle motor and the position of the center of gravity G coincide with each other in the axial direction, each of the ball bearings is swung due to whirling. Since the loads applied to the ball bearings 5 and 5 can be equalized between the ball bearings 5 and 5 and no moment is applied to the hub 3, the amount of deformation (elasticity) of the ball bearings 5 and 5 is reduced. It can be extremely small. Therefore, in this case, the amount by which the hub 3 whirls (the angle at which the center axis of the hub 3 is inclined with respect to the center axis of the fixing member 2 during use) can be made extremely small, and there is no particular problem. .
[0009]
On the other hand, as in the conventional spindle motor 1 shown in FIG. 3 described above, the position of the center M in the axial direction between the pair of ball bearings 5, 5 and the position of the center of gravity G are in the axial direction. If they are shifted from each other, one of the pair of ball bearings 5 (5, 5) provided at a position where the distance from the center of gravity G is large, and Among the ball bearings 5, 5, a larger load is applied than the other (upper in FIG. 3) ball bearing 5 provided at a position closer to the center of gravity G. On the other hand, in the case of the conventional structure, the specifications of the pair of ball bearings 5 and 5 are the same, and the rigidity of the pair of ball bearings 5 and 5 is the same. The amount of (elastic) deformation of the ball bearing 5 may increase, and the amount of the hub 3 whirling may increase. When the amount of whirling of the hub 3 increases in this manner, the hard disks 12, 12 fixed to the hub 3 move more, and the performance of the HDD incorporating the spindle motor 1 deteriorates.
In view of such circumstances, the present invention has a structure in which the center of gravity of a member that rotates during use and the axial center between a pair of rolling bearings are displaced from each other in the axial direction. Has been invented to suppress the amount of whirling.
[0010]
[Means for Solving the Problems]
The rotation support device of the present invention includes a pair of rolling bearings provided between the inner peripheral surface of the outer member and the outer peripheral surface of the inner member, similarly to the conventional structure shown in FIG. The position of the center of gravity of the member rotating with respect to the outer member or the inner member and the axial center position between the pair of rolling bearings are shifted from each other in the axial direction.
In particular, in the rotation support device of the present invention, the rigidity of one of the pair of rolling bearings, which is provided at a position where the distance from the center of gravity is large, of the pair of rolling bearings, The rigidity of the other rolling bearing provided at a position where the distance from the center of gravity is small is larger than the rigidity of the other rolling bearing.
In addition, the rotary mechanical device of the present invention incorporates the rotation support device described above, and rotates the inner member relative to the outer member during use.
[0011]
[Action]
ADVANTAGE OF THE INVENTION According to the rotation supporting apparatus of this invention comprised as mentioned above, the position of the center of gravity of the member which rotates at the time of use, and the axial center position between a pair of rolling bearings are mutually shifted with respect to an axial direction. Of the pair of rolling bearings, a large load acts during use, and the amount of deformation of one of the rolling bearings can be reduced. Therefore, the amount of whirling of the rotating member during use can be reduced, and the performance of various rotating machinery incorporating the rotation supporting device of the present invention can be improved. Moreover, in the case of the present invention, there is no inconvenience such as increasing the rotation resistance of the rotation support device.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 schematically shows, as a first example of the embodiment of the present invention, a case where the present invention is applied to a spindle motor, in which the hub 3 whirls in a natural frequency mode of the spindle motor. ing. The feature of the present invention is a structure in which the position of the center of gravity of the member that rotates during use and the axial center position between the pair of rolling bearings are shifted from each other in the axial direction. The point is that the rigidity of the pair of rolling bearings is made different to suppress the amount of rotation. The configuration and operation of the other parts are the same as in the case of the conventional structure shown in FIG. 3 described above, and thus redundant description will be omitted, and the following description will focus on features of the present invention.
[0013]
In FIG. 1, a pair of ball bearings 5 and 5a provided between the outer peripheral surface of the shaft portion 4 provided on the hub 3 serving as the inner member and the inner peripheral surface of the fixed member 2 serving as the outer member are provided. It is represented by a spring. In the case of this example, the inner diameter of the inner race 7 (FIG. 3) constituting each of the ball bearings 5 and 5a is 4 mm, the outer diameter of the outer race 9 (FIG. 3) is 9 mm, and the width of the inner race 7 and the outer race 9 is shown. Is 2.6 mm, the outer diameter of each ball 10, 10 (FIG. 3) is 1.588 mm, and the number of balls 10, 10 to be incorporated in each of the ball bearings 5, 5a is seven.
[0014]
In particular, in the case of the rotation support device of the present invention and the spindle motor which is the rotary mechanical device of the present invention, of the pair of ball bearings 5 and 5a, the hub 3 and the hard disk 12 fixed to the hub 3, 12 is provided at a position where the distance from the center of gravity G (FIG. 3) of the rotating member is large, and the one (lower in FIG. 1) ball bearing 5a has a radial internal clearance before being assembled to the rotation supporting device. Is set to 0.016 mm, and the other (upper in FIG. 1) ball bearing 5 of the pair of ball bearings 5 and 5a is provided at a position where the distance from the center of gravity G is smaller, and is the same as before the assembly. The internal gap in the direction is 0.010 mm. Therefore, in the case of the present invention, the moment rigidity of one of the ball bearings 5a becomes larger than the moment rigidity of the other ball bearing 5 in a state where the pair of ball bearings 5 and 5a are assembled to the rotation support device. ing.
[0015]
As described above, in the case of the rotation supporting device of the present invention, the rigidity of one of the ball bearings 5 and 5a provided at a position where the distance from the center of gravity G of the rotating member is large is reduced. Of the pair of ball bearings 5, 5a, the rigidity of the other ball bearing 5, which is provided at a position where the distance from the center of gravity G is small, is larger. Therefore, the position of the center of gravity G and the position of the axial center M between the pair of ball bearings 5 and 5a are shifted from each other in the axial direction. Among them, the amount of deformation of one of the ball bearings 5a on which a large load acts during use can be reduced. Therefore, according to the present invention, the amount of whirling of the hub 3 during use can be reduced, and the performance of the spindle motor incorporating the rotation support device of the present invention can be improved.
[0016]
On the other hand, unlike the case of the present invention, of the pair of ball bearings incorporated in the spindle motor, the rigidity of the other ball bearing provided at a position where the distance from the center of gravity G is small is increased, or the pair of ball bearings is increased. By increasing the rigidity of both of the bearings, it is conceivable to reduce the amount of whirling of the hub 3. However, the effect of suppressing the whirling of the hub 3 is small by increasing only the rigidity of the other ball bearing where a smaller load is applied to the whirling. In addition, when the rigidity of both of the pair of ball bearings is increased, there is a possibility that inconveniences such as an increase in rotational resistance of the rotation support device may occur. On the other hand, in the case of the present invention, the amount of the hub 3 whirling can be effectively suppressed while suppressing the occurrence of such inconvenience.
[0017]
FIG. 2 shows that the rigidity of a pair of ball bearings 5 provided between the outer peripheral surface of the shaft portion 4 provided on the hub 3 and the inner peripheral surface of the fixing member 2 is the same as in the conventional structure described above. FIG. 3 schematically shows a state in which the hub 3 whirls in the natural frequency mode of the spindle motor with the same structure. In the case of the conventional structure shown in FIG. 2, the radial internal gap of the pair of ball bearings 5 and 5 before assembly to the rotation support device is set to 0.010 mm, and other specifications are also omitted. By making them the same, the rigidity of these two ball bearings 5, 5 is made equal to each other. In the case of such a conventional structure shown in FIG. 2, the center of gravity G (of the rotating member composed of the hub 3 and the hard disks 12, 12 fixed to the hub 3) of the pair of ball bearings 5, 5 ( The deformation amount δ of one of the ball bearings 5 provided at a position at a large distance from FIG. 3) is larger than the deformation amount δ ′ of the present invention shown in FIG. 1 described above. Therefore, in this case, the amount of the whirling of the hub 3 is larger than in the case of the present invention.
[0018]
Further, in the case of the present example, by increasing the radial internal gap of one of the pair of ball bearings 5 and 5a before assembling it to the rotation support device, one of the ball bearings 5a and 5a is made larger. The moment rigidity of the ball bearing 5a is set larger than the moment rigidity of the other ball bearing 5. In order to make the internal clearances of the pair of ball bearings 5 and 5a different from each other, the specifications of the internal dimensions of the ball bearings 5 and 5a are changed. For example, by changing the contact angles of the two ball bearings 5 and 5a, the radial internal gaps between the ball bearings 5 and 5a in a state before the respective ball bearings 5 and 5a are assembled to the rotation support device are mutually set. If different, it is possible to simultaneously apply preload to these two ball bearings 5 and 5a, and to make the moment rigidities different from each other. However, the present invention is not limited to the case where the rigidity is increased in this way. That is, in the present invention, the diameter and number of the balls of each of the ball bearings 5 and 5a, the radius of curvature of the outer raceway and the inner raceway, the pitch circle diameter (PCD) of a plurality of balls, the inner diameter of the inner race, the outer diameter of the outer race, The rigidity of the one ball bearing 5a is made larger than the rigidity of the other ball bearing 5 by making the specifications such as the diameter of the one ball bearing 5a and the other ball bearing 5 different from each other. You can also.
[0019]
【The invention's effect】
Since the rotation support device and the rotation mechanical device of the present invention are configured and operated as described above, the amount of whirling of the rotating member during use can be effectively suppressed, and can contribute to the improvement of the performance of the HDD and the like. .
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a state in which a hub whirls in a natural frequency mode of a spindle motor in one example of an embodiment of the present invention.
FIG. 2 is a diagram schematically showing a state in which a hub whirls in a natural frequency mode of a spindle motor in one example of a conventional structure.
FIG. 3 is a sectional view showing an example of a thin spindle motor conventionally used.
[Explanation of symbols]
Reference Signs List 1 spindle motor 2 fixing member 3 hub 4 shaft portion 5, 5a ball bearing 6 inner ring raceway 7 inner ring 8 outer ring raceway 9 outer ring 10 ball 11 cylindrical portion 12 hard disk 13 gap 14 spacer 15 rotor 16 stator 17 circular ring portion 18 coil

Claims (2)

外側部材の内周面と内側部材の外周面との間に設けた1対の転がり軸受を備え、使用時に上記外側部材又は内側部材に対し回転する部材の重心位置と、上記1対の転がり軸受同士の間の軸方向中心位置とが、軸方向に関して互いにずれている回転支持装置に於いて、上記1対の転がり軸受のうち、上記重心からの距離が大きい位置に設けた一方の転がり軸受の剛性を、上記1対の転がり軸受のうち、上記重心からの距離が小さい位置に設けた他方の転がり軸受の剛性よりも大きくした事を特徴とする回転支持装置。A pair of rolling bearings provided between an inner peripheral surface of the outer member and an outer peripheral surface of the inner member, wherein a center of gravity of a member that rotates with respect to the outer member or the inner member during use, and the pair of rolling bearings In the rotation support device in which the axial center positions between them are shifted from each other in the axial direction, of the pair of rolling bearings, one of the rolling bearings provided at a position where the distance from the center of gravity is large. A rotation supporting device, wherein the rigidity is greater than the rigidity of the other one of the pair of rolling bearings provided at a position where the distance from the center of gravity is small. 請求項1に記載した回転支持装置を組み込んでおり、使用時に、内側部材を外側部材に対し相対回転させる回転機械装置。A rotary mechanical device incorporating the rotary support device according to claim 1, wherein the rotary member rotates the inner member relative to the outer member in use.
JP2002252395A 2002-08-30 2002-08-30 Rotation supporting apparatus and rotating machine apparatus Pending JP2004092715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252395A JP2004092715A (en) 2002-08-30 2002-08-30 Rotation supporting apparatus and rotating machine apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252395A JP2004092715A (en) 2002-08-30 2002-08-30 Rotation supporting apparatus and rotating machine apparatus

Publications (1)

Publication Number Publication Date
JP2004092715A true JP2004092715A (en) 2004-03-25

Family

ID=32058672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252395A Pending JP2004092715A (en) 2002-08-30 2002-08-30 Rotation supporting apparatus and rotating machine apparatus

Country Status (1)

Country Link
JP (1) JP2004092715A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048768A (en) * 2017-07-21 2021-03-25 株式会社デンソー Rotary electric machine
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US11984795B2 (en) 2017-07-21 2024-05-14 Denso Corporation Rotating electrical machine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11962228B2 (en) 2017-07-21 2024-04-16 Denso Corporation Rotating electrical machine
JP2021048769A (en) * 2017-07-21 2021-03-25 株式会社デンソー Rotary electric machine
US11984795B2 (en) 2017-07-21 2024-05-14 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
JP7095731B2 (en) 2017-07-21 2022-07-05 株式会社デンソー Rotating electric machine
JP7095730B2 (en) 2017-07-21 2022-07-05 株式会社デンソー Rotating electric machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11664707B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
JP2021048768A (en) * 2017-07-21 2021-03-25 株式会社デンソー Rotary electric machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
US11831228B2 (en) 2017-07-21 2023-11-28 Denso Corporation Rotating electrical machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11984778B2 (en) 2021-06-25 2024-05-14 Denso Corporation Rotating electric machine

Similar Documents

Publication Publication Date Title
JP3536022B2 (en) Pivot bearing device
JPH03128650A (en) Spindle motor
JP2004092715A (en) Rotation supporting apparatus and rotating machine apparatus
JP2599707B2 (en) Magnetic disk device
JP5928088B2 (en) Pivot bearing device for swing arm of magnetic recording device and magnetic recording device using the same
JP3419053B2 (en) Double-row rolling bearing device with preload
JP3065368B2 (en) Bearing structure and spindle motor provided with the structure
WO2013014954A1 (en) Roller bearing for hard disk actuators
JP3611414B2 (en) Motor bearing structure
JP2002122147A (en) Ball bearing, and manufacturing method thereof
JP2002171718A (en) Motor
JP2006064079A (en) Pivot bearing device for hard disk drive device of double row bearing device, and hard disk drive device having the same
JPH11341734A (en) Disk type motor
JP2000078813A (en) Spindle motor for driving recording disk
JP4118993B2 (en) Rotating machine
JP2003227514A (en) Swing arm device
JP2931073B2 (en) Spindle motor
JP3905349B2 (en) Motor and disk device
JP3740772B2 (en) motor
US20040208410A1 (en) Bearing device, head support device and recording/reproducing device
JP2001271841A (en) Crown-type cage for ball bearing, and ball bearing
JP2826878B2 (en) Bearing structure and motor provided with the structure
JPH10246239A (en) Rolling bearing and relevant product using the same
JP2003172340A (en) Bearing and spindle motor using the bearing
JP2001165159A (en) Rotary machine and preload fluctuation-restraining method