JPS6311531B2 - - Google Patents

Info

Publication number
JPS6311531B2
JPS6311531B2 JP20780183A JP20780183A JPS6311531B2 JP S6311531 B2 JPS6311531 B2 JP S6311531B2 JP 20780183 A JP20780183 A JP 20780183A JP 20780183 A JP20780183 A JP 20780183A JP S6311531 B2 JPS6311531 B2 JP S6311531B2
Authority
JP
Japan
Prior art keywords
bearing shoe
bearing
oil film
radius
shoe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20780183A
Other languages
Japanese (ja)
Other versions
JPS60101315A (en
Inventor
Isao Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20780183A priority Critical patent/JPS60101315A/en
Publication of JPS60101315A publication Critical patent/JPS60101315A/en
Publication of JPS6311531B2 publication Critical patent/JPS6311531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/06Sliding-contact bearings for exclusively rotary movement for axial load only with tiltably-supported segments, e.g. Michell bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は推力軸受装置に係り、特に回転軸の周
囲に同心円状に配置された分割形の扇形状の軸受
シユーを支持体で揺動自在に支持している推力軸
受装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a thrust bearing device, and in particular to a thrust bearing device in which a split fan-shaped bearing shaft arranged concentrically around a rotating shaft is swingable with a support. This relates to a supporting thrust bearing device.

〔発明の背景〕[Background of the invention]

第1図および第2図には水車発電機等に使用さ
れる推力軸受装置の従来例が示されている。同図
に示されているように推力軸受装置は回転軸1に
カラー2を介して固着され、かつ回転軸1と共に
回動するランナー3、このランナー3に摺動接触
し、かつ回転軸1の周囲に同心円状に配置される
軸受シユー4、この軸受シユー4を支持し、かつ
油冷却器5を有する軸受油槽6の底部の床7にボ
ルト等で固着された支持体8等より構成される。
そして軸受シユー4は支持体8のピボツト9を支
点としてあらゆる方向へ傾きが可能なように揺動
自在に支持されている。なお同図において10は
円板状サポートである。
1 and 2 show conventional examples of thrust bearing devices used in water turbine generators and the like. As shown in the figure, the thrust bearing device includes a runner 3 that is fixed to the rotating shaft 1 via a collar 2 and rotates together with the rotating shaft 1, and a runner 3 that is in sliding contact with the runner 3 and that is attached to the rotating shaft 1. Consists of a bearing shoe 4 arranged concentrically around the periphery, a support 8 that supports the bearing shoe 4 and is fixed with bolts or the like to a floor 7 at the bottom of a bearing oil tank 6 having an oil cooler 5. .
The bearing shoe 4 is swingably supported around a pivot 9 of the support 8 so as to be tiltable in all directions. In addition, in the same figure, 10 is a disc-shaped support.

このように構成された推力軸受装置で軸受シユ
ー4の支持点の位置は軸受性能に大きく影響する
ので、円周方向については、一方向にだけ回転す
る所謂一方向回転機では軸受シユー4の円周方向
中心より若干回転方向にずらした所謂偏心支持方
式が通常使用され、ランナー3が僅かに回転して
も速やかに軸受シユー4が傾き、楔状の油膜を軸
受シユー4とランナー3との間に形成して安定し
た油膜を形成するようにしてある。そして両方向
に回転する揚水発電所用の発電電動機などの所謂
両方向回転機では、一般に軸受シユー4の円周方
向の中心で支持しているが、当然のことながら油
膜の形成能力が低下するので、電機の始動時ある
いは停止時には軸受シユー4の摺動面に強制的に
高圧油を供給して油膜を生成し、摺動面の金属接
触による損傷を未然に防止するようにしてある。
In a thrust bearing device configured in this way, the position of the support point of the bearing shoe 4 has a great influence on bearing performance. A so-called eccentric support system in which the runner 3 is slightly shifted in the rotational direction from the center in the circumferential direction is normally used, and even if the runner 3 rotates slightly, the bearing shoe 4 tilts immediately, creating a wedge-shaped oil film between the bearing shoe 4 and the runner 3. It is designed to form a stable oil film. In so-called bidirectional rotating machines such as generator motors for pumped storage power plants that rotate in both directions, the bearing shoe 4 is generally supported at the center of its circumference, but this naturally reduces the ability to form an oil film. When the bearing shoe 4 is started or stopped, high-pressure oil is forcibly supplied to the sliding surface of the bearing shoe 4 to form an oil film to prevent damage to the sliding surface due to metal contact.

これに対して軸受シユー4の半径方向の支持点
については従来、一方向回転機および両方向回転
機共に第3図に示されているように、軸受シユー
4の半径方向の中心位置(この場合に軸受シユー
4の内径Mまでの内半径をR1、外径Nまでの外
半径をR2とすると、R1+R2/2が中心位置となる) を支持点(支点)Pとして支持していたが、これ
では軸受シユー4が外径側に傾きすぎて図中点線
表示の油膜圧力分布曲線Kのように、軸受シユー
4の内径M側の油膜は薄くなり、油膜圧力は内径
M側が高くなつている。これに対して支持点Pを
第4図に示されているように軸受シユー4の外径
N側に極端にずらすと、上述の第3図の場合とは
逆に軸受シユー4の外径N側の油膜が極端に薄く
なり、油膜圧力は外径N側が高くなる。
On the other hand, regarding the radial support point of the bearing shoe 4, conventionally the radial center position of the bearing shoe 4 (in this case If the inner radius up to the inner diameter M of the bearing shoe 4 is R 1 and the outer radius up to the outer diameter N is R 2 , then R 1 + R 2 /2 is the center position). However, in this case, the bearing shoe 4 is tilted too much toward the outer diameter side, and as shown in the oil film pressure distribution curve K shown by the dotted line in the figure, the oil film on the inner diameter M side of the bearing shoe 4 becomes thinner, and the oil film pressure is higher on the inner diameter M side. It's summery. On the other hand, if the support point P is extremely shifted toward the outer diameter N side of the bearing shoe 4 as shown in FIG. 4, the outer diameter N of the bearing shoe 4 will be The oil film on the side becomes extremely thin, and the oil film pressure becomes higher on the outer diameter N side.

このうち上述の第3図の場合について軸受シユ
ー4の支持点P、角度θ、内半径R1、外半径R2
支持点Pの半径Rs、内径側の面積S1、外径側の
面積S2、径方向長さBおよび内径側から支持点P
までの長さBs等が示されている第5図を参照に
して説明すると次のようになる。支持点Pまでの
半径Rs、内径側の面積S1、外径側の面積S2およ
び内径側の面積S1と外径側の面積S2との比は
夫々、 Rs=1/2(R1+R2) ……(1) S1=πθ/360(R2 s−R2 1) ……(2) S2=πθ/360(R2 2−R2 s) ……(3) S2/S1={R22−1/4(R1+R22}/{1/4(R1
+R22−R21}=3R22−2R2R1−R21/R22−2R2
R1−3R21……(4) となるが、一例として300MVA級水車発電機を
例にとつて(4)式に軸受シユー4の内半径R1=60
cm、外半径R2=160cmを代入し、試算すると、 S2/S1=3×1602−2×160×60−602/1602+2×16
0×60−3×602=1.59 となり、軸受シユー4の外径側の面積S2が内径側
の面積S1の1.59倍と極端に大きいため、軸受シユ
ー4は外径側に傾くのである。軸受シユー4が円
周方向に傾いて楔状の油膜を生成するのは望まし
いことであるが、半径方向には傾かないのが望ま
しく、それが上述のように半径方向に傾きすぎる
と油膜生成能力が低下して十分な油膜が生成され
ず、軸受が損傷する恐れがあつた。
Among these, in the case of FIG. 3 mentioned above, the support point P of the bearing shoe 4, the angle θ, the inner radius R 1 , the outer radius R 2 ,
Radius Rs of support point P, area S 1 on the inner diameter side, area S 2 on the outer diameter side, radial length B, and support point P from the inner diameter side
The explanation will be as follows with reference to FIG. 5, which shows the length Bs, etc. The radius Rs to the support point P, the area S 1 on the inner diameter side, the area S 2 on the outer diameter side, and the ratio of the area S 1 on the inner diameter side to the area S 2 on the outer diameter side are respectively as follows: Rs = 1/2 (R 1 + R 2 ) ……(1) S 1 = πθ/360 (R 2 s − R 2 1 ) ……(2) S 2 = πθ/360 (R 2 2 − R 2 s ) ……(3) S 2 /S 1 = {R 2 / 2 - 1/4 (R 1 + R 2 ) 2 } / {1/4 (R 1
+R 2 ) 2 −R 2 / 1 } = 3R 2 / 2 −2R 2 R 1 −R 2 / 1 /R 2 / 2 −2R 2
R 1 −3R 2 / 1 ...(4) However, using a 300MVA class water turbine generator as an example, the inner radius of bearing shoe 4 is calculated by equation (4) R 1 = 60
cm, outer radius R 2 = 160 cm, and calculate: S 2 /S 1 = 3×160 2 −2×160×60−60 2 /160 2 +2×16
0 x 60 - 3 x 60 2 = 1.59, and since the area S 2 on the outside diameter side of the bearing shoe 4 is extremely large, 1.59 times the area S 1 on the inside diameter side, the bearing shoe 4 tilts toward the outside diameter side. . It is desirable for the bearing shoe 4 to tilt in the circumferential direction and generate a wedge-shaped oil film, but it is desirable not to tilt in the radial direction, and as mentioned above, if it tilts too much in the radial direction, the ability to generate an oil film will be reduced. There was a risk that a sufficient oil film would not be formed and the bearings would be damaged.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたものであり、
軸受シユーとランナーとの摺動面における油膜の
生成能力増大を可能とした推力軸受装置を提供す
ることを目的とするものである。
The present invention has been made in view of the above points,
It is an object of the present invention to provide a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between a bearing shoe and a runner.

〔発明の概要〕[Summary of the invention]

すなわち本発明は回転軸にカラーを介して固着
され、かつ回転軸と共に回転するランナーと、こ
のランナーに摺動接触し、かつ回転軸の周囲に同
心円状に配置される扇形状の軸受シユーと、この
軸受シユーと軸受油槽の底部との間に配置され、
かつピボツトを有する支持体とを備え、軸受シユ
ーが支持体のピボツトを支点として揺動自在に支
持されている推力軸受装置において、軸受シユー
のピボツトで支持される支持点の半径をRs、軸
受シユーの内半径をR1、外半径をR2、角度をθ
とした場合に、支持点の半径Rsを(0.52R2
0.48R1)より大きく、かつ 4/3・(R32−R31)/(R22−R21)・180sin
(θ/2)/πθ より小さくしたことを特徴とするものであり、こ
れによつて軸受シユーは半径方向の傾きを低減し
た支持点で支持されるようになる。
That is, the present invention includes: a runner that is fixed to a rotating shaft via a collar and rotates together with the rotating shaft; a fan-shaped bearing shoe that is in sliding contact with the runner and is arranged concentrically around the rotating shaft; located between this bearing shoe and the bottom of the bearing oil tank,
In a thrust bearing device in which the bearing shoe is swingably supported around the pivot of the support body, the radius of the support point supported by the pivot of the bearing shoe is Rs, and the radius of the support point supported by the pivot of the bearing shoe is Rs. The inner radius is R 1 , the outer radius is R 2 , and the angle is θ
In this case, the radius Rs of the support point is (0.52R 2 +
0.48R 1 ) and 4/3・(R 3 / 2 − R 3 / 1 ) / (R 2 / 2 − R 2 / 1 )・180sin
(θ/2)/πθ. This allows the bearing shoe to be supported at a support point with reduced radial inclination.

軸受シユーの傾きを低減させるには支点(支持
点)を軸受シユーの半径方向のどの位置にすれば
よいかを、300MVA級水車発電機の推力軸受に
ついて検討した。検討結果を第6図に示したが、
これは内半径R1が60cm、外半径R2が160cm、角度
θが22゜の軸受シユーの性能計算結果を横軸に支
持点の半径Rsおよび内半径R1の差Bsと軸受シユ
ーの半径方向の長さBとの比、すなわち半径方向
支点位置比Bs/Bをとり、縦軸に軸受シユーと
ランナーとの間の最高油膜温度および最小油膜厚
さをとつて、半径方向支点位置比Bs/Bと最高
油膜温度および最小油膜厚さとの関係を示したも
のである。同図に示されている半径方向支点位置
比Bs/Bによる最高油膜温度曲線Xおよび最小
油膜厚さ曲線Yから明らかなように、半径方向支
点位置比Bs/Bが0.54付近で最小油膜厚さが最大
で、最高油膜温度が最小となつている。これは軸
受シユーの半径方向の傾きが小さくなつて、軸受
シユーとランナーとの摺動面における油膜が内径
側から外径側にわたつて一様で、かつ大きく形成
されるためである。これに比べこの半径方向支点
位置比Bs/Bが0.50、すなわち従来の支持点では
最小油膜厚さはかなり減少し、最高油膜温度は高
くなつている。これらに関し更に第5図の半径方
向支点位置比Bs/Bを変えた場合について検討
した。まず内径側面積S1と外径側面積S2とが等し
くなる支持点半径Rsを求ると、(2)および(3)式に
おいてS1=S2とおけばよいので、 となり、この場合の半径方向支点位置比Bs/B
は0.608となるが、この場合の最高油膜温度およ
び最小油膜厚さは第6図から明らかなように、半
径方向支点位置比Bs/Bが0.54のそれに比較して
最小油膜厚さはかなり小さく、最高油膜温度は高
くなる。次いで軸受シユー4の重心位置の支点を
計算すると、軸受シユー4の重心位置の半径Rs
は Rs=4/3・R32−R31/R22−R21・sin(θ
/2)/(2πθ/360)=116.9(cm) ……(6) となり、これより半径方向支点位比Bs/Bを求
めると0.569となるが、この場合も半径方向支点
位置比Bs/Bが0.54のそれよりも最小油膜厚さは
低下する。
We investigated the thrust bearing of a 300MVA class water turbine generator to find out where in the radial direction of the bearing shoe the fulcrum (support point) should be placed in order to reduce the inclination of the bearing shoe. The study results are shown in Figure 6.
This is the performance calculation result of a bearing shoe with an inner radius R 1 of 60 cm, an outer radius R 2 of 160 cm, and an angle θ of 22 degrees. Taking the ratio of the direction length B, that is, the radial fulcrum position ratio Bs/B, and taking the maximum oil film temperature and minimum oil film thickness between the bearing shoe and the runner on the vertical axis, the radial fulcrum position ratio Bs The relationship between /B, maximum oil film temperature, and minimum oil film thickness is shown. As is clear from the maximum oil film temperature curve X and minimum oil film thickness curve Y based on the radial support position ratio Bs/B shown in the same figure, the minimum oil film thickness is reached when the radial support position ratio Bs/B is around 0.54. is the maximum, and the maximum oil film temperature is the minimum. This is because the inclination of the bearing shoe in the radial direction becomes smaller and the oil film on the sliding surface between the bearing shoe and the runner becomes uniform and large from the inner diameter side to the outer diameter side. In comparison, at the radial support point position ratio Bs/B of 0.50, that is, at the conventional support point, the minimum oil film thickness is considerably reduced and the maximum oil film temperature is increased. Regarding these, we further investigated the case where the radial support point position ratio Bs/B in FIG. 5 was changed. First, find the radius Rs of the support point where the inner diameter side area S 1 and the outer diameter side area S 2 are equal. Since it is sufficient to set S 1 = S 2 in equations (2) and (3), In this case, the radial fulcrum position ratio Bs/B
is 0.608, but as is clear from Figure 6, the maximum oil film temperature and minimum oil film thickness in this case are considerably smaller than those when the radial support position ratio Bs/B is 0.54. The maximum oil film temperature becomes higher. Next, when calculating the fulcrum of the center of gravity of the bearing shoe 4, the radius Rs of the center of gravity of the bearing shoe 4 is calculated.
is Rs=4/3・R3 / 2 −R3 / 1 / R2 / 2R2 / 1・sin(θ
/2)/(2πθ/360) = 116.9 (cm) ...(6) From this, the radial fulcrum position ratio Bs/B is found to be 0.569, but in this case as well, the radial fulcrum position ratio Bs/B The minimum oil film thickness is lower than that of 0.54.

これらより軸受シユーの軸受性能よりみた半径
方向の最適支持位置は(1)式のような寸法的な中心
位置、(5)式のような幾何学的な面積中心位置およ
び(6)式のような幾何学的重心位置と異なつて、油
膜の流体力学的な重心位置に基づいており、軸受
シユーの荷重、周速および寸法によつて異なる
が、大体(1)式と(6)式との間に存在し、かつ半径方
向支点位置比Bs/Bは0.52よりも大きくすればよ
いことが明らかとなつた。この半径方向支点位置
比Bs/BがBs/B>0.52の条件を満たす軸受シ
ユーのピボツトで支持される支持点の半径Rsは
Rs>(0.52R2+0.48R1)となるので、本発明では
軸受シユーのピボツトで支持される支持点の半径
をRs、軸受シユーの内半径をR1、外半径をR2
角度をθとした場合に、支持点の半径Rsを
(0.52R2+0.48R1)より大きく、かつ 4/3・(R32−R31)/(R22−R21)・180sin
(θ/2)/πθ より小さくした。このようにすることにより、軸
受シユーとランナーとの摺動面における油膜の生
成能力増大を可能とした推力軸受装置、を得るこ
とを可能としたものである。
From these, the optimal support position in the radial direction of the bearing shoe in terms of bearing performance is the dimensional center position as shown in equation (1), the geometric area center position as shown in equation (5), and the optimal support position in the radial direction as shown in equation (6). Unlike the geometric center of gravity position, it is based on the hydrodynamic center of gravity position of the oil film, and although it varies depending on the load, circumferential speed and dimensions of the bearing shoe, it is roughly the same as equation (1) and equation (6). It has become clear that the radial support point position ratio Bs/B should be larger than 0.52. The radius Rs of the support point supported by the pivot of the bearing shoe that satisfies the condition that the radial support point position ratio Bs/B is Bs/B>0.52 is
Since Rs>(0.52R 2 +0.48R 1 ), in the present invention, the radius of the support point supported by the pivot of the bearing shoe is Rs, the inner radius of the bearing shoe is R 1 , the outer radius is R 2 ,
When the angle is θ, the radius Rs of the support point is larger than (0.52R 2 + 0.48R 1 ) and 4/3・(R 3 / 2 − R 3 / 1 ) / (R 2 / 2 − R 2/1 )・180sin
(θ/2)/πθ. By doing so, it is possible to obtain a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between the bearing shoe and the runner.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明
する。第7図から第9図には本発明の一実施例が
示されている。なお従来と同じ部品には同じ符号
を付したので説明を省略する。本実施例では軸受
シユー4のピボツト9で支持される支持点Pの半
径をRs、軸受シユー4の内半径をR1、外半径を
R2、角度をθとした場合に、支持点Pの半径Rs
を(0.52R2+0.48R1)より大きく、かつ4/3・ (R32−R31)/(R22−R21)・180sin(θ/2
)/πθより小さくした。この ようにすることにより軸受シユー4は半径方向の
傾きを低減した支持点で支持されるようになつ
て、軸受シユー4とランナーとの摺動面における
油膜の生成能力増大を可能とした推力軸受装置を
得ることができる。
The present invention will be explained below based on the illustrated embodiments. An embodiment of the present invention is shown in FIGS. 7-9. Note that parts that are the same as those in the conventional system are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the radius of the support point P supported by the pivot 9 of the bearing shoe 4 is Rs, the inner radius of the bearing shoe 4 is R1 , and the outer radius is
R 2 , the radius of the support point P is Rs when the angle is θ
is larger than (0.52R 2 + 0.48R 1 ) and 4/3・(R 3 / 2R 3 / 1 ) / (R 2 / 2 − R 2 / 1 )・180 sin (θ/2
)/πθ. By doing this, the bearing shoe 4 is supported at a support point with reduced radial inclination, and the thrust bearing is capable of increasing the ability to generate oil film on the sliding surface between the bearing shoe 4 and the runner. You can get the equipment.

すなわち油膜の流体力学的な重心位置を計算し
て軸受シユー4の支持点Pの位置を、軸受シユー
4の内半径R1と外半径R2との中心、すなわち(1)
式の位置よりも外径側(B1>B2)とし、かつ(6)
式の幾何的重心位置よりも内径側にくるようにし
た。このようにすることにより軸受シユー4の支
持点Pの半径Rsおよび内半径R1の差Bsと軸受シ
ユー4の半径方向の長さBとの比である半径方向
支点位置比Bs/Bが、軸受シユー4とランナー
3との間の最小皮膜厚さが大きく、最高油膜温度
が小さくなるような値となる。すなわち軸受シユ
ー4は半径方向の傾きを低減して支持されるよう
になつて、ランナー3との摺動面に生成される油
膜厚さが内径M側から外径N側にわたり一様で、
かつ増加するようになり、軸受性能を良好にして
回転電機の運転を安全にすることができる。
In other words, by calculating the hydrodynamic center of gravity position of the oil film, the position of the support point P of the bearing shoe 4 is determined from the center between the inner radius R 1 and the outer radius R 2 of the bearing shoe 4, that is, (1)
(B 1 > B 2 ) and (6)
It was set to be on the inner diameter side of the geometric center of gravity of the equation. By doing this, the radial fulcrum position ratio Bs/B, which is the ratio between the difference Bs between the radius Rs and the inner radius R1 of the support point P of the bearing shoe 4 and the radial length B of the bearing shoe 4, is The minimum film thickness between the bearing shoe 4 and the runner 3 is large, and the maximum oil film temperature is small. In other words, the bearing shoe 4 is supported with a reduced radial inclination, and the thickness of the oil film generated on the sliding surface with the runner 3 is uniform from the inner diameter M side to the outer diameter N side.
In addition, the bearing performance can be improved and the rotating electric machine can be operated safely.

〔発明の効果〕 上述のように本発明は軸受シユーをその半径方
向の傾きを低減して支持できるようになつて、軸
受シユーとランナーとの間の摺動面に生成される
油膜を一様で、かつ増加させることができるよう
になり、軸受シユーとランナーとの摺動面におけ
る油膜の生成能力増大を可能とした推力軸受装置
を得ることができる。
[Effects of the Invention] As described above, the present invention enables the bearing shoe to be supported while reducing its radial inclination, and evens out the oil film generated on the sliding surface between the bearing shoe and the runner. Thus, it is possible to obtain a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between the bearing shoe and the runner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の推力軸受装置の縦断側面図、第
2図は従来の推力軸受装置の軸受シユー周りの縦
断側面図、第3図は従来の推力軸受装置の軸受シ
ユーとランナーとの間の油膜生成状況を示す説明
図、第4図は従来の推力軸受装置の他の例の軸受
シユーとランナーとの間の油膜生成状況を示す説
明図、第5図は推力軸受装置の軸受シユーの寸法
記号を示す説明図、第6図は推力軸受装置の軸受
シユーの半径方向支持位置と最小油膜厚さおよび
最高油膜温度との関係を示す特性図、第7図は本
発明の推力軸受装置の一実施例の軸受シユーの支
持を示す軸受シユーの部分拡大図、第8図は第7
図のA方向よりみた軸受シユーの平面図、第9図
は本発明の推力軸受装置の一実施例の軸受シユー
とランナーとの間の油膜生成状況を示す説明図で
ある。 1……回転軸、2……カラー、3……ランナ
ー、4……軸受シユー、6……軸受油槽、7……
軸受油槽の底部(床)、8……支持体、9……ピ
ボツト、P……支持点。
Fig. 1 is a longitudinal side view of a conventional thrust bearing device, Fig. 2 is a longitudinal side view of the area around the bearing shoe of the conventional thrust bearing device, and Fig. 3 is a longitudinal side view of the area around the bearing shoe of the conventional thrust bearing device. An explanatory diagram showing the state of oil film formation. Fig. 4 is an explanatory diagram showing the state of oil film formation between the bearing shoe and runner in another example of a conventional thrust bearing device. Fig. 5 shows the dimensions of the bearing shoe of the thrust bearing device. An explanatory diagram showing the symbols, FIG. 6 is a characteristic diagram showing the relationship between the radial support position of the bearing shoe of the thrust bearing device, the minimum oil film thickness, and the maximum oil film temperature, and FIG. 7 is one of the thrust bearing devices of the present invention. A partially enlarged view of the bearing shoe showing the support of the bearing shoe in the embodiment, FIG.
FIG. 9 is a plan view of the bearing shoe seen from direction A in the figure, and is an explanatory diagram showing the state of oil film formation between the bearing shoe and the runner in one embodiment of the thrust bearing device of the present invention. 1... Rotating shaft, 2... Collar, 3... Runner, 4... Bearing shoe, 6... Bearing oil tank, 7...
Bottom (floor) of the bearing oil tank, 8...Support, 9...Pivot, P...Support point.

Claims (1)

【特許請求の範囲】 1 回転軸にカラーを介して固着され、かつ前記
回転軸と共に回動するランナーと、このランナー
に摺動接触し、かつ前記回転軸の周囲に同心円状
に配置される扇形状の軸受シユーと、この軸受シ
ユーと軸受油槽の底部との間に配置され、かつピ
ボツトを有する支持体とを備え、前記軸受シユー
が前記支持体のピボツトを支点として揺動自在に
支持されている推力軸受装置において、前記軸受
シユーの前記ピボツトで支持される支持点の半径
をRs、前記軸受シユーの内半径をR1、外半径を
R2、角度をθとした場合に、前記支持点の半径
Rsを(0.52R2+0.48R1)より大きく、かつ4/3・ (R2 3−R1 3)/(R2 2−R1 2)・180sin(θ/2)/πθ
より小さくしたこと を特徴とする推力軸受装置。
[Scope of Claims] 1. A runner that is fixed to a rotating shaft via a collar and rotates together with the rotating shaft, and a fan that is in sliding contact with the runner and arranged concentrically around the rotating shaft. a bearing shoe, and a support body disposed between the bearing shoe and the bottom of a bearing oil tank and having a pivot, the bearing shoe being swingably supported about the pivot of the support body. In a thrust bearing device, the radius of the support point supported by the pivot of the bearing shoe is Rs, the inner radius of the bearing shoe is R 1 , and the outer radius is
R 2 , the radius of the support point, where the angle is θ
Rs is larger than (0.52R 2 + 0.48R 1 ) and 4/3・(R 2 3 −R 1 3 )/(R 2 2 −R 1 2 )・180sin(θ/2)/πθ
A thrust bearing device characterized by being smaller.
JP20780183A 1983-11-04 1983-11-04 Thrust bearing Granted JPS60101315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20780183A JPS60101315A (en) 1983-11-04 1983-11-04 Thrust bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20780183A JPS60101315A (en) 1983-11-04 1983-11-04 Thrust bearing

Publications (2)

Publication Number Publication Date
JPS60101315A JPS60101315A (en) 1985-06-05
JPS6311531B2 true JPS6311531B2 (en) 1988-03-15

Family

ID=16545716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20780183A Granted JPS60101315A (en) 1983-11-04 1983-11-04 Thrust bearing

Country Status (1)

Country Link
JP (1) JPS60101315A (en)

Also Published As

Publication number Publication date
JPS60101315A (en) 1985-06-05

Similar Documents

Publication Publication Date Title
US4747705A (en) Power shaped multipad hydrodynamic journal bearing
JP3732605B2 (en) Sealed thrust dynamic pressure bearing
JPS6311531B2 (en)
JPH10184668A (en) Fluid bearing device
JP3611414B2 (en) Motor bearing structure
JPS61201917A (en) Floating bush bearing
JP2579164B2 (en) Radial ball bearings for protection in magnetic bearing devices
JP3294064B2 (en) Thrust bearing device
JP2563923Y2 (en) Protective bearing for magnetic bearing device
US3748000A (en) Spherical bearings
JP2620857B2 (en) Radial ball bearings for protection in magnetic bearing devices
JP3871950B2 (en) Guide bearing device
JPS5991413A (en) Device for making rotating body rotate around fixed shaft
JPS61244916A (en) Thrust collar
JPH01224518A (en) Dynamic pressure type fluid bearing device for high-speed rotation
JPH11318003A (en) Flywheel-type battery
JPH0932877A (en) Damping mechanism
JP3052993B2 (en) Spherical bearing
JPH0399219U (en)
JP3946841B2 (en) Hydrodynamic bearing
JP2002322978A (en) Flywheel type power storage device
JPS605437U (en) Shaft support structure of rotary crusher
JPS6170295A (en) Bearing unit
JPS61192592U (en)
JPS6374565A (en) Superprecision polishing guide roller