JP3871950B2 - Guide bearing device - Google Patents

Guide bearing device Download PDF

Info

Publication number
JP3871950B2
JP3871950B2 JP2002091117A JP2002091117A JP3871950B2 JP 3871950 B2 JP3871950 B2 JP 3871950B2 JP 2002091117 A JP2002091117 A JP 2002091117A JP 2002091117 A JP2002091117 A JP 2002091117A JP 3871950 B2 JP3871950 B2 JP 3871950B2
Authority
JP
Japan
Prior art keywords
guide
rotating shaft
sector
bearing device
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002091117A
Other languages
Japanese (ja)
Other versions
JP2003287029A (en
Inventor
英之 後藤
賢三 佐野
拓也 菅波
公映 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002091117A priority Critical patent/JP3871950B2/en
Priority to CA002402042A priority patent/CA2402042C/en
Priority to AT0167602A priority patent/AT414161B/en
Priority to FR0215033A priority patent/FR2837885B1/en
Publication of JP2003287029A publication Critical patent/JP2003287029A/en
Application granted granted Critical
Publication of JP3871950B2 publication Critical patent/JP3871950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/03Sliding-contact bearings for exclusively rotary movement for radial load only with tiltably-supported segments, e.g. Michell bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/0666Details of hydrostatic bearings independent of fluid supply or direction of load of bearing pads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/30Application independent of particular apparatuses related to direction with respect to gravity
    • F16C2300/34Vertical, e.g. bearings for supporting a vertical shaft

Description

【0001】
【発明の属する技術分野】
この発明は、例えば揚水発電所に用いられる発電電動機等に用いられ、両方向回転の立軸回転電機の回転軸を支えるガイド軸受装置に関するものである。
【0002】
【従来の技術】
図2は従来のガイド軸受装置の一例を示す縦断面図、図3は図2のIII−III線に沿う断面図である。図において、回転軸1の外周部には、円筒部1aが設けられている。回転軸1の周囲には、円環状の油槽2が配置されている。油槽2内には、潤滑流体であるタービン油3が入れられている。円筒部1aは、タービン油3中に挿入浸漬されている。
【0003】
油槽2内には、複数のピボット支持装置4が設けられている。これらのピボット支持装置4は、回転軸1の周方向に互いに等間隔をおいて、円筒部1aの周囲に放射状に配置されている。各ピボット支持装置4には、回転軸1の半径方向の荷重を支持するガイドセクタ5が搭載されている。ガイドセクタ5は、回転軸1の周方向に互いに等間隔をおいて、回転軸1の外周面に対向するように配置されている。また、円筒部1aの外周面1bとガイドセクタ5のガイド面5aとの間には、隙間Cが介在している。
【0004】
次に、図4は図3の回転軸1とガイドセクタ5との関係を模式的に示す説明図である。図において、Rjは回転軸1の外半径、Ojは回転軸1の中心、Rbはガイドセクタ5のガイド面の加工半径、Obはガイドセクタ5のガイド面の加工中心である。
【0005】
また、図5は図4の回転軸1とガイドセクタ5との関係を展開して示す展開図であり、円筒部1aの外周面1bを平面に展開して示している。円筒部1aの外周面1bの曲率とガイドセクタ5のガイド面5aの曲率との差は、外周面1bを平面に見立てると、ガイド面5aがδの変形量を有していることと等価となる。
【0006】
さらに、図6は図3の回転軸1が偏心しているときの回転軸1とガイドセクタ5との関係を示す説明図であり、回転軸1の偏心方向を角度θ=0°方向として示している。図において、ガイドセクタ5の枚数をn枚としたとき、各ガイドセクタ5の位置はθiで表される。
【0007】
次に、動作について説明する。回転軸1の回転に伴い、タービン油3は、円筒部1aの回転に引きずられ、円筒部1aの外周面1bとガイドセクタ5のガイド面5aとの間に流れ込む。タービン油3がガイド面5a上に流れ込むことにより、ガイド面5a上にくさび膜が形成される。これにより、回転軸1は、ガイドセクタ5と直接接触することなく、くさび膜を介してガイドされて回転される。この状態は、流体潤滑状態と呼ばれている。
【0008】
ガイドセクタ5内に発生するくさび膜の油膜圧力pに関する基礎方程式、即ちレイノルズ方程式は、次式で与えられる。
【数1】

Figure 0003871950
但し、p:油膜内の圧力、h:回転軸1とガイドセクタ5との間の隙間分布、U:回転軸1の周速、μ:タービン油3の粘度、x:座標系、z:座標系、t:時間である。
【0009】
また、各ガイドセクタ5の負荷容量Wは、式(1)により得られる油膜圧力pをガイド面5aの全面に渡って積分することにより得られる。
W=∫∫pdxdz ・・・(2)
【0010】
半径方向荷重に対するガイド軸受装置全体の負荷容量WGは、各ガイドセクタ5の負荷容量Wの総和で求められる。
【数2】
Figure 0003871950
但し、i:ガイドセクタ5の番号、n:ガイドセクタ5の枚数、Wi:各ガイドセクタ5の負荷容量、θi:各ガイドセクタ5の荷重方向に対する角度である。
【0011】
式(1)〜(3)から明らかなように、ガイド軸受装置の油膜圧力分布及び負荷容量は、回転軸1とガイドセクタ5との間の隙間分布hと∂h/∂xとに影響を受ける。
【0012】
例えば、揚水発電所に用いられる発電電動機のように、両方向回転の回転電機に用いられるガイド軸受装置では、それぞれの回転方向でガイド軸受の特性が等しくなるように、それぞれの回転方向に対して対称の形状となっている。また、ガイドセクタ5の背面を支持するピボット支持装置4も、ガイドセクタ5の中央に配置されている。このようなガイドセクタ5の支持方式は、センタサポート方式と呼ばれている。
【0013】
センタサポート方式のガイド軸受装置の場合、ガイド面5aにある程度の凸変形δを与えることにより、軸受性能が向上することが一般的に知られている。このため、組み立てた状態である程度の凸変形δが与えられるように、ガイドセクタ5の加工半径Rjは、次式の関係が成り立つように設定されている。
組立半径隙間C<ガイドセクタ加工半径Rb−ジャーナル径Rj・・・(4)
【0014】
一般に、ガイドセクタ5に凸変形δを予め与えることを与圧と呼び、この与圧の度合いを表す係数として与圧係数mが導入されている。与圧係数mの取り得る範囲は、0<m<1となり、m=0のとき凸変形は0である。
m=1−{C/(Rb−Rj)} ・・・(5)
【0015】
ガイド軸受の特性は、与圧係数mにより大きく影響を受けるが、従来設計では、与圧係数mはm=0〜0.75程度の値に設定されるのが一般的であった。これは、単なる経験に基づき設定された値であり、必ずしも最適な負荷容量WGが得られるような設定にはなっていなかった。
【0016】
運転中の回転電機には、磁気的なアンバランスによる半径方向荷重や、偏重心等による機械的なアンバランスによる半径方向荷重が作用し、大容量発電電動機においては、これらの荷重が1000kNを超えるものとなる。従って、ガイド軸受装置は、これらの荷重に対しても、回転軸1とガイドセクタ5とが接触することなく、適正な流体潤滑状態を保てるだけの負荷容量を確保しておく必要がある。そして、この点からも、与圧係数mの設定は、重要な設計パラメータである。
【0017】
なお、上記のような従来のガイド軸受装置は、例えば特許第2803972号公報にも示されている。
【0018】
【発明が解決しようとする課題】
上記のように構成された従来のガイド軸受装置においては、与圧係数mが最適な値に設定されていないため、回転電機の半径方向荷重に対して負荷容量が不足し、過大な軸振動が発生したり、場合によっては回転軸1とガイドセクタ5とが直接接触し、ガイドセクタ5のガイドメタルが焼損する原因となる。
【0019】
この発明は、上記のような問題点を解決することを課題としてなされたものであり、十分な負荷容量を確保し、適正な流体潤滑状態を保つことができ、信頼性を向上させることができるガイド軸受装置を得ることを目的とする。
【0020】
【課題を解決するための手段】
この発明に係るガイド軸受装置は、回転軸の外周面との間に隙間Cを介して外周面に対向するガイド面を有し、回転軸の周囲に回転軸の周方向に互いに間隔をおいて配置されている複数のガイドセクタ、及びガイドセクタの中央でガイドセクタを支持する複数のピボット支持装置を備え、外周面とガイド面との間に潤滑流体が介在されるものであって、回転軸の外半径をRj、ガイド面の加工半径をRb、ガイド面に予め与えられる変形の度合いを表す与圧係数mをm=1−{C/(Rb−Rj)}としたとき、与圧係数mが0.96〜0.99の範囲内に設定されており、回転軸中心とガイド面の加工中心との間の偏心量と隙間Cとの比で与えられ、ガイド面の加工中心に対する回転軸中心の偏心の度合いを表す偏心率εが0.75に設定されているものである。
【0021】
【発明の実施の形態】
以下、この発明の実施の形態を図について説明する。
図1はセンタサポート方式のガイド軸受装置における与圧係数mと負荷容量WGとの関係を示す関係図であり、横軸は与圧係数(プリロード率)m、縦軸は負荷容量WG(kN)を示している。また、偏心率εが0.25、0.5、0.75の場合をそれぞれ示している。
【0022】
ここで、偏心率εとは、回転軸中心の偏心の度合いを表す無次元数であり、偏心量eと組立半径隙間Cとの比で与えられる(ε=e/C)。即ち、偏心率εの取り得る範囲は、0≦ε≦1となる。そして、ε=0のとき、回転軸中心が軸受の中心と一致していることを意味している。また、ε=1のときは、回転軸の外周面がガイドセクタ(ガイドメタル)のガイド面と接触していることを示している。ガイド軸受装置の全体的な構成は、図2及び図3と同様である。
【0023】
図1から、負荷容量WGが最大となる与圧係数mは、偏心率εにより若干異なるものの、m=0.96〜0.99であることがわかる。特に、偏心率εが大きい場合、与圧係数mが0.99を超えた領域で負荷容量WGが大きく低下しているので、この領域での使用は好ましくない。
【0024】
従って、センタサポート方式のガイド軸受装置では、与圧係数mを0.96〜0.99に設定することにより、ガイド軸受装置の持つ負荷容量を最大限に引き出すことが可能である。即ち、十分な負荷容量を確保し、適正な流体潤滑状態を保つことができ、信頼性を向上させることができる。
【0025】
【発明の効果】
以上説明したように、この発明のガイド軸受装置は、回転軸の外半径をRj、ガイド面の加工半径をRb、ガイド面に予め与えられる変形の度合いを表す与圧係数mをm=1−{C/(Rb−Rj)}としたとき、与圧係数mが0.96〜0.99の範囲内に設定されているので、十分な負荷容量を確保し、適正な流体潤滑状態を保つことができ、信頼性を向上させることができる。
【図面の簡単な説明】
【図1】 センタサポート方式のガイド軸受装置における与圧係数mと負荷容量WGとの関係を示す関係図である。
【図2】 従来のガイド軸受装置の一例を示す縦断面図である。
【図3】 図2のIII−III線に沿う断面図である。
【図4】 図3の回転軸とガイドセクタとの関係を模式的に示す説明図である。
【図5】 図4の回転軸とガイドセクタとの関係を展開して示す展開図である。
【図6】 図3の回転軸が偏心しているときの回転軸とガイドセクタとの関係を示す説明図である。
【符号の説明】
1 回転軸、1b 外周面、3 タービン油(潤滑流体)、4 ピボット支持装置、5 ガイドセクタ、5a ガイド面。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a guide bearing device that is used in, for example, a generator motor used in a pumped storage power plant and supports a rotating shaft of a vertical rotating electric machine that rotates in both directions.
[0002]
[Prior art]
2 is a longitudinal sectional view showing an example of a conventional guide bearing device, and FIG. 3 is a sectional view taken along line III-III in FIG. In the figure, a cylindrical portion 1 a is provided on the outer peripheral portion of the rotating shaft 1. An annular oil tank 2 is disposed around the rotary shaft 1. In the oil tank 2, turbine oil 3 that is a lubricating fluid is placed. The cylindrical portion 1 a is inserted and immersed in the turbine oil 3.
[0003]
A plurality of pivot support devices 4 are provided in the oil tank 2. These pivot support devices 4 are radially arranged around the cylindrical portion 1a at equal intervals in the circumferential direction of the rotary shaft 1. Each pivot support device 4 is equipped with a guide sector 5 that supports a load in the radial direction of the rotary shaft 1. The guide sectors 5 are arranged at equal intervals in the circumferential direction of the rotary shaft 1 so as to face the outer peripheral surface of the rotary shaft 1. Further, a gap C is interposed between the outer peripheral surface 1 b of the cylindrical portion 1 a and the guide surface 5 a of the guide sector 5.
[0004]
Next, FIG. 4 is an explanatory view schematically showing the relationship between the rotating shaft 1 and the guide sector 5 of FIG. In the figure, Rj is the outer radius of the rotating shaft 1, Oj is the center of the rotating shaft 1, Rb is the processing radius of the guide surface of the guide sector 5, and Ob is the processing center of the guide surface of the guide sector 5.
[0005]
FIG. 5 is a developed view showing the relationship between the rotating shaft 1 and the guide sector 5 in FIG. 4, and the outer peripheral surface 1b of the cylindrical portion 1a is developed in a plane. The difference between the curvature of the outer peripheral surface 1b of the cylindrical portion 1a and the curvature of the guide surface 5a of the guide sector 5 is equivalent to the guide surface 5a having a deformation amount of δ when the outer peripheral surface 1b is regarded as a plane. Become.
[0006]
Further, FIG. 6 is an explanatory diagram showing the relationship between the rotating shaft 1 and the guide sector 5 when the rotating shaft 1 of FIG. 3 is eccentric, and shows the eccentric direction of the rotating shaft 1 as an angle θ = 0 ° direction. Yes. In the figure, when the number of guide sectors 5 is n, the position of each guide sector 5 is represented by θi.
[0007]
Next, the operation will be described. As the rotating shaft 1 rotates, the turbine oil 3 is dragged by the rotation of the cylindrical portion 1 a and flows between the outer peripheral surface 1 b of the cylindrical portion 1 a and the guide surface 5 a of the guide sector 5. When the turbine oil 3 flows onto the guide surface 5a, a wedge film is formed on the guide surface 5a. Thereby, the rotating shaft 1 is guided and rotated through the wedge film without directly contacting the guide sector 5. This state is called a fluid lubrication state.
[0008]
The basic equation relating to the oil film pressure p of the wedge film generated in the guide sector 5, that is, the Reynolds equation is given by the following expression.
[Expression 1]
Figure 0003871950
Where p: pressure in the oil film, h: gap distribution between the rotating shaft 1 and the guide sector 5, U: peripheral speed of the rotating shaft 1, μ: viscosity of the turbine oil 3, x: coordinate system, z: coordinates System, t: time.
[0009]
Further, the load capacity W of each guide sector 5 is obtained by integrating the oil film pressure p obtained by the equation (1) over the entire guide surface 5a.
W = ∫∫pdxdz (2)
[0010]
The load capacity WG of the entire guide bearing device with respect to the radial load is obtained as the sum of the load capacity W of each guide sector 5.
[Expression 2]
Figure 0003871950
Where i is the number of the guide sector 5, n is the number of guide sectors 5, Wi is the load capacity of each guide sector 5, and θi is the angle of each guide sector 5 with respect to the load direction.
[0011]
As apparent from the equations (1) to (3), the oil film pressure distribution and the load capacity of the guide bearing device affect the clearance distribution h and ∂h / ∂x between the rotating shaft 1 and the guide sector 5. receive.
[0012]
For example, in a guide bearing device used for a rotary electric machine that rotates in both directions, such as a generator motor used in a pumped storage power plant, the characteristics of the guide bearing are equal in each rotational direction so that it is symmetrical with respect to each rotational direction. It is the shape of. A pivot support device 4 that supports the back surface of the guide sector 5 is also arranged at the center of the guide sector 5. Such a support method of the guide sector 5 is called a center support method.
[0013]
In the case of a center support type guide bearing device, it is generally known that bearing performance is improved by giving a certain degree of convex deformation δ to the guide surface 5a. For this reason, the processing radius Rj of the guide sector 5 is set so as to satisfy the relationship of the following equation so that a certain degree of convex deformation δ is given in the assembled state.
Assembly radius gap C <guide sector machining radius Rb−journal diameter Rj (4)
[0014]
In general, giving the convex deformation δ to the guide sector 5 in advance is called pressurization, and a pressurization coefficient m is introduced as a coefficient representing the degree of this pressurization. The possible range of the pressurization coefficient m is 0 <m <1, and the convex deformation is 0 when m = 0.
m = 1- {C / (Rb-Rj)} (5)
[0015]
The characteristics of the guide bearing are greatly affected by the pressurization coefficient m. However, in the conventional design, the pressurization coefficient m is generally set to a value of about m = 0 to 0.75. This is a value set based on mere experience, and is not necessarily set to obtain the optimum load capacity WG.
[0016]
The rotating electric machine in operation is subjected to a radial load due to magnetic imbalance and a radial load due to mechanical unbalance due to eccentric gravity, etc., and these loads exceed 1000 kN in a large-capacity generator motor. It will be a thing. Therefore, it is necessary for the guide bearing device to secure a load capacity sufficient to maintain an appropriate fluid lubrication state without contacting the rotating shaft 1 and the guide sector 5 with respect to these loads. Also from this point, the setting of the pressurization coefficient m is an important design parameter.
[0017]
The conventional guide bearing device as described above is also disclosed in, for example, Japanese Patent No. 2803972.
[0018]
[Problems to be solved by the invention]
In the conventional guide bearing device configured as described above, since the pressurization coefficient m is not set to an optimum value, the load capacity is insufficient with respect to the radial load of the rotating electrical machine, and excessive shaft vibration is generated. In some cases, the rotating shaft 1 and the guide sector 5 are in direct contact with each other, causing the guide metal of the guide sector 5 to burn out.
[0019]
The present invention has been made to solve the above-described problems, and can secure a sufficient load capacity, maintain an appropriate fluid lubrication state, and improve reliability. An object is to obtain a guide bearing device.
[0020]
[Means for Solving the Problems]
The guide bearing device according to the present invention has a guide surface that opposes the outer peripheral surface with a gap C between the outer peripheral surface of the rotating shaft and is spaced from each other in the circumferential direction of the rotating shaft around the rotating shaft. A plurality of guide sectors arranged, and a plurality of pivot support devices for supporting the guide sectors at the center of the guide sectors, wherein a lubricating fluid is interposed between the outer peripheral surface and the guide surface, and the rotation shaft When the outer radius of Rj is Rj, the processing radius of the guide surface is Rb, and the pressurization coefficient m representing the degree of deformation given in advance to the guide surface is m = 1− {C / (Rb−Rj)}, the pressurization coefficient m is set in the range of 0.96 to 0.99, and is given by the ratio of the amount of eccentricity between the rotation axis center and the machining center of the guide surface and the gap C, and the rotation of the guide surface with respect to the machining center Eccentricity ε representing the degree of eccentricity at the shaft center is set to 0.75 It is what is.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a relational diagram showing the relationship between a pressurization coefficient m and a load capacity WG in a center support type guide bearing device. The horizontal axis is a pressurization coefficient (preload ratio) m, and the vertical axis is a load capacity WG (kN). Is shown. Further, cases where the eccentricity ε is 0.25, 0.5, and 0.75 are shown.
[0022]
Here, the eccentricity ε is a dimensionless number representing the degree of eccentricity at the center of the rotation axis, and is given by the ratio between the eccentricity e and the assembly radius gap C (ε = e / C). That is, the possible range of the eccentricity ε is 0 ≦ ε ≦ 1. When ε = 0, it means that the center of the rotation axis coincides with the center of the bearing. Further, when ε = 1, it indicates that the outer peripheral surface of the rotating shaft is in contact with the guide surface of the guide sector (guide metal). The overall structure of the guide bearing device is the same as that shown in FIGS.
[0023]
From FIG. 1, it can be seen that the pressurization coefficient m that maximizes the load capacity WG is m = 0.96 to 0.99, although it slightly differs depending on the eccentricity ε. In particular, when the eccentricity ε is large, the load capacity WG is greatly reduced in the region where the pressurization coefficient m exceeds 0.99, and therefore use in this region is not preferable.
[0024]
Therefore, in the center support type guide bearing device, it is possible to maximize the load capacity of the guide bearing device by setting the pressurization coefficient m to 0.96 to 0.99. That is, a sufficient load capacity can be secured, an appropriate fluid lubrication state can be maintained, and reliability can be improved.
[0025]
【The invention's effect】
As described above, in the guide bearing device of the present invention, the outer radius of the rotating shaft is Rj, the processing radius of the guide surface is Rb, and the pressurization coefficient m representing the degree of deformation given in advance to the guide surface is m = 1−1. When {C / (Rb−Rj)}, the pressurization coefficient m is set in the range of 0.96 to 0.99, so that a sufficient load capacity is secured and an appropriate fluid lubrication state is maintained. And reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a relationship diagram illustrating a relationship between a pressurization coefficient m and a load capacity WG in a center support type guide bearing device.
FIG. 2 is a longitudinal sectional view showing an example of a conventional guide bearing device.
3 is a cross-sectional view taken along line III-III in FIG.
4 is an explanatory view schematically showing a relationship between a rotation axis and a guide sector in FIG. 3. FIG.
FIG. 5 is a development view showing the relationship between the rotation axis and guide sector in FIG. 4 in an expanded manner.
6 is an explanatory diagram showing a relationship between a rotation axis and a guide sector when the rotation axis in FIG. 3 is eccentric. FIG.
[Explanation of symbols]
1 rotating shaft, 1b outer peripheral surface, 3 turbine oil (lubricating fluid), 4 pivot support device, 5 guide sector, 5a guide surface.

Claims (1)

回転軸の外周面との間に隙間Cを介して上記外周面に対向するガイド面を有し、上記回転軸の周囲に上記回転軸の周方向に互いに間隔をおいて配置されている複数のガイドセクタ、及び
上記ガイドセクタの中央で上記ガイドセクタを支持する複数のピボット支持装置
を備え、上記外周面と上記ガイド面との間に潤滑流体が介在されるガイド軸受装置であって、
上記回転軸の外半径をRj、上記ガイド面の加工半径をRb、上記ガイド面に予め与えられる変形の度合いを表す与圧係数mを
m=1−{C/(Rb−Rj)}
としたとき、上記与圧係数mが0.96〜0.99の範囲内に設定されており、
上記回転軸中心と上記ガイド面の加工中心との間の偏心量と上記隙間Cとの比で与えられ、上記ガイド面の加工中心に対する上記回転軸中心の偏心の度合いを表す偏心率εが0.75に設定されていることを特徴とするガイド軸受装置。
A plurality of guide surfaces facing the outer peripheral surface with a gap C between the outer peripheral surface of the rotating shaft and spaced from each other in the circumferential direction of the rotating shaft around the rotating shaft A guide bearing device comprising: a guide sector; and a plurality of pivot support devices for supporting the guide sector at a center of the guide sector, wherein a lubricating fluid is interposed between the outer peripheral surface and the guide surface,
The outer radius of the rotating shaft is Rj, the processing radius of the guide surface is Rb, and the pressurizing coefficient m representing the degree of deformation given to the guide surface in advance is m = 1− {C / (Rb−Rj)}
The pressure coefficient m is set in the range of 0.96 to 0.99 ,
The eccentricity ε, which is given by the ratio of the amount of eccentricity between the rotation axis center and the machining center of the guide surface and the gap C, and represents the degree of eccentricity of the rotation axis center with respect to the machining center of the guide surface is 0. .75 is a guide bearing device.
JP2002091117A 2002-03-28 2002-03-28 Guide bearing device Expired - Fee Related JP3871950B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002091117A JP3871950B2 (en) 2002-03-28 2002-03-28 Guide bearing device
CA002402042A CA2402042C (en) 2002-03-28 2002-09-09 Guide bearing device
AT0167602A AT414161B (en) 2002-03-28 2002-11-07 GUIDE BEARING DEVICE
FR0215033A FR2837885B1 (en) 2002-03-28 2002-11-29 GUIDE BEARING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091117A JP3871950B2 (en) 2002-03-28 2002-03-28 Guide bearing device

Publications (2)

Publication Number Publication Date
JP2003287029A JP2003287029A (en) 2003-10-10
JP3871950B2 true JP3871950B2 (en) 2007-01-24

Family

ID=28035853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091117A Expired - Fee Related JP3871950B2 (en) 2002-03-28 2002-03-28 Guide bearing device

Country Status (4)

Country Link
JP (1) JP3871950B2 (en)
AT (1) AT414161B (en)
CA (1) CA2402042C (en)
FR (1) FR2837885B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803972B2 (en) * 1993-05-14 1998-09-24 三菱電機株式会社 Oiling system for spot lubrication type tilting pad journal bearing device
JPH07293553A (en) * 1994-04-21 1995-11-07 Ebara Corp Tilting pad type bearing
DE69608238T2 (en) * 1996-02-06 2001-02-08 Flender Graffenstaden Illkirch Hydrodynamic bearing with a fixed sliding surface and tiltable sliding segments
US5772335A (en) * 1997-03-31 1998-06-30 Whm Holding Company Self-stabilizing, true-tilting pad with abruptly-stepped pocket for journal bearing
JPH10288220A (en) * 1997-04-14 1998-10-27 Ebara Corp Tilting pad bearing

Also Published As

Publication number Publication date
FR2837885B1 (en) 2006-09-15
AT414161B (en) 2006-09-15
CA2402042C (en) 2005-06-14
ATA16762002A (en) 2005-12-15
CA2402042A1 (en) 2003-09-28
FR2837885A1 (en) 2003-10-03
JP2003287029A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
US6158893A (en) High load capacity compliant foil hydrodynamic journal bearing
JP4554583B2 (en) Thrust bearing device
CN102356248B (en) The PDC bearing used in fluid environment
US4415281A (en) Hydrodynamic fluid film bearing
JP6312346B2 (en) Journal bearing, rotating machine
US4415280A (en) Hydrodynamic fluid film bearing
US6481895B2 (en) Flange bearing
US8764377B2 (en) Thrust bearing, especially for a turbocharger
CN104204451B (en) There is the turbocharger of the thrust bearing of the bearing of journals and thrust bearing function of providing combination
WO2006014659A1 (en) Hydrodynamic journal foil bearing
US9605712B2 (en) Journal oil bearing
WO2016183786A1 (en) Mixed-type dynamic pressure gas radial bearing
CN105008667B (en) The gas-turbine unit of turbine rotor blade, turbomachine rotor disc, turbine rotor and the contact surface angle with different roots and groove
US5549459A (en) Radial bearing assembly for a high intertia flywheel of a canned motor pump
US20040066991A1 (en) High load capacity foil thrust bearings
JP3871950B2 (en) Guide bearing device
CN108757726A (en) Center of gravity self-adjusting bush(ing) bearing
JP6678086B2 (en) Rolling bearing and detent mechanism for turbocharger
JP2004522076A (en) Hydrodynamic thrust sliding bearings for generators
EP0918139A2 (en) Friction Damper
JP5812973B2 (en) Journal bearing and steam turbine
CN107076198A (en) Floating bush bearing and ship exhaust steam turbine
JPH0520606B2 (en)
JP2006077871A (en) Bearing structure
CN211343140U (en) Rotor system and micro gas turbine generator set

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees