JPS60101315A - Thrust bearing - Google Patents

Thrust bearing

Info

Publication number
JPS60101315A
JPS60101315A JP20780183A JP20780183A JPS60101315A JP S60101315 A JPS60101315 A JP S60101315A JP 20780183 A JP20780183 A JP 20780183A JP 20780183 A JP20780183 A JP 20780183A JP S60101315 A JPS60101315 A JP S60101315A
Authority
JP
Japan
Prior art keywords
shoe
bearing
radius
bearing shoe
oil film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20780183A
Other languages
Japanese (ja)
Other versions
JPS6311531B2 (en
Inventor
Isao Ishida
功 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20780183A priority Critical patent/JPS60101315A/en
Publication of JPS60101315A publication Critical patent/JPS60101315A/en
Publication of JPS6311531B2 publication Critical patent/JPS6311531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/06Sliding-contact bearings for exclusively rotary movement for axial load only with tiltably-supported segments, e.g. Michell bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To have a uniform oil film in a thrust bearing device, in which sector- shaped bearing shoes of split type arranged concentrically with a rotary shaft are supported by supports swingably, by specifying the radius of the supporting point of each shoe, and thereby reducing the inclination of the shoe in its radial direction. CONSTITUTION:A thrust bearing device to be used in a hydraulic power generator is in slide contact with a runner installed on a rotary shaft. Sector-shaped bearing shoes 4 of split type are arranged concentrically with the rotary shaft. Each shoe 4 is fixed swingably to a fixed member through a pivot 9 of support at a disc-shaped support 10 fixed to the undersurface of the shoe 4. The radius Rs of the supporting point P supported by pivot 9 of bearing shoe 4 shall be greater than 0.52R2+0.48R1 and smaller than 4/3.(R2<3>-R1<3>)/(R2<2>- R1<2>).180sin(theta/ 2)/pitheta, where R1 and R2 represent the inner and outer radii of the bearing shoe 4, respectively, and theta the angle. Thereby the intended purpose is accomplished.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は推力軸受装置に係シ、特に回転軸の周囲に同心
円状に配置された分割形の扇形状の軸受シューを支持体
で揺動自在に支持している推力軸受装置に関するもので
おる。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a thrust bearing device, and in particular, to a thrust bearing device in which split fan-shaped bearing shoes arranged concentrically around a rotating shaft are swingable on a support. This article relates to the thrust bearing device supported by the

〔発明の背景〕[Background of the invention]

第1図および第2図には水車発電機等に使用される推力
軸受装置の従来例が示されている。同図に示されている
ように推力軸受装置は回転軸1にカラー2を介して固着
され、かつ回転軸1と共に回動するランナー3、この≧
ノナ−3に摺動接触し、かつ回転軸lの周囲に同心円状
に配置される軸受シュー4、この軸受シュー4を支持し
、かつ油冷却器5を有する軸受油槽6の底部の床7にボ
ルト等で固着された支持体8等よ多構成される。
1 and 2 show conventional examples of thrust bearing devices used in water turbine generators and the like. As shown in the figure, the thrust bearing device includes a runner 3 that is fixed to the rotating shaft 1 via a collar 2 and rotates together with the rotating shaft 1.
A bearing shoe 4 that is in sliding contact with the nona-3 and is arranged concentrically around the rotation axis l, and a floor 7 at the bottom of a bearing oil tank 6 that supports this bearing shoe 4 and has an oil cooler 5. It is composed of multiple supports 8 and the like fixed with bolts and the like.

そして軸受シュー4は支持体8のピボット9を支点とし
てあらゆる方向へ傾きが可能なように揺動自在に支持さ
れている。なお同図において10は円板状サポートでめ
る。
The bearing shoe 4 is swingably supported around a pivot 9 of the support 8 so as to be tiltable in all directions. In the figure, 10 is a disk-shaped support.

このように構成された推力軸受装置で軸受シュー4の支
持点の位置は軸受性能に大きく影曽するので、円周方向
については、一方向にだけ回転する新開一方向回転機で
は軸受シュー4の円周方向中心、l:す若干回転方向に
ずらした所謂偏心支持方式が通常使用され、ランナー3
が僅かに回転しても速やかに軸受シュー4が傾き、楔状
の油膜を軸受シュー4とランナー3との間に形成して安
定した油膜を形成するようにしてめる、そして両方向に
回転する揚水発′醒所用の発!電動機などの所謂両方向
回転機では、一般に軸受シュー4の円周方向の中心で支
持しているが、当然のことながら油膜の形成能力が低下
するので、電機の始動時めるいは停止E時には軸受シュ
ー4の摺動面に強制的に高圧油を供給して油膜を生成し
、摺動面の金属接触による損傷を未然に防止するように
しである。
In the thrust bearing device configured in this way, the position of the support point of the bearing shoe 4 has a great influence on the bearing performance. Center in the circumferential direction, l: A so-called eccentric support system in which the runner is slightly shifted in the rotational direction is usually used, and the runner 3
Even if the bearing shoe 4 rotates slightly, the bearing shoe 4 immediately tilts, forming a wedge-shaped oil film between the bearing shoe 4 and the runner 3 to form a stable oil film, and pumping water that rotates in both directions. A release for the awakening place! In so-called bidirectional rotating machines such as electric motors, the bearing shoe 4 is generally supported at the center in the circumferential direction, but as a matter of course, the ability to form an oil film is reduced, so when the electric machine starts or stops, the bearing High-pressure oil is forcibly supplied to the sliding surface of the shoe 4 to form an oil film to prevent damage to the sliding surface due to metal contact.

これに対して軸受7ユー4の半径方向の支持点について
は従来、一方向回転機および両方向回転機共に第3図に
示されているように、軸受シュー4の半径方向の中心位
置(この場合に軸受シュー4の内径Mまでの内半径をR
1+外径Nまでの外る)を支持点(支点)Pとして支持
していたが、これでは軸受シュー4が外径側に傾きすぎ
て図中点線表示の油膜圧力分布曲線にのように、軸受シ
ュー4の内径M側の油膜は薄くなり、油膜圧力は内径M
側が高くなっている。これに対して支持点Pを第4図に
示されているように軸受シュー4の外径N側に極端にす
らすと、上述の第3図の場合とは逆に軸受シュー4の外
径N側の油膜が極端に薄くなり、油膜圧力は外径N側が
高くなる。
On the other hand, regarding the radial support point of the bearing shoe 4, conventionally the radial center position of the bearing shoe 4 (in this case The inner radius of the bearing shoe 4 up to the inner diameter M is R
1 + outer diameter N) was supported as a support point (fulcrum) P, but in this case, the bearing shoe 4 was tilted too much towards the outer diameter side, and as shown in the oil film pressure distribution curve indicated by the dotted line in the figure, The oil film on the inner diameter M side of the bearing shoe 4 becomes thinner, and the oil film pressure increases with the inner diameter M.
The sides are raised. On the other hand, if the support point P is moved extremely toward the outer diameter N side of the bearing shoe 4 as shown in FIG. 4, the outer diameter of the bearing shoe 4 will be The oil film on the N side becomes extremely thin, and the oil film pressure becomes higher on the outer diameter N side.

このうち上述の第3図の場合について軸受シュー4の支
持点P、角度θ、内半径”1+外半径EL、 I支持点
Pの牛径Rs、内径側の面積SI+外径側の面積S2.
径方向長さBおよび内径側から支持点P壕での長さB1
1等が示されている第5図を参照にして説明すると次の
ようになる。支持点Pまでの半径Rs、内径側の面積S
l+外径側の面積Stおよび内径側の面!x、SLと外
径側の面積S2との比は夫々、 ・・・・・・・・・(4) となるが、−例として300MVA級水車発電機を例に
とって(4)式に軸受シュー4の内半径R1=60cm
v外半径R*=160mを代入し、試算すると、 となり、軸受シュー4の外径側の面積s2が内径側の面
積81の1.59倍と極端に大きいため、軸受シュー4
は外径側に傾くのである。軸受シュー4が円周方向に傾
いて楔状の油膜を生成するのは望ましいことでわるが、
半径方向には傾かないのが望ましく、それが上述のよう
に半径方向に傾きすぎると油膜生成能力が低下して十分
な油膜が生成されず、軸受が損傷する恐れがめった。
Among these, in the case of FIG. 3 mentioned above, the bearing shoe 4's support point P, angle θ, inner radius "1 + outer radius EL, diameter Rs of I support point P, area SI on the inner diameter side + area S2 on the outer diameter side.
Radial length B and length B1 from the inner diameter side to the support point P trench
The explanation will be as follows with reference to FIG. 5 in which the 1st class is shown. Radius Rs to support point P, area S on the inner diameter side
l + area St on the outer diameter side and surface on the inner diameter side! The ratios of x, SL and the area S2 on the outer diameter side are respectively as follows: (4) However, taking a 300 MVA class water turbine generator as an example, the bearing shoes can be calculated using equation (4). 4 inner radius R1 = 60cm
By substituting v outer radius R*=160 m and making a trial calculation, we get: Since the area s2 on the outer diameter side of the bearing shoe 4 is extremely large at 1.59 times the area 81 on the inner diameter side, the bearing shoe 4
is inclined toward the outer diameter side. Although it is desirable for the bearing shoe 4 to tilt in the circumferential direction and generate a wedge-shaped oil film,
It is desirable that the bearing is not tilted in the radial direction, and as described above, if it is tilted too much in the radial direction, the ability to generate an oil film will be reduced and a sufficient oil film will not be generated, leading to the risk of damage to the bearing.

〔発明の目的〕[Purpose of the invention]

本開明は以上の点に鑑みなされたものであり、軸受シュ
ーとランナーとの摺動面における油膜の生成能力増大を
可能とした推力軸受装置を提供することを目的とするも
のである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between a bearing shoe and a runner.

〔発明の概要〕[Summary of the invention]

すなわち本発明は回転軸にカラーを介して固着され、か
つ回転軸と共に回動するランナーと、このランナーに摺
動接触し、かつ回転軸の周囲に同心円状に配置される扇
形状の軸受シューと、この軸受シューと軸受油槽の底部
との間に配置され、かつビボツMe有する支持体とを備
え、軸受シューが支持体のピボットを支点として揺動自
在に支持されている推力軸受装置において、軸受シュー
のピボットで支持される支持点の半径をRg、軸受シュ
ーの内半径をRI+外半径をR2+角度をθとした場合
に、支持点の半径Rgを(0,521R2ものであり、
これによって−受シューは半径方向の傾きを低減した支
持点で支持されるようになる。
That is, the present invention includes a runner that is fixed to a rotating shaft via a collar and rotates together with the rotating shaft, and a fan-shaped bearing shoe that is in sliding contact with the runner and is arranged concentrically around the rotating shaft. In a thrust bearing device, the thrust bearing device is provided with a support body disposed between the bearing shoe and the bottom of the bearing oil tank and having a pivot point Me, and in which the bearing shoe is supported so as to be swingable about the pivot of the support body. When the radius of the support point supported by the pivot of the shoe is Rg, the inner radius of the bearing shoe is RI + the outer radius is R2 + the angle is θ, the radius Rg of the support point is (0,521R2,
This allows the receiving shoe to be supported at a support point with reduced radial inclination.

軸受シューの傾きを低減させるには支点(支持点)を軸
受シューの半径方向のどの位置にすればよいかを、30
0MVA級水車発電機の推力軸受について検討した。検
討結果を第6図に示したが、これは内半径R1が60c
1n、外半径R3が160錦、角度θが22°の軸受シ
ューの性能計算結果を横軸に支持点の半径RI+および
内半径貼の差Bsと軸受シューの半径方向の長さBとの
比、すなわち半径方向支点位置比B s / Bをと9
、縦軸に軸受シューとランナーとの間の最高油膜温度お
よび最小油膜厚さをとって、半径方向支点位置比B m
 / Bと最高油膜温度および最小油膜厚さとの関係を
示したものでらる。同図に示されている半径方向支点位
置比B m / Bによる最高油膜温度曲線Xおよび最
小油膜厚さ曲線Yから明らかなように、半径方向支点位
置比B m / Bが0.54付近で最小油膜厚さが最
大で、最高油膜温度が最小となっている。これは軸受シ
ューの半径方向の傾きが小さくなって、軸受シューとラ
ンナーとの摺動面における油膜が内径側から外径側にわ
たって一様で、かつ太きく形成されるためである。これ
に比べこの半径方向支点位置比B tr / Bが0.
50、すなわち従来の支持点では最小油膜厚さはがなり
減少し、最高油膜温度は高くなっている。これらに関し
更に第5図の半径方向支点位置比B s / Bを変え
た場合について検討した。まず内径側面積S、と外径側
面積S2とが等しくなる支持点半径R8をめると、(2
) オ、nび(3)式に> イT−S I= S 2と
なり、この場合の半径方向支点位置比B a / Bは
0.608となるが、この場合の最高油膜温度および最
小油膜厚さは第6図から明らかなように、半径方向支点
位置比B tr / Bが0.54のそれに比較して最
小油膜厚さはかなシ小さく、最高油膜温度は高くなる。
In order to reduce the inclination of the bearing shoe, the fulcrum (support point) should be positioned in the radial direction of the bearing shoe.
We investigated the thrust bearing of a 0MVA class water turbine generator. The study results are shown in Figure 6, which shows that the inner radius R1 is 60c.
1n, the outer radius R3 is 160 brocades, and the angle θ is 22°. , that is, the radial fulcrum position ratio B s / B and 9
, the maximum oil film temperature and minimum oil film thickness between the bearing shoe and the runner are taken on the vertical axis, and the radial fulcrum position ratio B m
/B shows the relationship between maximum oil film temperature and minimum oil film thickness. As is clear from the maximum oil film temperature curve X and the minimum oil film thickness curve Y based on the radial fulcrum position ratio B m / B shown in the same figure, when the radial fulcrum position ratio B m / B is around 0.54, The minimum oil film thickness is the maximum and the maximum oil film temperature is the minimum. This is because the inclination of the bearing shoe in the radial direction becomes smaller, and the oil film on the sliding surface between the bearing shoe and the runner is formed uniformly and thickly from the inner diameter side to the outer diameter side. In comparison, this radial fulcrum position ratio B tr / B is 0.
50, that is, at the conventional support point, the minimum oil film thickness is reduced and the maximum oil film temperature is increased. Regarding these, the case where the radial fulcrum position ratio B s /B in FIG. 5 was changed was further studied. First, if we find the support point radius R8 where the inner diameter surface area S and the outer diameter surface area S2 are equal, we get (2
) E, n and Equation (3) > I T - S I = S 2, and the radial fulcrum position ratio B a / B in this case is 0.608, but the maximum oil film temperature and minimum oil film temperature in this case As for the thickness, as is clear from FIG. 6, the minimum oil film thickness is much smaller and the maximum oil film temperature is higher than that when the radial support point position ratio B tr /B is 0.54.

次いで軸受シュー4の重心位置の支点を計算すると、軸
受シュー4の重心位1−の半径R8は となシ、これより半径方向支点位地B s / Bをめ
ると0.569となるが、この場合も半径方向支点位置
比BII/Bが0.54のそれよりも最小油膜厚さは低
下する。
Next, when calculating the fulcrum of the center of gravity of the bearing shoe 4, the radius R8 at the center of gravity 1- of the bearing shoe 4 is 0.569 when the radial fulcrum position B s / B is subtracted from this. In this case as well, the minimum oil film thickness is lower than that when the radial fulcrum position ratio BII/B is 0.54.

これらよυ軸受シューの軸受性能よりみた半径方向の最
適支持位置は(1)式のような寸法的な中心位置、(5
)式のような幾何学的な面積中心位置および(6)式の
ような幾何学的重心位置と異なって、油膜の流体力学的
な重心位置に基づいており、軸受シューの荷重1周速お
よび寸法によって異なるが、大体(1)式と(6)式と
の間に存在し、かつ半径方向支点位置比B s / B
は0,52よりも大きくすればよいことが明らかとなっ
た。この半径方向支点位置比B th / BがB s
 / B ) 0.52の条件を満たす軸受シューのピ
ボットで支持される支持点の半径R8はRs > (0
,52R2+0.48 R1)となるので、本発明では
軸受シューのピボットで支持される支持点の半径をEL
m’、s受シューの内半径をRI+外半径をFL2r角
度をθとした場合に、支持点の半径Raを(0,52f
Lg +0,48R+ ) Lよシ小さくした。このよ
うにすることにより、軸受シューとランナーとの摺動面
における油膜の生成能力増大を可能とした推力軸受装置
を得ることを可能としたものである。
The optimum support position in the radial direction from the viewpoint of bearing performance of these υ bearing shoes is the dimensional center position as shown in equation (1),
), and the geometric center of gravity position as in equation (6). Although it varies depending on the dimensions, it generally exists between formula (1) and formula (6), and the radial fulcrum position ratio B s / B
It has become clear that it is sufficient to make the value larger than 0.52. This radial direction fulcrum position ratio B th / B is B s
/B) The radius R8 of the support point supported by the pivot of the bearing shoe that satisfies the condition of 0.52 is Rs > (0
, 52R2 + 0.48 R1), so in the present invention, the radius of the support point supported by the pivot of the bearing shoe is EL.
m', s The inner radius of the receiving shoe is RI + the outer radius is FL2r When the angle is θ, the radius Ra of the support point is (0,52f
Lg +0,48R+) Made smaller than L. By doing so, it is possible to obtain a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between the bearing shoe and the runner.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明する。第
7図から第9図には本発明の一実施例が示されている。
The present invention will be explained below based on the illustrated embodiments. An embodiment of the present invention is shown in FIGS. 7-9.

なお従来と同じ部品には同じ符号を付したので説明を省
略する。本実施例では軸受シュー4のピボット9で支持
される支持点Pの半径をRa、軸受シュー4の内半径を
1.外半径をR2+角度をθとした場合に、支持点Pの
半径Rs e (0,52Rg +0.48 R+ )
 !り大きく、した。このようにすることにより軸受シ
ュー4は半径方向の傾きを低減した支持点で支持される
よ’)Kなって、軸受シュー4とランナーとの摺動面に
おける油膜の生成能力増大を可能とした推力軸受装置を
得ることができる。
Note that parts that are the same as those in the conventional system are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the radius of the support point P supported by the pivot 9 of the bearing shoe 4 is Ra, and the inner radius of the bearing shoe 4 is 1. When the outer radius is R2 + the angle is θ, the radius of the support point P is Rs e (0,52Rg +0.48 R+)
! It was bigger and bigger. By doing this, the bearing shoe 4 is supported at a support point with reduced radial inclination, making it possible to increase the ability to generate an oil film on the sliding surface between the bearing shoe 4 and the runner. A thrust bearing device can be obtained.

すなわち油膜の流体力学的な重心位置を計算して軸受シ
ュー4の支持点Pの位置を、軸受シュー4の内半径RI
と外半径R2との中心、すなわち(1)式の位置よりも
外径側(Bs+>Bz )とし、かつ(6)式の幾何的
重心位置よりも内径側にくるようにした。このようにす
ることにより軸受シュー4の支持点Pの半径りおよび内
半径R1,の差B。
That is, by calculating the hydrodynamic center of gravity position of the oil film, the position of the support point P of the bearing shoe 4 is determined by the inner radius RI of the bearing shoe 4.
and the center of the outer radius R2, that is, the position on the outer diameter side (Bs+>Bz) of the equation (1), and on the inner diameter side than the geometric center of gravity position of the equation (6). By doing this, the difference B between the radius of the support point P of the bearing shoe 4 and the inner radius R1.

と軸受シュー4の半径方向の長さBとの比である半径方
向支点位置比B g / Bが、軸受シュー4とランナ
ー3との間の最小皮膜厚さが太き(、最高油膜温度が小
さくなるような値となる。すなわち軸受シュー4は半径
方向の傾きを低減して支持されるようになって、ランナ
ー3との摺動面に生成される油膜厚さが内径M側から外
径N側にわたり一様で、かつ増加するようになり、軸受
性能を良好にして回転電機の運転を安全にすることがで
きる。
The radial fulcrum position ratio B g / B, which is the ratio of the radial length B of the bearing shoe 4 to In other words, the bearing shoe 4 is supported with a reduced inclination in the radial direction, and the thickness of the oil film generated on the sliding surface with the runner 3 increases from the inner diameter M side to the outer diameter side. It becomes uniform and increases over the N side, so that the bearing performance can be improved and the rotating electric machine can be operated safely.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は1lllll受シユーをその半径
方向の傾きを低減して支持できるようになって、軸受シ
ューとランナーとの間の摺動面に生成される油膜を一様
で、かつ増加させることができるようになシ、軸受シュ
ーとランナーとの摺動面における油膜の生成能力増大を
可能とした推力軸受装置を得ることができる。
As described above, the present invention can support a 1lllll bearing shoe with its radial inclination reduced, thereby making the oil film generated on the sliding surface between the bearing shoe and the runner uniform and increasing. Thus, it is possible to obtain a thrust bearing device that can increase the ability to generate an oil film on the sliding surface between the bearing shoe and the runner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の推力軸受装置 −− 銭転織機の縦断側面図、第2図は従来の推力軸受装置の
軸受シュー周シの縦断側面図、第3図は従来の推力軸受
装置の軸受シューとランナーとの間の油膜生成状況を示
す説明図、第4図は従来の推力軸受装置の他の例の軸受
シューとランナーとの間の油膜生成状況を示す説明図、
第5図は推力軸受装置の軸受シューの寸法記号を示す説
明図、第6図は推力軸受装置の軸受シューの半径方向支
点位置比と最小油膜厚さおよび最高油膜温度との関係を
示す特性図、第7図は本発明の推力軸受装置の一実施し
リの軸受シューの支持を示す軸受シューの部分拡大図、
第8図は第7図の入方向よりみた軸受シューの平面図、
第9図は本発明の推力軸受装置の一実施例の軸受シュー
とランナーとの間の油膜生成状況を示す説明図である。 1・・・回転軸、2・・・カラー、3・・・う/ナー、
4・・・軸受シュー、6・・・軸受油槽、7・・・軸受
油槽の底部第 l 凹 第 2 凶 第 3 囚 第4図 第 5 目 半)シ方h 炙*、イit 比 Bs/B第 7 日 八 ↓
Fig. 1 is a longitudinal sectional side view of a conventional thrust bearing device -- a coin rolling machine, Fig. 2 is a longitudinal sectional side view of the circumference of a bearing shoe of a conventional thrust bearing device, and Fig. 3 is a longitudinal sectional side view of a conventional thrust bearing device. FIG. 4 is an explanatory diagram showing the state of oil film formation between the bearing shoe and the runner in another example of the conventional thrust bearing device;
Fig. 5 is an explanatory diagram showing the dimension symbols of the bearing shoe of the thrust bearing device, and Fig. 6 is a characteristic diagram showing the relationship between the radial fulcrum position ratio of the bearing shoe of the thrust bearing device, the minimum oil film thickness, and the maximum oil film temperature. , FIG. 7 is a partially enlarged view of a bearing shoe showing support for the bearing shoe in an embodiment of the thrust bearing device of the present invention;
Figure 8 is a plan view of the bearing shoe seen from the entry direction in Figure 7;
FIG. 9 is an explanatory diagram showing the state of oil film formation between the bearing shoe and the runner in one embodiment of the thrust bearing device of the present invention. 1...Rotation axis, 2...Color, 3...U/Na,
4...bearing shoe, 6...bearing oil tank, 7...bottom of bearing oil tank B 7th day 8↓

Claims (1)

【特許請求の範囲】[Claims] 1、回転軸にカラーを介して固着され、かつ前記回転軸
と共に回動するランナーと、このランナーに摺動接触し
、かつ前記回転軸の周囲に同心円状に配置される扇形状
の軸受シューと、この軸受シューと軸受油槽の底部との
間に配置され、かつピボットを有する支持体とを備え、
前記軸受シューが前記支持体のピボットを支点として揺
動自在に支持されている推力軸受装置において、前記軸
受シューの前記ピボットで支持される支持点の半径をB
S、前記軸受シューの内半径をRI+外半径をFL暑+
角度をθとした場合に、前記支持点の半径FL sを(
0,52ELs +0.48 a+ )より大きく、し
たことを特徴とする推力軸受装置。
1. A runner that is fixed to the rotating shaft via a collar and rotates together with the rotating shaft, and a fan-shaped bearing shoe that is in sliding contact with the runner and arranged concentrically around the rotating shaft. , a support disposed between the bearing shoe and the bottom of the bearing oil tank and having a pivot;
In a thrust bearing device in which the bearing shoe is swingably supported around a pivot of the support body, a radius of a support point of the bearing shoe supported by the pivot is defined as B.
S, the inner radius of the bearing shoe is RI + the outer radius is FL heat +
When the angle is θ, the radius FL s of the support point is (
A thrust bearing device characterized in that it is larger than 0.52ELs +0.48 a+).
JP20780183A 1983-11-04 1983-11-04 Thrust bearing Granted JPS60101315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20780183A JPS60101315A (en) 1983-11-04 1983-11-04 Thrust bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20780183A JPS60101315A (en) 1983-11-04 1983-11-04 Thrust bearing

Publications (2)

Publication Number Publication Date
JPS60101315A true JPS60101315A (en) 1985-06-05
JPS6311531B2 JPS6311531B2 (en) 1988-03-15

Family

ID=16545716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20780183A Granted JPS60101315A (en) 1983-11-04 1983-11-04 Thrust bearing

Country Status (1)

Country Link
JP (1) JPS60101315A (en)

Also Published As

Publication number Publication date
JPS6311531B2 (en) 1988-03-15

Similar Documents

Publication Publication Date Title
JPS5913369Y2 (en) cylindrical roller bearing
JP3236795B2 (en) Plain bearing
JPS6014016Y2 (en) hydrostatic bearing
EP0204359A1 (en) Radial spiral-groove bearing
JPH06280858A (en) Dynamic pressure bearing
JPS62110016A (en) Inclination controller for tapered roller in tapered roller bearing
JPS58102819A (en) Tilting pad bearing
JP2584623Y2 (en) Tapered roller bearing
JPS60101315A (en) Thrust bearing
US4971459A (en) Journal bearing with high stiffness
JP2000145781A (en) Bearing device
JPS5838649B2 (en) plain bearing
US3205028A (en) Double-curved slipper
JPS61241518A (en) Oil dynamic pressure sliding bearing
JPS6346290B2 (en)
US3748000A (en) Spherical bearings
JPH07139543A (en) Dynamic pressure bearing
JPS61201917A (en) Floating bush bearing
JPH025930B2 (en)
JPS62106122A (en) Contrarotating bearing
JP2556759Y2 (en) Half bearing prevention type journal bearing
JPH04145215A (en) Dynamic pressure bearing device
JPS60116915A (en) Thrust bearing device
JPS60129418A (en) Thrust bearing device
JPS58131427A (en) Journal bearing