JPS60127763A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS60127763A
JPS60127763A JP23667883A JP23667883A JPS60127763A JP S60127763 A JPS60127763 A JP S60127763A JP 23667883 A JP23667883 A JP 23667883A JP 23667883 A JP23667883 A JP 23667883A JP S60127763 A JPS60127763 A JP S60127763A
Authority
JP
Japan
Prior art keywords
layer
type
fet
main surface
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23667883A
Other languages
Japanese (ja)
Inventor
Akiyoshi Tamura
彰良 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23667883A priority Critical patent/JPS60127763A/en
Publication of JPS60127763A publication Critical patent/JPS60127763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To obtain an FET which has less backgate effect by forming a conductive layer different from an active layer on one main surface of opposite side to the main surface formed with the active layer of an fet of a semi-insulating substrate, and applying a potential to the conductive layer. CONSTITUTION:An active layer 4 is formed on one main surface of a semi- insulating substrate 1, a conductive type layer 10 different from the layer 4 is formed on the other main surface, an ohmic electrode 11 is formed on the layer 10, and a voltage is applied to the substrate 1. For example, in case of a GaAs MESFET in which a semi-insulating GaAs substrate 1 is formed with an n<+> type source region 2, an n<+> type drain region 3, an n type active layer 4, a p type layer 10 and an ohmic electrode 11, the electrode 11 and a drain electrode 6 are shortcircuited and a positive potential is applied to a source electrode 5. Then, holes presented in the layer 10 are implanted to a negative charge layer presented in the boundary 9, the charge layer is neutralized to reduce the thickness of a depletion layer. Thus, an FET having less backgate effect can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電界効果型トランジスタ(FET)に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to field effect transistors (FETs).

従来例の構成とその問題点 以下、(、aAs M E S F E Tを例にとっ
て説明する。第1図は、従来のGaAsMESFETの
構造図を示したものである。1は半絶縁性GaAs基板
で、2.3.4はそれぞれ選択イオン注入法により形成
された1型ソース領域、計型ドレイン領域、n型活性層
である。5,6.了は、それぞれソース電極、ドレイン
電極、ゲート電極である。8はゲート直下の空乏層を、
9は半絶縁性(SI型)GaAs基板1と活性層4の界
面を示す。このように従来のMESFKTの構造では、
基板1に存在する深いトラップ及び活性層4と基板1の
フェルミレベルの違いにより、その界面9付近でPn接
合と同様の空乏層が形成され、第1図に示すごとく活性
層4側で正の電荷層、基板1側で負の電荷層ができる。
The structure of the conventional example and its problems will be explained below by taking the aAs MESFET as an example. Fig. 1 shows a structural diagram of the conventional GaAs MESFET. 1 is a semi-insulating GaAs substrate. 2.3.4 are a type 1 source region, a square drain region, and an n-type active layer formed by selective ion implantation, respectively.5 and 6. are a source electrode, a drain electrode, and a gate electrode, respectively. 8 is the depletion layer directly under the gate,
Reference numeral 9 indicates the interface between the semi-insulating (SI type) GaAs substrate 1 and the active layer 4. In this way, in the conventional MESFKT structure,
Due to the deep traps existing in the substrate 1 and the difference in Fermi level between the active layer 4 and the substrate 1, a depletion layer similar to a Pn junction is formed near the interface 9, and as shown in FIG. Charge layer: A negative charge layer is formed on the substrate 1 side.

このため、活性層4の厚さがこの分だけ減少し、又、半
絶縁性GaAs基板1の電位がンース5の電位より負に
なるとこの電荷層の厚さが大きくなり、ドレイン電流が
減少する効果(バックゲート効果)が現われ、特に、デ
プレーション型FETで構成する回路では負の電位を用
いるので、この効果により大きな影響を受け、FETの
特性が劣化する。
Therefore, the thickness of the active layer 4 decreases by this amount, and when the potential of the semi-insulating GaAs substrate 1 becomes more negative than the potential of the source 5, the thickness of this charge layer increases, and the drain current decreases. An effect (backgate effect) appears, and in particular, since a negative potential is used in a circuit constituted by a depletion type FET, this effect has a large influence and deteriorates the characteristics of the FET.

発明の目的 本発明は、上記の問題に鑑み、バックゲート効果の少な
いFETを提供するものである。
OBJECTS OF THE INVENTION In view of the above problems, the present invention provides an FET with less backgate effect.

発明の構成 本発明は半絶縁性基板の、FETの活性層を形成してい
る主面と反対側の一主面に、活性層と異なる導電層を形
成し、その導電層に電位を加えることにより、半絶縁性
基板とFETの活性層に存在する空乏層の厚さを減少さ
せ、バックゲート効果の少ないFETを得るものである
Structure of the Invention The present invention involves forming a conductive layer different from the active layer on one main surface of a semi-insulating substrate opposite to the main surface forming the active layer of the FET, and applying a potential to the conductive layer. This reduces the thickness of the depletion layer existing in the semi-insulating substrate and the active layer of the FET, thereby obtaining an FET with less back gate effect.

実施例の説明 第2図は本発明の一実施例のymTの構造図を示したも
のである。図において、1〜9は、第1図と同様で、1
0はP型層、11はオーミック電極を示している。図に
おいて、電極11とドレイン電極6を短絡してソース電
極6に対して正の電位を与えると、P型層10に存在す
る正孔が界面9に存在する負の電荷層(これは主として
正孔トラップによる)に注入され、この電荷層が中和さ
れ空乏層の厚さを減少させる。よってバックゲート効果
の少ないFETを得ることができる。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows a structural diagram of ymT according to an embodiment of the present invention. In the figure, 1 to 9 are the same as in Figure 1, and 1
0 indicates a P-type layer, and 11 indicates an ohmic electrode. In the figure, when the electrode 11 and the drain electrode 6 are short-circuited and a positive potential is applied to the source electrode 6, the holes existing in the P-type layer 10 are transferred to the negative charge layer (mainly positive) existing at the interface 9. (by hole traps), this charge layer is neutralized and the thickness of the depletion layer is reduced. Therefore, an FET with less backgate effect can be obtained.

第3図は、ゲート長1μm、ゲート幅50μmの同一の
活性層を持つ従来のFETと本発明のFETのバックゲ
ート効果を比較をしたものである。バックゲートの電極
は、FETから30μm離れたn+領領域オーミック電
極を形成したものである0図において縦軸は、バックゲ
ート電圧がOvときのドレイン飽和電流で規格したドレ
イン電流、横軸はバックゲート電圧である。第3図より
明らかなように、実線人で示した本発明のFET1d、
Bで示した従来型のFETよりも、はるかにバ・ツクゲ
ート効果が少ないことがわかる0 以上の説明では、活性層がn型の場合であるが、p型の
場合には、基板の活性層と反対側の主面にn型の導電層
を設ければよいことはいうまでもない0 発明の効果 以上より明らかなように、本発明は、バ・ツクゲート効
果のきわめて少ないFETを実現するものである。
FIG. 3 compares the back gate effect of a conventional FET having the same active layer with a gate length of 1 μm and a gate width of 50 μm and the FET of the present invention. The back gate electrode is an n+ region ohmic electrode formed 30 μm away from the FET. In the figure, the vertical axis is the drain current normalized to the drain saturation current when the back gate voltage is Ov, and the horizontal axis is the back gate voltage. It is voltage. As is clear from FIG. 3, the FET 1d of the present invention indicated by a solid line,
It can be seen that the back gate effect is much smaller than that of the conventional FET shown in B. The above explanation is for the case where the active layer is n-type, but in the case of p-type, the active layer of the substrate Needless to say, it is sufficient to provide an n-type conductive layer on the main surface opposite to 0. Effects of the Invention As is clear from the above, the present invention realizes an FET with extremely low back gate effect. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のGaAs MKSFETの構造断面図、
第2図は本発明の一実施例のGaAs M E S F
 E Tの構造断面図、第3図は本発明のFETと従来
のFETのバックゲート効果の比較を示す特性図である
。 1・・・・・半絶縁性GaAs基板又は半絶縁性GaA
s層、2・・・・・・n+型ドレイン領域、3−− n
+型ンース領域、4・・・・・・n型活性層、6・・・
・・・ソース電極、6・・・・・・ドレイン電極、7・
・・・・・ゲート電極、10・・・・・・p型導電層、
11・−・・・・オーミック電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 箪 第 2 図 3図 ミ
Figure 1 is a cross-sectional view of the structure of a conventional GaAs MKSFET.
FIG. 2 shows a GaAs MESF according to an embodiment of the present invention.
FIG. 3, which is a cross-sectional view of the structure of ET, is a characteristic diagram showing a comparison of the back gate effect of the FET of the present invention and a conventional FET. 1... Semi-insulating GaAs substrate or semi-insulating GaA
s layer, 2...n+ type drain region, 3-- n
+ type source region, 4...n type active layer, 6...
...Source electrode, 6...Drain electrode, 7.
...gate electrode, 10...p-type conductive layer,
11.---Ohmic electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Illustration No. 2 Fig. 3 Fig. Mi

Claims (1)

【特許請求の範囲】 半絶縁性基板の一主面に活性層を有し、前記基板の他の
主面に前記活性層と異なる導電型層を有し、前記導電型
層にオーミック電極が形成され。 前記基板に電圧を印加することを特徴とする電界効果型
トランジスタ。
[Claims] A semi-insulating substrate has an active layer on one main surface, a conductivity type layer different from the active layer on the other main surface of the substrate, and an ohmic electrode is formed on the conductivity type layer. It is. A field effect transistor characterized in that a voltage is applied to the substrate.
JP23667883A 1983-12-15 1983-12-15 Field effect transistor Pending JPS60127763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23667883A JPS60127763A (en) 1983-12-15 1983-12-15 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23667883A JPS60127763A (en) 1983-12-15 1983-12-15 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS60127763A true JPS60127763A (en) 1985-07-08

Family

ID=17004156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23667883A Pending JPS60127763A (en) 1983-12-15 1983-12-15 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS60127763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179031A (en) * 1988-12-28 1990-07-12 Mitsubishi Electric Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179031A (en) * 1988-12-28 1990-07-12 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JPS6348196B2 (en)
JP2728126B2 (en) Field effect transistor
JP2679333B2 (en) Schottky barrier junction gate type field effect transistor
JPS6356710B2 (en)
JPS60127763A (en) Field effect transistor
JPS61147577A (en) Complementary semiconductor device
JP2569626B2 (en) Semiconductor integrated circuit device
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
JPH0480957A (en) Field effect transistor
JP3090451B2 (en) Semiconductor device
JPS61256770A (en) Field effect transistor structural body
JPH0212016B2 (en)
JPH0715018A (en) Field-effect transistor
JP3189847B2 (en) Compound semiconductor integrated circuit
JPH04155840A (en) Semiconductor device
JPH0745973Y2 (en) Hall element device
JP2664174B2 (en) Field effect transistor
JPS58148466A (en) Semiconductor device
JPS58162070A (en) Field effect transistor
JPH0529357A (en) Field-effect transistor
JPS6279673A (en) Field effect transistor
JPH0147904B2 (en)
JPH0328830B2 (en)
JPS63124471A (en) Field-effect transistor
JPS61241980A (en) Semiconductor device and manufacture thereof