JPS6012771B2 - Capacitor manufacturing method - Google Patents

Capacitor manufacturing method

Info

Publication number
JPS6012771B2
JPS6012771B2 JP50107199A JP10719975A JPS6012771B2 JP S6012771 B2 JPS6012771 B2 JP S6012771B2 JP 50107199 A JP50107199 A JP 50107199A JP 10719975 A JP10719975 A JP 10719975A JP S6012771 B2 JPS6012771 B2 JP S6012771B2
Authority
JP
Japan
Prior art keywords
evaporation source
substrate
vacuum chamber
metal
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50107199A
Other languages
Japanese (ja)
Other versions
JPS5231368A (en
Inventor
紘一 篠原
康博 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP50107199A priority Critical patent/JPS6012771B2/en
Publication of JPS5231368A publication Critical patent/JPS5231368A/en
Publication of JPS6012771B2 publication Critical patent/JPS6012771B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は陽極酸化法により誘電体層を得るコンデンサ製
法の改良に係り、具体的には可榛性絶縁基板上に密着力
の優れた金属膜を得てその金属膜を陽極酸化する方法の
提供にある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a capacitor manufacturing method in which a dielectric layer is obtained by an anodic oxidation method. The purpose is to provide a method for anodizing.

最近、マイクロエレクトロニクス分野で容量素子の小形
化が切望されており、とりわけフレキシブルサーキット
技術において現状では容量素子を組み入れることは困難
であるとされている。
Recently, there has been a strong desire to downsize capacitive elements in the field of microelectronics, and it is currently difficult to incorporate capacitive elements in flexible circuit technology in particular.

それは小形化の要望に応えるための薄膜容量素子をプラ
スチックシートの基板上に構成する技術に問題があるた
めであり、具体的には基板上に形成した蒸着膜等のコン
デンサ構成要素の薄膜物質が相互に優れた密着力で重ね
合わす点に実用に至らない面が含まれていることによる
。例えば、ポリエチレンテレフタレートフイルム(厚さ
100〆の)を基板とし、アルミニウムを真空蒸着し、
この蒸着腰を電解液中で、葵着膜を陽極として陽極酸化
してN203を形成し、その山203層を誘電体層とし
、その誘電体層上に対向電極としてAIを真空蒸着して
構成し、コンデンサを製造する場合、特にポリエチレン
テレフタレートフイルム基板と、山の間の接着力が問題
となり、くり返し曲げ応力により、容量が不安となる現
象を引き起していた。
This is because there is a problem with the technology of configuring thin film capacitive elements on plastic sheet substrates to meet the demand for miniaturization. Specifically, the thin film materials of capacitor components such as vapor deposited films formed on substrates have problems. This is because they include aspects that are not practical in that they overlap with each other with excellent adhesion. For example, a polyethylene terephthalate film (100 mm thick) is used as a substrate, aluminum is vacuum-deposited,
This vapor deposited layer is anodized in an electrolytic solution using the Aoi deposited film as an anode to form N203, the peak 203 layer is used as a dielectric layer, and AI is vacuum evaporated on the dielectric layer as a counter electrode. However, when manufacturing capacitors, the adhesive strength between the polyethylene terephthalate film substrate and the peaks was a problem, and repeated bending stress caused problems with the capacitance.

本発明は、このような従来の欠点を除去したものであり
、真空槽内に可榛性絶縁基板と、所望の金属の蒸発源と
を対向して配設し、金属蒸気の一部をイオン化し、イオ
ンを含む蒸気流により、蒸発源に対して負の蟹位に保持
される絶縁基板上に、目的の金属層を形成することを特
長とする。
The present invention eliminates such conventional drawbacks by disposing a flexible insulating substrate and a desired metal evaporation source facing each other in a vacuum chamber, and ionizing a portion of the metal vapor. The method is characterized in that a desired metal layer is formed on an insulating substrate that is held in a negative position with respect to the evaporation source by a vapor flow containing ions.

図面に本発明を実施するための金属層形成層の一例を示
す。真空槽1は通常ステンレス製で、外側に水浴管を配
した構造が用いられるが、ガススでもよく、放出ガス量
の少ない材料を選ぶのが好ましい。この真空槽1は真空
排気系2に主パルプ(図示せず)を介して接続される。
真空槽1内に蒸発源3とその蒸発源3に対して負電位に
ある可犠牲絶縁基板4とを対向配設し、両者間の空間に
高周波電極5を配設する。そして絶縁基板4の蒸発源側
に関孔部を有する電極6を配設する。この電極6はステ
ンレス製の金網であることが多い。7は可捺性絶縁基板
4のロールを示し、巻き取り機構、駆動機機は略した。
An example of a metal layer forming layer for implementing the present invention is shown in the drawings. The vacuum chamber 1 is usually made of stainless steel and has a water bath pipe on the outside, but it may also be made of gas, and it is preferable to choose a material that releases a small amount of gas. This vacuum chamber 1 is connected to a vacuum evacuation system 2 via a main pulp (not shown).
An evaporation source 3 and a sacrificial insulating substrate 4 having a negative potential with respect to the evaporation source 3 are disposed facing each other in a vacuum chamber 1, and a high frequency electrode 5 is disposed in a space between the two. Then, an electrode 6 having a barrier portion is provided on the evaporation source side of the insulating substrate 4. This electrode 6 is often made of stainless steel wire mesh. 7 shows a roll of the flexible insulating substrate 4, and the winding mechanism and drive mechanism are omitted.

蒸発源3は電子ビーム蒸発源を図示したが、これにこだ
わらず、レーザピーム法、高周波誘導加熱法、抵抗加熱
法等、公知の蒸発源のいずれでもよいが、後述するコン
デンサの性能、特に耐圧向上の観点から蒸発金属が蒸発
源の構成材料を含まない電子ビーム蒸発源としーザビー
ム蒸発源が優位にあるが、実用面から電子ビーム蒸発源
が最適であると考える。また電子ビーム蒸発源はいくつ
かの方式があるがし180o偏向の例を示した。すなわ
ち、鋼製の水冷ハ−ス8に蒸発する金属3を配し、フィ
ラメント9より出た熱電子を高圧電極10、ビーム形成
極11,12によりビームとしL図示せぬ偏向磁界へ送
り込み、蒸発金属3を気化させる。13はフィラメント
加熱電源で、14は加速用電源である。15は基板用の
直流電源、16は高周波電源で高周波電力の伝達効率の
向上のためのマッチングボックスは図示していない。
Although the evaporation source 3 is an electron beam evaporation source shown in the figure, it is not limited to this and may be any known evaporation source such as a laser beam method, high-frequency induction heating method, or resistance heating method. From this point of view, electron beam evaporation sources and laser beam evaporation sources, in which the evaporated metal does not contain the constituent materials of the evaporation source, are advantageous, but from a practical standpoint, we believe that the electron beam evaporation source is optimal. Although there are several types of electron beam evaporation sources, an example of 180° deflection is shown. That is, the metal 3 to be evaporated is placed in a water-cooled steel hearth 8, and thermionic electrons emitted from the filament 9 are converted into beams by the high-voltage electrode 10 and beam forming poles 11 and 12, and sent into a deflection magnetic field (not shown) L, which causes the evaporation. Vaporize metal 3. 13 is a filament heating power source, and 14 is an acceleration power source. Reference numeral 15 is a DC power supply for the substrate, 16 is a high frequency power supply, and a matching box for improving the transmission efficiency of high frequency power is not shown.

17は絶縁ブツシング「 18はニードルバルプで、必
要に応じて〜、Xe等の不活性ガス19を真空槽1内に
導入する量を調節する役目を持つ。
17 is an insulating bushing; 18 is a needle valve, which has the role of adjusting the amount of inert gas 19 such as Xe introduced into the vacuum chamber 1 as necessary.

次に操作および動作を簡単に説明すると、あらかじめ真
空槽1内を5×10‐5Ton以下に排気する。
Next, to briefly explain the operation and operation, the inside of the vacuum chamber 1 is evacuated to 5×10-5 Ton or less in advance.

その後ニードルバルブ18の調節により、例えばArガ
スを1×10‐汀orrまで導入する。平衡状態に達す
るまで10分〜30分かかる。その後高周波電源16を
動作させ、高周波電源5近傍に高周波グロー放電を発生
させる。この状態で、電子ビーム蒸発源を動作させて、
金属3を気化させる。金属蒸気は電子ビームで加熱蒸発
させるだけで若干量イオン化しているが「高周波グロー
に露呈して、さらにイオン量を増加させ、基板4上へ加
速エネルギーを有するオンを含んだ金属蒸気流を射突堆
積、目的の金属層を形成する。直流加速電圧は高ければ
よいとは限らず、10KV以下で2〜3兆Vが適当な場
合が多い。高周波グローは5×10‐5Tonでは安定
化できないので、不純物(Arガスでも耐圧を低くする
悪影響をもたらす)をきらう場合、図示せぬシャッター
を閉とした状態で、電子ビーム蒸発源を高3温動作、す
なわち、目的の金属蒸気を多量に発生させ、5×10‐
4Tonに金属蒸気のみで圧力調節するように、電子ビ
ームの電力を漸次増加させながら「ニードルバルブを開
としていく手法をとるとよい。
Thereafter, by adjusting the needle valve 18, for example, Ar gas is introduced to a level of 1×10-orr. It takes 10 to 30 minutes to reach equilibrium. Thereafter, the high frequency power source 16 is operated to generate a high frequency glow discharge near the high frequency power source 5. In this state, operate the electron beam evaporation source,
Vaporize metal 3. The metal vapor is ionized to a small extent simply by heating and evaporating it with an electron beam, but it is exposed to a high-frequency glow to further increase the amount of ions, and a metal vapor flow containing ions with accelerated energy is injected onto the substrate 4. Rapid deposition to form the desired metal layer.The DC accelerating voltage is not necessarily high, but 2 to 3 trillion V is often suitable below 10 KV.High frequency glow cannot be stabilized at 5 x 10-5 Ton. Therefore, if you want to avoid impurities (even Ar gas has the negative effect of lowering the withstand pressure), you can operate the electron beam evaporation source at a high 3-temperature operation with the shutter (not shown) closed, that is, generate a large amount of the desired metal vapor. Let, 5×10-
It is best to gradually increase the power of the electron beam and open the needle valve so that the pressure can be adjusted to 4 tons using only metal vapor.

また、イオンの含有率は多少落ちるが、45×10‐5
Torrの高真空でも安定にイオンを生成しうる熱陰極
、陽極の系からなるイオン化機構を高周波電極5に代え
て配設してもよい。金属層の形成後は基板4全体を真空
槽1から取り出し、通常の電解液を用いた陽極酸化法に
より金属層の一部を陽極酸化して誘電体層を形成する。
そして対向電極の形成は再度真空構内に基板を入れて行
なうか、または別の方法によればよい。このようにして
コンデンサが形成される。次に本発明の実施例を示す。
In addition, although the ion content decreases somewhat, it is 45 × 10-5
An ionization mechanism consisting of a hot cathode and anode system that can stably generate ions even in a high vacuum of Torr may be provided in place of the high frequency electrode 5. After forming the metal layer, the entire substrate 4 is taken out from the vacuum chamber 1, and a part of the metal layer is anodized by a normal anodic oxidation method using an electrolytic solution to form a dielectric layer.
The counter electrode may then be formed by placing the substrate in a vacuum chamber again, or by another method. A capacitor is thus formed. Next, examples of the present invention will be shown.

【1’基板;プラスチックフィルム(2種類)(21
金属:タンタル(純度99.99%)■ 電子ビーム:
舷W【4’高周波電力:IKW(周波数13.58M位
)(5} 動作真空度:5×10‐4Torr【61
電解液:1%リン酸水溶液‘71 対向電極:タンタル
を電子ビーム黍着上段■が基板としてポリエチレンテレ
フタレートフィルムを、下段■が基板としてポリプロピ
レンフィルムを使用した場合である。
[1'Substrate; Plastic film (2 types) (21
Metal: Tantalum (99.99% purity) ■ Electron beam:
Ship W [4' High frequency power: IKW (frequency about 13.58M) (5) Operating vacuum: 5 x 10-4 Torr [61
Electrolyte: 1% phosphoric acid aqueous solution '71 Counter electrode: Tantalum electron beam coating The upper case (■) uses a polyethylene terephthalate film as the substrate, and the lower case (2) uses a polypropylene film as the substrate.

なお、容量については大きな差異はみられていないが、
煩向としては本発明のコンデンサの方が変化が少ないこ
とがわかった。
Although no major differences were observed in terms of capacity,
It has been found that the capacitor of the present invention has fewer changes in terms of problems.

この効果はフレキシブルサーキットへのさらに大容量の
例えばTi02を誘電体とした小形コンデンサの組み込
みを可能とすることが期待され、実際うまくいくことを
確認した。
This effect is expected to enable the incorporation of a small capacitor with a larger capacity, for example, using TiO2 as a dielectric, into a flexible circuit, and we have confirmed that it actually works.

その他、AIから山203、WからW03等についても
確認した。さらに発展させて、これを捲き回することで
大容量コンデンサを製造することもできる。以上のよう
に本発明の製造方法によれば、耐圧の高いコンデンサを
得ることができるものである。
In addition, we also confirmed mountain 203 from AI, W03 from W, etc. By further developing it and winding it, it is also possible to manufacture large-capacity capacitors. As described above, according to the manufacturing method of the present invention, a capacitor with high withstand voltage can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の製造方法を実施するために使用する装置
の断面正面図である。 1・・・・・・真空槽、3・・・・・・蒸発源、4・・
・・・・可操性絶縁基板。
The drawing is a sectional front view of an apparatus used to carry out the manufacturing method of the present invention. 1... Vacuum chamber, 3... Evaporation source, 4...
...Movable insulating board.

Claims (1)

【特許請求の範囲】[Claims] 1 真空槽内で蒸発源に対して負電位にある可撓性絶縁
基板上にイオンプレーテイングにより金属層を形成し、
その金属層の一部を陽極酸化により誘電体層とし、その
誘電体層上に対向電極層を形成することを特徴とするコ
ンデンサの製造方法。
1 Forming a metal layer by ion plating on a flexible insulating substrate that is at a negative potential with respect to the evaporation source in a vacuum chamber,
A method for manufacturing a capacitor, comprising forming a part of the metal layer into a dielectric layer by anodic oxidation, and forming a counter electrode layer on the dielectric layer.
JP50107199A 1975-09-03 1975-09-03 Capacitor manufacturing method Expired JPS6012771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50107199A JPS6012771B2 (en) 1975-09-03 1975-09-03 Capacitor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50107199A JPS6012771B2 (en) 1975-09-03 1975-09-03 Capacitor manufacturing method

Publications (2)

Publication Number Publication Date
JPS5231368A JPS5231368A (en) 1977-03-09
JPS6012771B2 true JPS6012771B2 (en) 1985-04-03

Family

ID=14452983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50107199A Expired JPS6012771B2 (en) 1975-09-03 1975-09-03 Capacitor manufacturing method

Country Status (1)

Country Link
JP (1) JPS6012771B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848832B2 (en) * 2006-05-09 2011-12-28 凸版印刷株式会社 Nanoimprint apparatus and nanoimprint method

Also Published As

Publication number Publication date
JPS5231368A (en) 1977-03-09

Similar Documents

Publication Publication Date Title
GB2095029A (en) Evaporation of an evaporant in vacuum
KR20070106462A (en) Metalization through a thin seed layer deposited under plasma support
JPS6012771B2 (en) Capacitor manufacturing method
JP3261049B2 (en) Sputtering method
JPH01286228A (en) Manufacture of thin film by spattering
JPH0488165A (en) Sputtering type ion source
JPH0750229A (en) Solid electrolytic capacitor and manufacture thereof
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
JPS5937564B2 (en) Method for forming end face electrodes of electronic components
JPH0461109A (en) Cathode material for electrolytic capacitor
JPH0444204A (en) Aluminum electrode for electrolytic capacitor
JP3155750B2 (en) Method for producing aluminum electrode for electrolytic capacitor
JPH03131014A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH0513281A (en) Electrode material for electrolytic capacitor
JPH03131013A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH0330410A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH03150825A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH0332012A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH03196510A (en) Electrode foil for electrolytic capacitor
JP4585819B2 (en) Cathode material for electrolytic capacitors
JPH03147312A (en) Manufacture of aluminum electrode for electrolytic capacitor use
JPH0330409A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH0414809A (en) Manufacture of aluminum electrode for electrolytic capacitor use
JPH065476A (en) Large capacitance electrolytic capacitor
JP2600242B2 (en) Aluminum electrolytic capacitor