JPH0513281A - Electrode material for electrolytic capacitor - Google Patents

Electrode material for electrolytic capacitor

Info

Publication number
JPH0513281A
JPH0513281A JP18807191A JP18807191A JPH0513281A JP H0513281 A JPH0513281 A JP H0513281A JP 18807191 A JP18807191 A JP 18807191A JP 18807191 A JP18807191 A JP 18807191A JP H0513281 A JPH0513281 A JP H0513281A
Authority
JP
Japan
Prior art keywords
niobium
purity
electrode material
electrolytic capacitor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18807191A
Other languages
Japanese (ja)
Inventor
Yutaka Yokoyama
豊 横山
Susumu Ando
進 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP18807191A priority Critical patent/JPH0513281A/en
Publication of JPH0513281A publication Critical patent/JPH0513281A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electrode material for an electrolytic capacitor, having a high electrostatic capacity value, no variation in an electrostatic capacity value for a long period and a low leakage current value. CONSTITUTION:A niobium vapor-deposited layer having a high purity of 99.99% or more, is formed on a surface of an aluminum or aluminum alloy base material as an anode or cathode material of an electrolytic capacitor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電解コンデンサの陽
極あるいは陰極に用いられる電極材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material used as an anode or a cathode of an electrolytic capacitor.

【0002】[0002]

【従来の技術】電解コンデンサは、アルミニウムなどの
弁金属を電極に用いている。弁金属は、陽極酸化処理な
どの操作によって、金属表面に絶縁性の金属酸化物薄膜
層を形成することができる。この薄膜は誘電体層として
機能し、極めて薄い(1Vあたり十数オングストローム
程度)皮膜のため、電極面積あたりの静電容量値を高く
することができ、小形大容量のコンデンサが得られる特
長がある。
2. Description of the Related Art Electrolytic capacitors use a valve metal such as aluminum for their electrodes. With the valve metal, an insulating metal oxide thin film layer can be formed on the metal surface by an operation such as anodic oxidation treatment. This thin film functions as a dielectric layer, and since it is an extremely thin film (about a dozen angstroms per 1V), it is possible to increase the capacitance value per electrode area and obtain a compact and large-capacity capacitor. .

【0003】また陰極側電極についても、コンデンサ内
部に含浸される電解液との反応性の問題や腐食対策から
陽極側と同一の弁金属が使用される。このため特にアル
ミニウム陰極においては、大気中の酸素による自然酸化
皮膜が表面に形成され、これが静電容量を持つことにな
って、陽極側電極と直列の合成容量を形成し、陽極のみ
の静電容量より容量値が下がることになる。
Also for the cathode side electrode, the same valve metal as that on the anode side is used because of the problem of reactivity with the electrolytic solution impregnated inside the capacitor and measures against corrosion. For this reason, especially in the aluminum cathode, a natural oxide film formed by oxygen in the atmosphere is formed on the surface, and this has a capacitance, which forms a combined capacitance in series with the anode side electrode, and the electrostatic capacitance of the anode only. The capacity value will be lower than the capacity.

【0004】また電解コンデンサは小形化、大容量化の
ために、電極表面を粗面化して表面積の拡大を図るため
電極を電気化学的にエッチングすることがおこなわれて
いるが、近年はこのエッチングによる表面積拡大も限界
があり、新たな静電容量の増大策が求められている。
In order to reduce the size and increase the capacity of electrolytic capacitors, it has been attempted to electrochemically etch the electrodes in order to increase the surface area by roughening the electrode surface. In recent years, this etching has been performed. There is a limit to the increase in surface area due to, and new measures to increase the capacitance are required.

【0005】電極の静電容量を増加させるものとして、
アルミニウム表面に異なる金属や金属化合物の層を形成
することが提案されている。このようなものとして、例
えば特公昭31−5022号公報、特開昭59−167
009号公報、特開平2−61039号公報のように、
電極の基材表面に表面にニオブ層を蒸着等の手段によっ
て形成したものが知られている。アルミニウムにニオブ
を蒸着したものあるいはこのニオブを陽極酸化等の処理
によってその一部または全部を酸化させたものは、一般
にアルミニウム自体に比べて高い静電容量が得られ、電
解コンデンサの電極材料として好適なものである。
To increase the capacitance of the electrodes,
It has been proposed to form layers of different metals or metal compounds on the aluminum surface. As such a thing, for example, Japanese Patent Publication No. 31-5022 and Japanese Patent Laid-Open No. 59-167.
No. 009 and Japanese Patent Laid-Open No. 2-61039,
It is known that a niobium layer is formed on the surface of the base material of the electrode by means such as vapor deposition. A material obtained by vapor-depositing niobium on aluminum or a material obtained by oxidizing a part or all of this niobium by a treatment such as anodic oxidation generally obtains a higher capacitance than aluminum itself, and is suitable as an electrode material for electrolytic capacitors. It is something.

【0006】しかしながら、このような電極材料は、高
い静電容量値を持つ反面、その静電容量値の長期の安定
性や、陽極側に使用した際漏れ電流の値が高くなるなど
の問題があり、この改善が求められていた。
However, while such an electrode material has a high capacitance value, it has problems such as long-term stability of the capacitance value and a high leakage current value when used on the anode side. Yes, there was a need for this improvement.

【0007】[0007]

【発明が解決しようとする課題】この発明は、前記した
問題点を改善したもので、電極基材の表面に形成された
ニオブ層の純度が、電極の安定性や漏れ電流特性に影響
を及ぼすことに着目してなされたもので、電解コンデン
サの電極材料として、高い静電容量値と共に、静電容量
値が長期間安定して維持でき、また漏れ電流の少ない電
極材料を得ることを目的としている。
DISCLOSURE OF THE INVENTION The present invention is an improvement over the above-mentioned problems, in which the purity of the niobium layer formed on the surface of the electrode base material affects the stability and leakage current characteristics of the electrode. It was made with a focus on that, with the aim of obtaining an electrode material for an electrolytic capacitor, which has a high capacitance value, can maintain a stable capacitance value for a long period of time, and has little leakage current. There is.

【0008】[0008]

【課題を解決するための手段】この発明の電極材料は、
アルミニウムまたはアルミニウム合金を基材とし、この
表面にニオブが蒸着されたものからなり、しかも蒸着さ
れたニオブ層の純度が99.99%以上であることを特
徴としている。
The electrode material of the present invention comprises:
It is characterized in that it is made of aluminum or an aluminum alloy as a base material and niobium is vapor-deposited on the surface thereof, and the vapor-deposited niobium layer has a purity of 99.99% or more.

【0009】基材となるアルミニウムは、陽極用に用い
られる高純度のものから、陰極等に用いられる比較的純
度の低いアルミニウム合金材まで選択することができ
る。また基材の形状は問わないが、一般的には箔、薄
板、線、多孔質のブロックなどの形状である。基材表面
は、エッチング処理等により粗面化がなされていてもよ
い。
Aluminum used as the base material can be selected from high-purity aluminum used for the anode to aluminum alloy materials having a relatively low purity used for the cathode and the like. The shape of the substrate is not limited, but generally, it is a foil, a thin plate, a wire, a porous block, or the like. The surface of the base material may be roughened by etching or the like.

【0010】この基材の表面にニオブの薄膜層を形成す
るための手段は各種のものがあるが、イオンプレーティ
ング法、スパッタリング法、真空蒸着法、陰極アークプ
ラズマ蒸着法などの物理的手段、CVD法などの化学的
手段などが選択できる。
There are various means for forming a thin film layer of niobium on the surface of the substrate, but physical means such as ion plating method, sputtering method, vacuum vapor deposition method and cathodic arc plasma vapor deposition method, Chemical means such as the CVD method can be selected.

【0011】この発明では、形成されたニオブ薄膜層が
99.99%以上の高純度があることが必要である。こ
のため蒸着時に用いるニオブのターゲット材純度や、基
材表面の清浄度などに注意する必要がある。
In the present invention, it is necessary that the formed niobium thin film layer has a high purity of 99.99% or more. Therefore, it is necessary to pay attention to the purity of the target material of niobium used during vapor deposition, the cleanliness of the substrate surface, and the like.

【0012】またニオブ層が形成された電極材料を陽極
酸化処理して、金属ニオブを酸化ニオブに変成させ、絶
縁性を高めて陽極側の電極材料に用いることができる。
これにより表面に誘電体となる強固な絶縁皮膜層が形成
される。
The electrode material on which the niobium layer is formed may be anodized to convert the metal niobium to niobium oxide to improve the insulating property and be used as the electrode material on the anode side.
As a result, a strong insulating film layer serving as a dielectric is formed on the surface.

【0013】[0013]

【作用】この発明によれば、99.99%以上の純度の
ニオブ薄膜は、この純度より低い純度のニオブ薄膜に比
べて高い静電容量値が劣化せずに長期間安定して維持さ
れる。また漏れ電流も同様に少なくなる。
According to the present invention, a niobium thin film having a purity of 99.99% or higher can maintain a high capacitance value for a long period of time without being deteriorated as compared with a niobium thin film having a purity lower than this purity. . Similarly, the leakage current is reduced.

【0014】[0014]

【実施例】次に実施例に基づいて、この発明を説明す
る。まず基材として高純度のアルミニウム箔(純度9
9.99%、90μm厚)の表面を電気化学的にエッチ
ングして粗面化したものを用意した。
EXAMPLES The present invention will now be described based on examples. First, a high-purity aluminum foil (purity 9
A roughened surface was prepared by electrochemically etching the surface of 9.99%, 90 μm thick).

【0015】このアルミニウム箔にニオブ薄膜層を形成
した。ニオブ薄膜の蒸着には、陰極アークプラズマ蒸着
法を用いた。陰極アークプラズマ蒸着法は実質的に真空
下で金属ターゲット材を陰極として、アーク放電を起こ
させて、アーク電流のエネルギーによってターゲット金
属をイオン化して蒸発させる。このイオン化した金属ガ
スはバイアス電圧を印加した被処理材に付着し、緻密な
金属薄膜層が得られる。陰極アークプラズマ蒸着法は、
高温のイオン化した金属ガスを付着させるため、高純度
金属薄膜層を形成するのに適している。
A niobium thin film layer was formed on this aluminum foil. The cathodic arc plasma vapor deposition method was used for vapor deposition of the niobium thin film. In the cathodic arc plasma deposition method, a metal target material is used as a cathode under substantially vacuum to cause arc discharge, and the target metal is ionized and evaporated by the energy of the arc current. This ionized metal gas adheres to the material to be processed to which a bias voltage has been applied, and a dense metal thin film layer is obtained. The cathodic arc plasma deposition method is
Since a high temperature ionized metal gas is deposited, it is suitable for forming a high purity metal thin film layer.

【0016】実験は、金属(ニオブ)ターゲット材の純
度を変えて、形成されるニオブ薄膜の純度を変えた。比
較例はこの発明の範囲外のニオブ薄膜の純度のもので、
ターゲット材のニオブ純度が99.0%のものを使用
し、この結果蒸着薄膜の純度は99.85%であった。
In the experiment, the purity of the niobium thin film to be formed was changed by changing the purity of the metal (niobium) target material. Comparative examples are those of the purity of the niobium thin film outside the scope of the present invention,
A target material having a niobium purity of 99.0% was used, and as a result, the purity of the deposited thin film was 99.85%.

【0017】本発明例1のものはターゲット材の純度が
99.9%のものを使用した。この結果蒸着薄膜の純度
は99.99%であった。さらに本発明例2はターゲッ
ト材の純度が99.995%をものを用いた。この結果
蒸着薄膜の純度は99.999%のものが得られた。な
お、蒸着薄膜の純度の測定は、SIMS(SecondaryIon
Mass Spectrum )法によった。
In the example 1 of the present invention, a target material having a purity of 99.9% was used. As a result, the purity of the deposited thin film was 99.99%. Further, in Invention Example 2, a target material having a purity of 99.995% was used. As a result, the purity of the deposited thin film was 99.999%. The purity of the deposited thin film can be measured by SIMS (Secondary Ion).
Mass Spectrum) method.

【0018】なおこれ以外の蒸着条件は比較例、本発明
例とも共通で次のとおりである。 チャンバー内圧力: 2×10-3 (Torr) アーク電流 : 150 (A) 基材バイアス電圧: −20 (V) 蒸着時間 : 90 (秒)
Other vapor deposition conditions are common to the comparative example and the present invention, and are as follows. Chamber pressure: 2 × 10 −3 (Torr) Arc current: 150 (A) Substrate bias voltage: −20 (V) Deposition time: 90 (seconds)

【0019】こうして得られた蒸着箔の静電容量値を測
定した。静電容量の測定は、テトラメチルアンモニウム
をγ−ブチロラクトンに溶解した(25重量%溶液)電
解液に電極箔を浸漬しておこなった。また安定度の試験
のため、箔を高温(110℃)で500時間放置した後
の静電容量値についても調べた。
The capacitance value of the vapor deposition foil thus obtained was measured. The capacitance was measured by immersing the electrode foil in an electrolytic solution in which tetramethylammonium was dissolved in γ-butyrolactone (25% by weight solution). Also, for the stability test, the capacitance value after leaving the foil at a high temperature (110 ° C.) for 500 hours was also examined.

【0020】さらにこの電極材料を陽極側に使用するた
めに陽極酸化処理を施した状態で、漏れ電流の大きさに
ついても測定した。陽極酸化の条件は、りん酸水溶液
(0.1N、60℃)中で箔を陽極側として6Vの電圧
を印加して20分間陽極過酸化をおこない、金属ニオブ
層を酸化ニオブ(Nb2 5)に変えた。この箔に4.
2Vを印加して漏れ電流(2分値)を測定した。これら
の測定結果を表1に示す。
Further, in order to use this electrode material on the anode side, the magnitude of leakage current was also measured in a state of being anodized. Conditions for the anodic oxidation, the aqueous solution phosphoric acid (0.1 N, 60 ° C.) foil was subjected to the applied 20 minutes anodic peroxidation voltage of 6V as the anode side in, niobium oxide and metallic niobium layer (Nb 2 O 5 ). On this foil
Leak current (2 minutes value) was measured by applying 2V. The results of these measurements are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】この結果からわかるように、この発明の電
極材料は、従来のものに比べて高い静電容量値を有し、
しかも高温放置後においての静電容量値の変化が少な
い。また陽極酸化をおこない、その後測定した漏れ電流
値も極めて低い値となっており、緻密が絶縁性の高い蒸
着膜が得られていることがわかる。
As can be seen from these results, the electrode material of the present invention has a higher capacitance value than the conventional ones,
Moreover, there is little change in capacitance value after being left at a high temperature. Further, the leakage current value measured after the anodic oxidation was also extremely low, indicating that a dense and highly insulating vapor deposition film was obtained.

【0023】[0023]

【発明の効果】以上述べたように、この発明によれば高
い静電容量でしかも長期間変化の少ない安定した電極材
料を得ることができ、この材料を用いた電解コンデンサ
は、小形化、大容量化を図ることができる。
As described above, according to the present invention, it is possible to obtain a stable electrode material having a high electrostatic capacity and little change over a long period of time, and an electrolytic capacitor using this material can be made compact and large. The capacity can be increased.

【0024】しかも、薄膜を形成した電極材料は漏れ電
流特性が劣る欠点があったが、この発明の電極材料は漏
れ電流値が低く、優れた電気特性の電解コンデンサが得
られる。
Moreover, although the electrode material having the thin film formed has a drawback that the leakage current characteristic is inferior, the electrode material of the present invention has a low leakage current value and an electrolytic capacitor having excellent electric characteristics can be obtained.

Claims (1)

【特許請求の範囲】 【請求項1】 アルミニウムまたはアルミニウム合金基
材表面にニオブを蒸着してなる電解コンデンサ用電極材
料において、蒸着されたニオブ層の純度が99.99%
以上であることを特徴とする電解コンデンサ用電極材
料。
Claim: What is claimed is: 1. An electrode material for an electrolytic capacitor obtained by vapor deposition of niobium on the surface of an aluminum or aluminum alloy substrate, wherein the vapor deposition niobium layer has a purity of 99.99%.
The above is an electrode material for electrolytic capacitors characterized by the above.
JP18807191A 1991-07-02 1991-07-02 Electrode material for electrolytic capacitor Pending JPH0513281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18807191A JPH0513281A (en) 1991-07-02 1991-07-02 Electrode material for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18807191A JPH0513281A (en) 1991-07-02 1991-07-02 Electrode material for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0513281A true JPH0513281A (en) 1993-01-22

Family

ID=16217202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18807191A Pending JPH0513281A (en) 1991-07-02 1991-07-02 Electrode material for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0513281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434215B1 (en) * 2001-12-27 2004-06-04 파츠닉(주) Making method of Nb electrolyte capacitor
JP2007300041A (en) * 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor and cathode foil required thereby
KR101160907B1 (en) * 2010-02-25 2012-06-29 성균관대학교산학협력단 Preparation method of aluminum film with complex oxide dielectric using cathode electrolytic deposition and anodizing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434215B1 (en) * 2001-12-27 2004-06-04 파츠닉(주) Making method of Nb electrolyte capacitor
JP2007300041A (en) * 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor and cathode foil required thereby
KR101160907B1 (en) * 2010-02-25 2012-06-29 성균관대학교산학협력단 Preparation method of aluminum film with complex oxide dielectric using cathode electrolytic deposition and anodizing

Similar Documents

Publication Publication Date Title
KR100647181B1 (en) Solid electrolyte capacitor and its manufacturing method
CN101093751A (en) Method for preparing foil of cathode with high specific volume
JP2745875B2 (en) Cathode materials for electrolytic capacitors
US4000055A (en) Method of depositing nitrogen-doped beta tantalum
US20090065895A1 (en) MIM capacitor high-k dielectric for increased capacitance density
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
JPH0513281A (en) Electrode material for electrolytic capacitor
US3664931A (en) Method for fabrication of thin film capacitor
JP4062787B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2734233B2 (en) Electrode materials for electrolytic capacitors
JPH03150822A (en) Aluminum electrode for electrolytic capacitor
Vratny Deposition of Tantalum and Tantalum Oxide by Superimposed RF and D‐C Sputtering
JP3016421B2 (en) Aluminum cathode foil for electrolytic capacitors
JPH0471213A (en) Aluminum electrode for electrolytic capacitor and its manufacture
JP2618281B2 (en) Aluminum electrode for electrolytic capacitor and method of manufacturing the same
JP2002299181A (en) Solid electrolyte capacitor
JP2687299B2 (en) Method for manufacturing aluminum electrode for electrolytic capacitor
US3502949A (en) Thin film solid electrolyte capacitor
JPS6353688B2 (en)
JPH08213288A (en) Anodic foil for electrolytic capacitor and manufacture thereof
JPH0461109A (en) Cathode material for electrolytic capacitor
JPH03150820A (en) Aluminum electrode for electrolytic capacitor
KR930005229B1 (en) Forming method of metal oxide film
EP1591553A1 (en) Process for producing an electrode coated with titanium nitride
JP4585819B2 (en) Cathode material for electrolytic capacitors