JPS60124872A - Vertical type mos field-effect transistor - Google Patents

Vertical type mos field-effect transistor

Info

Publication number
JPS60124872A
JPS60124872A JP23300683A JP23300683A JPS60124872A JP S60124872 A JPS60124872 A JP S60124872A JP 23300683 A JP23300683 A JP 23300683A JP 23300683 A JP23300683 A JP 23300683A JP S60124872 A JPS60124872 A JP S60124872A
Authority
JP
Japan
Prior art keywords
electrode
gate electrode
gate
wire bonding
bonding region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23300683A
Other languages
Japanese (ja)
Inventor
Osamu Ishikawa
修 石川
Takeya Ezaki
豪弥 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23300683A priority Critical patent/JPS60124872A/en
Publication of JPS60124872A publication Critical patent/JPS60124872A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce capacitance between a wire bonding region for a gate electrode and a drain up to a high frequency region by forming the wire bonding region for the gate electrode and a wiring section for the gate electrode on a shielding electrode, which consists of the same material as a gate and is connected to a source electrode on a substrate surface. CONSTITUTION:A shielding electrode 14 composed of the same material as a gate electrode is formed between a substrate 1 and a wire bonding region 10 for the gate electrode through an oxide film, the shielding electrode 14 is kept at the same potential as a source electrode by a contact 15 for the shielding electrode, and capacitance Cgd between a gate and a drain is reduced. Since the shielding electrode 14 consists of the same material as the gate electrode 4 and the resistance of the same material as the gate electrode 4 and the resistance of the material is lower than conventional materials by one figure or more, the potential of the shielding electrode 14 can be made positively the same as the potential of the source electrode, and the potential of the shielding electrode 14 positioned under the bonding region 10 for the gate electrode hardly floats.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体基板表面上にソース及びゲート電極を
有し、半導体基板裏面をドレインとする21・ −・ いわゆる縦型MO8電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a so-called vertical MO8 field effect transistor having a source and a gate electrode on the surface of a semiconductor substrate and a drain on the back surface of the semiconductor substrate.

従来例の構成とその問題点 縦型MO8電界効果トランジスタを高周波(例えば1G
H2等)で動作させしかも高い利得を得る為には、入出
力間の帰還容量を十分下げる必要がある。縦型MO3電
界効果トランジスタをソース接地で用いる場合、帰還容
量はゲート・ドレイン間容量(Cqd)である。Cqd
は、トランジスタ自体の活性領域の容量と、基板表面に
あるゲート電極用ワイヤーボンディング領域のポンディ
ングパッド容量に分けることができる。このポンディン
グパッド容量のCqd全体に占める割合は、トランジス
タの活性領域の面積にもよるが、50チ以上に及ぶこと
も有る。従って、このポンディングパッド容量を減らす
ことによりcga を減少させ高い利得を得る為に、ゲ
ート電極用ワイヤーボンディング領域下の絶縁膜の厚み
を増したり、ゲート電極用ワイヤーボンディング領域下
に、ソースに接続された基板と反対導電型の拡散層を形
成す3 パ−゛ る等の方法がとられていた。
Conventional configuration and its problems Vertical MO8 field effect transistors are
H2, etc.), and in order to obtain a high gain, it is necessary to sufficiently reduce the feedback capacitance between the input and output. When a vertical MO3 field effect transistor is used with a common source, the feedback capacitance is the gate-drain capacitance (Cqd). Cqd
can be divided into the capacitance of the active region of the transistor itself and the bonding pad capacitance of the gate electrode wire bonding region on the substrate surface. The ratio of this bonding pad capacitance to the entire Cqd may reach 50 or more, although it depends on the area of the active region of the transistor. Therefore, in order to reduce cga and obtain high gain by reducing this bonding pad capacitance, it is necessary to increase the thickness of the insulating film under the gate electrode wire bonding area, or to connect the source under the gate electrode wire bonding area. A three-part method has been used in which a diffusion layer of the opposite conductivity type is formed on the substrate.

第1図aは、ゲート電極用ワイヤーボンディング領域下
にソース電極に接続された基板と反対導電型の拡散層を
形成した縦型MO3電界効果トランジスタの従来の例の
平面図、第1図すは第1図aの従来の例のA−A’線で
の断面構造図である。
Figure 1a is a plan view of a conventional example of a vertical MO3 field effect transistor in which a diffusion layer of the opposite conductivity type to the substrate connected to the source electrode is formed under the wire bonding region for the gate electrode. FIG. 2 is a cross-sectional structural diagram taken along line AA' of the conventional example shown in FIG. 1a.

第1図に示した従来の例では、縦型MO8電界効果トラ
ンジスタとして、ドレインであるN型半導体基板1に、
P型チャネル2とN型ソース3をゲート電極4の端部か
らの拡散で形成した2重拡散型(いわゆるDSA型)の
トランジスタを示した。
In the conventional example shown in FIG. 1, as a vertical MO8 field effect transistor, an N-type semiconductor substrate 1, which is a drain,
A double diffusion type (so-called DSA type) transistor is shown in which a P type channel 2 and an N type source 3 are formed by diffusion from an end of a gate electrode 4.

第1図において、選択酸化等の方法によって形成した1
μm程度の熱酸化膜6の上には、層間絶縁膜としてCV
D等の方法によって形成された酸化膜6が堆積されてい
る。酸化膜6上にはさらに、N型ソース3及びP型チャ
ネル2の電極として、ソース電極子がソースコンタクト
8を介して接続される。同様にゲート電極4へはゲート
コンタクト9を介して、ゲート電極用ワイヤーボンディ
ング領域10が接続される。ゲート電極用ワイヤーボン
ディング領域10の下に位置する基板1中には、P型の
シールド拡散層11が広く形成され、シールド拡散層用
コンタクト12を介してソース電極7に接続され、シー
ルド拡散層11とソース電極7は同電位に保たれる。S
 、G 、Dはそれぞれソース端子、ゲート端子、ドレ
イン端子を示す。
In FIG. 1, 1 formed by a method such as selective oxidation
On the thermal oxide film 6 with a thickness of approximately μm, a CV film is provided as an interlayer insulating film.
An oxide film 6 formed by a method such as D is deposited. Source electrode elements are further connected to the oxide film 6 as electrodes for the N-type source 3 and the P-type channel 2 via source contacts 8 . Similarly, a gate electrode wire bonding region 10 is connected to the gate electrode 4 via a gate contact 9. A P-type shield diffusion layer 11 is widely formed in the substrate 1 located under the gate electrode wire bonding region 10 , and is connected to the source electrode 7 via the shield diffusion layer contact 12 . and source electrode 7 are kept at the same potential. S
, G, and D indicate a source terminal, a gate terminal, and a drain terminal, respectively.

シールド拡散層11は、ドレインである半導体基板1と
ゲート電極用ワイヤーボンディング領域1oの間に位置
しており、しかもその電位がソース電極7とほぼ同一で
ある場合には、ドレインである半導体基板1とゲート電
極用ワイヤーボンディング領域10間の容量を減少させ
ることができる。従って、帰還容量となるゲート・ドレ
イン間容量(Cqd )を減らすことができ、利得が向
上する。
The shield diffusion layer 11 is located between the semiconductor substrate 1 which is the drain and the gate electrode wire bonding region 1o, and when the potential thereof is almost the same as that of the source electrode 7, the semiconductor substrate 1 which is the drain The capacitance between the gate electrode wire bonding region 10 and the gate electrode wire bonding region 10 can be reduced. Therefore, the gate-drain capacitance (Cqd), which serves as a feedback capacitance, can be reduced, and the gain is improved.

しかしながら、第1図に示した従来の例においては、シ
ールド拡散層11の拡散層の抵抗が問題である。つまり
、シールド拡散層11の抵抗が高いとゲート電極用ワイ
ヤーボンディング領域下に位置するシールド拡散層11
の電位が完全にソー6 ・パ スミ極7と同一にならず浮き上ってきて、容量の減少す
る割合が低下する。さらには高周波においてCR時定数
が増加し、動作周波数に追従しなくなり容量の減少が著
しく低下し、シールド拡散層11の本来の効果を示さな
くなるという欠点を有していた。
However, in the conventional example shown in FIG. 1, the resistance of the diffusion layer of the shield diffusion layer 11 is a problem. In other words, if the resistance of the shield diffusion layer 11 is high, the shield diffusion layer 11 located under the gate electrode wire bonding region
The potential of the electrode 6 and the electrode 7 is not completely equal to that of the electrode 7, but rises, and the rate at which the capacitance decreases decreases. Furthermore, the CR time constant increases at high frequencies, and it no longer follows the operating frequency, resulting in a significant reduction in capacitance, and the shield diffusion layer 11 no longer exhibits its original effect.

又、シールド拡散層11によりソース・ドレイン間容量
(Cds)のバイアス依存性が大きくなり、入出力のイ
ンピーダンス変化が激しい。つ寸り、シールド拡散層1
1から伸びる空乏層13がソース・ドレイン間のバイア
ス電圧により伸び縮みし、空乏層容量が変化する為であ
る。トランジスタを高周波で大信号動作させる場合、ソ
ース・ドレイン間の電圧は大きく振幅するので、Cds
の変化による入出力インピーダンスの変動が発生し、寄
生発振や飽和電力が小さい等の問題が起き、安定にトラ
ンジスタ動作させることは極めて難しい。
Furthermore, the bias dependence of the source-drain capacitance (Cds) increases due to the shield diffusion layer 11, resulting in severe input/output impedance changes. 1 size, shield diffusion layer 1
This is because the depletion layer 13 extending from 1 expands and contracts due to the bias voltage between the source and drain, and the depletion layer capacitance changes. When operating a transistor at high frequency and with a large signal, the voltage between the source and drain has a large amplitude, so Cds
Variations in input and output impedance occur due to changes in the input and output impedances, causing problems such as parasitic oscillation and low saturation power, making it extremely difficult to operate the transistor stably.

さらに、シールド拡散層11はゲート電極用ワイヤーボ
ンディング領域1oとほぼ同程度の大き々面積を必要と
するので、ドレインである半導体e l:−一一’ 基板1とのP−N接合の耐圧及びそのリーク電流が縦型
MO8電界効果トランジスタ自体の特性に影響を及ぼす
可能性が非常に大きい0又、耐圧等を確保する目的でシ
ールド拡散層11とトランジスタとの位置関係も設計の
段階で考慮しなくては々らないという制約もある。
Furthermore, since the shield diffusion layer 11 requires approximately the same area as the gate electrode wire bonding region 1o, the breakdown voltage of the PN junction with the semiconductor e l:-11' substrate 1, which is the drain, There is a very high possibility that this leakage current will affect the characteristics of the vertical MO8 field effect transistor itself.In addition, the positional relationship between the shield diffusion layer 11 and the transistor should be considered at the design stage in order to ensure voltage resistance, etc. There is also a restriction that we cannot do without it.

発明の目的 本発明の目的は、半導体基板裏面をドレインとする縦型
MO3電界効果トランジスタにおいて、高周波領域まで
ゲート電極用ワイヤーボンディング領域とドレイン間の
容量を減少せしめ、高い利得を確保することにある。又
、本発明の他の目的はドレイン・ソース間容量(Cds
)のバイアス依存性を減少させ入出力インピーダンスを
安定化し、トランジスタの寄生発振を防ぐことにある。
Purpose of the Invention The purpose of the present invention is to reduce the capacitance between the gate electrode wire bonding region and the drain up to a high frequency region in a vertical MO3 field effect transistor having a drain on the back surface of a semiconductor substrate, thereby ensuring high gain. . Another object of the present invention is to reduce drain-source capacitance (Cds
) to stabilize the input/output impedance and prevent parasitic oscillation of the transistor.

発明の構成 本発明は、半導体基板裏面をドレインとする縦型MO8
電界効果トランジスタにおいて、半導体基板表面上に絶
縁膜を介してゲートと同一材料でしかもソース電極に接
続されたシールド電極を有T″−“ し、このシールド電極−にに絶縁膜を介してゲート電極
用ワイヤーボンディング領域及びゲート電極の配線部分
を形成していることを特徴とする。
Structure of the Invention The present invention provides a vertical MO8 with a drain on the back surface of a semiconductor substrate.
In a field effect transistor, a shield electrode made of the same material as the gate and connected to the source electrode is provided on the surface of the semiconductor substrate through an insulating film, and this shield electrode is connected to the gate electrode through the insulating film. It is characterized by forming a wire bonding area and a wiring part for the gate electrode.

実施例の説明 第2図aは本発明の一実施例の平面図、第2図すは第1
図aのB−B’線での断面構造図である。
DESCRIPTION OF THE EMBODIMENT FIG. 2a is a plan view of an embodiment of the present invention, and FIG.
FIG. 3 is a cross-sectional structural diagram taken along line BB' in FIG.

本発明の一実施例としてDSA型の縦型MO8電界効果
トランジスタを例にとり説明を加える。
An explanation will be given by taking a DSA type vertical MO8 field effect transistor as an example of an embodiment of the present invention.

第2図において、第1図と等価な構成部分には同一の参
照番号及び記号を付して示す。
In FIG. 2, components equivalent to those in FIG. 1 are designated with the same reference numbers and symbols.

本発明においては、ドレインである半導体基板1とゲー
ト電極用ワイヤーボンディング領域10との間には、ゲ
ート電極4と同一材料からなるシールド電極14が酸化
膜を介して形成されており、このシールド電極14は、
シールド電極用コンタクト1已によってソース電極と同
電位に保たれ、Cqdを減少させる。シールド電極14
は、1μm程度の熱酸化膜5」二にゲート電極4と同一
工程で形成される。シールド電極14はゲート電極4と
同一材料であり、不純物を高濃度で拡散した多結晶シリ
コンでも、MO等の高融点金属2M08i2等の高融点
金属シリサイドでも良い。これらシールド電極14の材
料の抵抗は、第1図で示しだ従来の例の拡散層を用いた
場合の抵抗に比べ1桁以上低い。従って、確実にシール
ド電極14の電位をソース電極の電位と等しくすること
ができ、ゲート電極用ボンディング領域1oの下に位置
するシールド電極14の電位が浮き」:ることは殆んど
ない。さらにCR時定数が小さいので、高い周波数でも
追従し、縦型MO3電界効果トランジスタのCqdを高
周波領域まで減少させ続けることができ、動作周波数の
範囲を大幅に改善することができる。
In the present invention, a shield electrode 14 made of the same material as the gate electrode 4 is formed via an oxide film between the semiconductor substrate 1, which is the drain, and the gate electrode wire bonding region 10. 14 is
It is kept at the same potential as the source electrode by one contact for the shield electrode, reducing Cqd. Shield electrode 14
A thermal oxide film 5'' with a thickness of approximately 1 μm is formed in the same process as the gate electrode 4. The shield electrode 14 is made of the same material as the gate electrode 4, and may be polycrystalline silicon in which impurities are diffused at a high concentration, or high melting point metal silicide such as high melting point metal 2M08i2 such as MO. The resistance of the material of these shield electrodes 14 is more than one order of magnitude lower than the resistance when a diffusion layer is used in the conventional example shown in FIG. Therefore, the potential of the shield electrode 14 can be reliably made equal to the potential of the source electrode, and the potential of the shield electrode 14 located under the gate electrode bonding region 1o hardly floats. Furthermore, since the CR time constant is small, it is possible to track even high frequencies, and the Cqd of the vertical MO3 field effect transistor can be continued to be reduced up to the high frequency region, and the range of operating frequencies can be greatly improved.

又、本発明によればシールド電極14は、熱酸化膜5上
に有るのでソース・ドレイン問答−1iiH(Cdg)
の絶対値及びそのバイアス依存性が小さい。従って、入
出力インピーダンスの向上及びその安定化を図ることが
でき、寄生発振等を防ぎトランジスタの飽和電力も向上
せしめることができる。
Also, according to the present invention, the shield electrode 14 is on the thermal oxide film 5, so the source/drain question and answer -1iiH(Cdg)
The absolute value of and its bias dependence are small. Therefore, the input/output impedance can be improved and stabilized, parasitic oscillation etc. can be prevented, and the saturation power of the transistor can also be improved.

さらに、本発明によればシールド電極14は拡91′−
゛ 散層ではなく酸化膜」二に有り、ドレインである半導体
基板1との耐圧低下やリーク電流の発生等の問題が起こ
りにくい。従って、シールド電極14はトランジスタと
の位置関係及び基板内の構成に左右されずにゲート電極
用ボンディング領域10の全域及びゲート電極4への配
線部分も含めて形成できるのでゲート・ドレイン間容量
(Cqd)をさらに減少させることもできる。
Further, according to the present invention, the shield electrode 14 is expanded 91'--
Since it is an oxide film rather than a diffused layer, problems such as a drop in breakdown voltage with the semiconductor substrate 1, which is the drain, and generation of leakage current are less likely to occur. Therefore, the shield electrode 14 can be formed over the entire area of the gate electrode bonding region 10 and the wiring part to the gate electrode 4 without being influenced by the positional relationship with the transistor or the structure within the substrate, so that the gate-drain capacitance (Cqd ) can be further reduced.

以上、本発明の実施例としてDSA型の縦型MO8電界
効果トランジスタを例にとり説明を加えたが、半導体基
板裏面をドレインとし表面にゲート電極用ワイヤーボン
ディング領域を有する縦型MO8電界効果トランジスタ
ならばすべてに適用できCqdを減少でき高周波特性を
改善できることは明らかである。
The above description has been given using a DSA type vertical MO8 field effect transistor as an example of the present invention, but if the vertical MO8 field effect transistor has a drain on the back side of the semiconductor substrate and a gate electrode wire bonding region on the front side, It is clear that this method can be applied to all systems and can reduce Cqd and improve high frequency characteristics.

又、本発明の一実施例としてシールド電極がゲート電極
用ワイヤーボンディング領域よりも面積的に小なる形状
のものを示したが、シールド電極がゲート電極用ワイヤ
ーボンディング領域よりも広く形成されていても同様の
効果を得ることがで10ペミ゛ きるのはもちろん、ゲート電極への配線部分の下に位置
していても大きな効果を有することは言うまでもない。
Further, as an embodiment of the present invention, a shield electrode having a smaller area than the gate electrode wire bonding area is shown, but even if the shield electrode is formed wider than the gate electrode wire bonding area, It goes without saying that a similar effect can be obtained in less than 10 microseconds, and that even if it is located under the wiring to the gate electrode, it will have a great effect.

発明の効果 本発明により次の様々効果がもたらされる。Effect of the invention The present invention brings about the following various effects.

(1)ゲート電極と同一の低抵抗材料をシールド電極と
しているので、シールド電極の電位が安定であり、しか
も高周波領域までCqdの減少を図ることができ、高い
利得と広い動作周波数範囲を持った縦型MO3電界効果
トランジスタを得ることができる。
(1) Since the shield electrode is made of the same low resistance material as the gate electrode, the potential of the shield electrode is stable, and Cqd can be reduced even in the high frequency range, resulting in high gain and a wide operating frequency range. A vertical MO3 field effect transistor can be obtained.

(2) )”L’イン・ソース間容量(Cds)の絶対
値及びそのバイアス依存性が少なく入出力インピーダン
スが高く、寄生発振が起こりにくい。
(2) )"L' The absolute value of the in-source capacitance (Cds) and its bias dependence are small, the input/output impedance is high, and parasitic oscillation is less likely to occur.

(3) シールド電極とドレインである半導体基板との
耐圧及びリーク電流等の問題が発生しにくい。
(3) Problems such as breakdown voltage and leakage current between the shield electrode and the semiconductor substrate serving as the drain are less likely to occur.

(4) シールド電極の配置についてその設計自由度が
大きい。
(4) There is a large degree of freedom in designing the arrangement of the shield electrode.

(6)製造プロセスを何ら変更することなく実現11’
置゛ でき、コストアンプにならない。
(6) Realized without changing the manufacturing process 11'
It can be installed without becoming a cost amplifier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1a)は従来の縦型MO3電界効果トランジスタ
の平面図、第1図[b)は同(alのA −A’線での
断面構造図、第2図(a)は本発明の縦型MO3電界効
果トランジスタの一実施例の平面図、第2図(blは同
(a)のB−B’線での断面構造図である。 1・・・・・N型半導体基板、2・・・・P型チャネノ
ペ3・・・・・・N型ソース、4・・・・・ゲート電極
、6・・・・・熱酸化膜、6・・・酸化膜、14・・・
・・シールド電極、15・・・・・・シールド電極用コ
ンタクト。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (の /2
FIG. 1(a) is a plan view of a conventional vertical MO3 field effect transistor, FIG. 1(b) is a cross-sectional structural diagram of the same (al) taken along line A-A', and FIG. 2(a) is a plan view of a conventional vertical MO3 field effect transistor. FIG. 2 is a plan view of an embodiment of a vertical MO3 field effect transistor (bl is a cross-sectional structural diagram taken along the line BB' in FIG. ...P type channel node 3...N type source, 4...gate electrode, 6...thermal oxide film, 6...oxide film, 14...
...Shield electrode, 15...Contact for shield electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure (of/2

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板の主面上に、絶縁膜を介してゲートと
同一材料で且つ前記半導体基板の主面側に位置するソー
ス電極に接続されたシールド電極と、このシールド電極
上に絶縁膜を介して形成されたゲート電極用ワイヤーボ
ンディング領域又はその1部分とを有し、前記半導体基
板の反対主面75; )’レインとなっていることを特
徴とする縦型MO3電界効果トランジスタ。 ?) シールド電極上に絶縁膜を介してゲート電極の配
線部分を有していることを特徴とする特許請求の範囲第
1項記載の縦型MO3電界効果トランジスタ0
(1) A shield electrode connected to a source electrode made of the same material as the gate and located on the main surface side of the semiconductor substrate through an insulating film on the main surface of the semiconductor substrate, and an insulating film on the shield electrode. A vertical MO3 field effect transistor characterized in that it has a gate electrode wire bonding region or a part thereof formed through the opposite main surface 75 of the semiconductor substrate, and has a gate electrode wire bonding region or a part thereof formed therein. ? ) Vertical MO3 field effect transistor 0 according to claim 1, characterized in that a gate electrode wiring portion is provided on the shield electrode via an insulating film.
JP23300683A 1983-12-09 1983-12-09 Vertical type mos field-effect transistor Pending JPS60124872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23300683A JPS60124872A (en) 1983-12-09 1983-12-09 Vertical type mos field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23300683A JPS60124872A (en) 1983-12-09 1983-12-09 Vertical type mos field-effect transistor

Publications (1)

Publication Number Publication Date
JPS60124872A true JPS60124872A (en) 1985-07-03

Family

ID=16948334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23300683A Pending JPS60124872A (en) 1983-12-09 1983-12-09 Vertical type mos field-effect transistor

Country Status (1)

Country Link
JP (1) JPS60124872A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143566A (en) * 1988-11-25 1990-06-01 Toshiba Corp Double diffusion type insulated gate field effect transistor
US6818915B1 (en) * 1998-03-23 2004-11-16 Matsushita Electric Industrial Co., Ltd. Field-emission electron source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143566A (en) * 1988-11-25 1990-06-01 Toshiba Corp Double diffusion type insulated gate field effect transistor
US6818915B1 (en) * 1998-03-23 2004-11-16 Matsushita Electric Industrial Co., Ltd. Field-emission electron source

Similar Documents

Publication Publication Date Title
US4455565A (en) Vertical MOSFET with an aligned gate electrode and aligned drain shield electrode
JP3393148B2 (en) High voltage power transistor
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
JPS63141375A (en) Insulated gate field effect transistor
US4584593A (en) Insulated-gate field-effect transistor (IGFET) with charge carrier injection
US3296508A (en) Field-effect transistor with reduced capacitance between gate and channel
JPS60124872A (en) Vertical type mos field-effect transistor
JP3402043B2 (en) Field effect transistor
JP2825038B2 (en) Semiconductor device
JP2608976B2 (en) Semiconductor device
JPH07142731A (en) Power device and method for forming it
JPS5952882A (en) Junction type field-effect transistor
JPS60262468A (en) Mos type field-effect transistor
JPS6115369A (en) Semiconductor device and manufacture thereof
JPS62274778A (en) Semiconductor device
JP3256643B2 (en) Semiconductor device
JPH07183309A (en) Semiconductor device
JPS58148464A (en) Mes type field effect transistor
JPH0715018A (en) Field-effect transistor
JPS6228593B2 (en)
JPH0644575B2 (en) Field effect transistor
JP3130645B2 (en) High voltage MOS transistor
JPS6355976A (en) Field effect semiconductor device
JPH088359B2 (en) Semiconductor device
JPS59219965A (en) Metal oxide semiconductor type field-effect transistor