JPS60119220A - Hydrophilic conjugate synthetic fiber - Google Patents

Hydrophilic conjugate synthetic fiber

Info

Publication number
JPS60119220A
JPS60119220A JP22691783A JP22691783A JPS60119220A JP S60119220 A JPS60119220 A JP S60119220A JP 22691783 A JP22691783 A JP 22691783A JP 22691783 A JP22691783 A JP 22691783A JP S60119220 A JPS60119220 A JP S60119220A
Authority
JP
Japan
Prior art keywords
component
fiber
hydrophilic
section
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22691783A
Other languages
Japanese (ja)
Other versions
JPS6358932B2 (en
Inventor
Masumi Fujimoto
藤本 倍巳
Kenji Kamiyama
上山 健二
Kuniaki Hayakawa
早川 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP22691783A priority Critical patent/JPS60119220A/en
Publication of JPS60119220A publication Critical patent/JPS60119220A/en
Publication of JPS6358932B2 publication Critical patent/JPS6358932B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:The titled conjugate fibers, consisting of two components, having one more hydrophilic component than the other, and tapered wedgelike shape in the inward direction viewed from the cross section, and continuous in the longitudinal direction, and capable of exhibiting the water absorbing and water permeation properties, depth of color and scroop. CONSTITUTION:Hydrophilic synthetic conjugate fibers obtained by conjugate spinning of extruding a polymer prepared by blending nylon 6 with 5-sodium sulfoisophthalate copolymer of polyethylene terephthalate as a component (A) and polyethylene terephthalate as a component (B) through a spinneret of a conjugate spinning apparatus, and having one more hydrophilic component (A) than the component (B), and tapered wedgelike shape in the inward direction viewed from the cross section of the fibers in the component (A) continuous in the longitudinal direction of the fibers. Preferably, the depth ratio of the wedge shape of the component (A) to the fiber cross section is 0.25-0.95, and the wedge angle is 0.2-1.5.

Description

【発明の詳細な説明】 A1本発明の技術分野 本発明は吸光性、透水性等の親水性および色の深み、き
しみを発揮する複合合成繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION A1 Technical Field of the Invention The present invention relates to a composite synthetic fiber that exhibits hydrophilic properties such as light absorption and water permeability, depth of color, and squeakiness.

B、従来技術とその問題点 合成繊維はその優れた機能性により、広く衣料用繊維と
して用いられているが、基本的に疎水性の基質を有する
ため、身体から液体状あるいは気体状の水分を吸収排除
する機能がなく1着心地の面で今一つ満足できないのが
現状である。合成繊維のこの欠点を改善するため、多く
の技術が提案されているが、いずれも合成繊維の優れた
機能性を損ねたり、汗に対する排出機能が不十分であっ
たり、肌触シ面で改善効果が不十分であった。−171
1えば、疎水性合成繊維に親水性成分をブレンドした繊
維あるいは芯鞘方式で芯に親水性成分を配し。
B. Prior art and its problems Synthetic fibers are widely used as clothing fibers due to their excellent functionality, but because they basically have a hydrophobic matrix, they do not absorb liquid or gaseous moisture from the body. The current situation is that it does not have the function of absorbing and eliminating, so it is not very satisfying in terms of comfort. Many technologies have been proposed to improve this drawback of synthetic fibers, but none of them impair the excellent functionality of synthetic fibers, have insufficient sweat drainage function, or lack of improvements in terms of texture. The effect was insufficient. -171
For example, fibers that are a blend of hydrophobic synthetic fibers and hydrophilic components, or core-sheath fibers with hydrophilic components arranged in the core.

鞘を疎水性の合成繊維で構成した繊維iたは芯鞘方式に
おいて偏心状に親水性成分を入れて表面に親水性成分を
露出させた繊維などである。前者では親水性成分が不連
続に存在しているため、水分の運搬性能が低く、汗の排
出機能が不十分であり。
These include fibers in which the sheath is made of hydrophobic synthetic fibers, or fibers in which a hydrophilic component is eccentrically introduced in a core-sheath system so that the hydrophilic component is exposed on the surface. In the former, the hydrophilic components are discontinuously present, resulting in poor water transport performance and insufficient sweat drainage.

繊維表面が粗雑で乱反射し1発色性が低下したシ。The fiber surface is rough and causes diffused reflection, resulting in decreased color development.

繊糸f(が不均一でフィブリル化し易いなどの欠点があ
る。1だ後者の芯鞘方式で一゛、親水性成分が極在化し
、染色イラツキを生ずると同116に、親水性成分の喰
い込みが大きいため、失透状態となり。
There are drawbacks such as the filament (f) being non-uniform and prone to fibrillation.1) In the latter core-sheath method, the hydrophilic component becomes localized, causing dyeing irritation; Due to the large amount of contamination, it becomes devitrified.

発色性が低下するし、疎水性成分が親水性成分を含むよ
うな断面形状なので、親水性成分の繊維表面への開口部
が小さく9吸湿・吸水量は比較的高いが、湿気の放出速
度が遅い。さらに親水性成分の喰い込みが大きく。繊維
形成性の高い疎水性合成繊維が肉薄になるため9両成分
間の剥暉1・細繊維化、つ才りフイブリル化しゃずいな
どの欠点がある。捷た従来の合成繊維の最大の欠点に、
繊維の表面ば滑らかであシ、摩擦によるきしみがなく。
Color development is reduced, and since the cross-sectional shape is such that the hydrophobic component contains a hydrophilic component, the opening of the hydrophilic component to the fiber surface is small. 9 Moisture absorption/Water absorption is relatively high, but the moisture release rate is low. slow. Furthermore, the hydrophilic components are absorbed greatly. Since hydrophobic synthetic fibers with high fiber-forming properties become thin, there are drawbacks such as peeling between the two components, formation of fine fibers, and sagging and formation of fibrils. The biggest drawback of conventional twisted synthetic fibers is that
The surface of the fibers is smooth and free from creaks caused by friction.

いわゆる合成繊維特有のロウ状感があって、されやかな
表面タッチが得られない欠点がある。
It has a waxy feel peculiar to so-called synthetic fibers, and has the drawback of not being able to provide a supple surface touch.

さらに公知例として特開昭57−161123号公報、
同57−21525号公報等の方法も知られているが、
前記した理由により未だ64足されたものはない。
Furthermore, as well-known examples, JP-A-57-161123,
Methods such as those disclosed in Publication No. 57-21525 are also known;
For the reason mentioned above, there is no one that has added 64 yet.

C0本発明の目的 本発明の目的は、これら従来の親水性合成繊維の欠点を
改良すること、すなわち光沢・剛性・染色性あるいは吸
水・吸湿時の剛性変化が少ないなど1合成繊維本来の性
能を損わないで、吸水性。
C0 Purpose of the Invention The purpose of the present invention is to improve the shortcomings of these conventional hydrophilic synthetic fibers, that is, to improve the original performance of synthetic fibers, such as gloss, rigidity, dyeability, and little change in rigidity when absorbing water or moisture. Absorbent without damage.

透水性、吸湿性等の親水性を発揮しやすく、かつ色の深
み、きしみ、しやりみを発揮する織編物用に適した新規
な複合合成繊維を提供することにある。
To provide a novel composite synthetic fiber suitable for woven or knitted fabrics that easily exhibits hydrophilic properties such as water permeability and hygroscopicity, and also exhibits depth of color, squeakyness, and softness.

D0本発明の構成 本発明は次の構成からなる。D0 Structure of the present invention The present invention consists of the following configuration.

「A成分とB成分からなる複合合成繊維において、A成
分がB成゛分に比べて親水性成分で、かつA成分は繊維
横断面から見て内部方向に先細シのくさび形状を有し、
かつA成分は繊維の長さ方向に連続化されていることを
特徴とする親水性複合繊維。」 E0本発明の作用 本発明で、複合合成繊維とけ9例えば第1〜4図にモデ
ル的に示すように、A成分とB成分からなり、A成分は
繊維軸方向に連続しておシ9B成分に比べて親水性成分
であることが必要である。
"In a composite synthetic fiber consisting of components A and B, the A component is more hydrophilic than the B component, and the A component has a wedge shape that tapers inward when viewed from the cross section of the fiber,"
A hydrophilic composite fiber characterized in that component A is continuous in the length direction of the fiber. E0 Function of the present invention In the present invention, the composite synthetic fiber 9 is composed of A component and B component, as shown in the model in Figs. It is necessary that the component be more hydrophilic than the other components.

A成分の親水性とは、基本的に吸湿・吸水能を高めるた
めに、親水性ポリマーをブレンドしたものや、多孔化し
たものあるいは、後加工で親水性物質が表面被覆された
り、親水性物質が表面グラフト重合されやすいポリマー
の複合合成繊維を含む。この親水性成分は、偏在した水
分の拡散性を高め、水分の発散面積を高めて、乾燥速度
を早くし、構造的には、水分を吸収しても肌にふれやす
い繊維表面は疎水性のB成分が多く、べとつきなどの不
快感全力えない。
The hydrophilicity of component A basically refers to those that are blended with hydrophilic polymers, made porous, coated with a hydrophilic substance in post-processing, or those that are coated with a hydrophilic substance in post-processing in order to increase moisture absorption and water absorption ability. Contains composite synthetic fibers of polymers that are susceptible to surface graft polymerization. This hydrophilic component increases the diffusivity of unevenly distributed moisture, increases the moisture dispersion area, and speeds up drying.Structurally, even if it absorbs moisture, the fiber surface that is easy to touch the skin is hydrophobic. Contains a lot of B ingredients, so you won't feel any discomfort such as stickiness.

本発明において、A成分の形状は目的・効果を達成する
ために重要なファクターである。A成分は例えば、第9
図のような繊維横断面において。
In the present invention, the shape of component A is an important factor in achieving the purpose and effect. The A component is, for example, the 9th
In the fiber cross section as shown.

繊維内部方向にくさび状で、繊維重心G、GからA成分
の存在する頂点P、GP線上でA成分の繊穏重心Gにも
つとも近い点Q、A成分とB成分の外周上における境界
点M −L、線PQと線MLの交点Nとすると、繊維全
断面積に対し、A成分の面積qMPLが大きい程吸水性
能が高いことは当然であるが、A成分の形状時にPQ、
/G、P(以下A成分の繊維断面に対する深さ割合Rで
示す)の割合をある範囲におさえる必要がある。△成分
の繊維断面に対する深さ割合Rは、0.25〜095の
範囲が好ましく、さらに好ましくは、06〜08の範囲
が望咬しい。Rが0.95よシ高い場合は。
Wedge-shaped in the direction of the inside of the fiber, the fiber center of gravity G, the vertex P where the A component exists from G, the closest point Q on the GP line to the fiber center of gravity G of the A component, the boundary point M on the outer periphery of the A component and B component -L, the intersection point N of line PQ and line ML, it is natural that the larger the area qMPL of the A component is with respect to the total cross-sectional area of the fiber, the higher the water absorption performance, but when the shape of the A component is PQ,
/G, P (hereinafter referred to as the depth ratio R of the A component to the fiber cross section) must be kept within a certain range. The depth ratio R of the Δ component to the fiber cross section is preferably in the range of 0.25 to 095, more preferably in the range of 06 to 08. If R is higher than 0.95.

A成分が複合繊維の横断面重心点近く贅で存在すること
になり、この繊維を用いた織編物は1着用時の摩擦作用
でA成分とB成分が剥削・細繊維化して、フロストと呼
ばれる白色変色しやすくなる。
Component A exists as a layer near the center of gravity of the composite fiber's cross section, and when a woven or knitted fabric using this fiber is worn, the A component and B component are stripped off and made into fine fibers due to the friction effect when worn, which is called frost. Easily discolored to white.

Rが0.25よシ低い場合は、繊維の横断面中のくさび
の数にもよるが、A成分の繊維全体に対する割合が低く
なり、目的の吸水性や制電性を充分に発揮しにくくなる
If R is lower than 0.25, depending on the number of wedges in the cross section of the fiber, the ratio of component A to the entire fiber will be low, making it difficult to sufficiently exhibit the desired water absorption and antistatic properties. Become.

またA成分のくさび角Sは、0.2〜15が好ましく、
さらに好ましくは06〜10が望ましい。
Further, the wedge angle S of the A component is preferably 0.2 to 15,
More preferably, 06 to 10 is desirable.

Sが1.5ヲ越えると、A成分のくさびの幅が広過ぎる
ため、製糸上の問題や、染色加工織編物でA成分の不必
要な特性の影響つまり、場合によっては染色イラツキ、
染色室ロウ度の低下1強度の低下、吸水時に非吸水面が
少なく、べとつき感を為える。吸水時に繊維の剛性率低
下をまねいて、べとつき感を助長するなどの欠点がでや
すい。Sが02よシ低いと、吸水表面積が低くなり、汗
などの水分吸収速度や乾燥速度が低くなり、制電性能に
ついても、目的の効果を発揮しにくくなる。本発明の複
合合成繊維を形成するA成分とB成分の比、すなわち複
合比は、A成分の繊維表面露出度やくさびの形状を左右
する因子でもあり、A成分:B成分を重量比で6[]:
4’0〜5:95の範囲が好4しく、50〜50〜10
:90の範囲がより望せしい。A成分の量が60%を越
えると紡糸・延伸性や製編織性を低「さぜることが多い
し、5%未満では水分吸収能や制電性能を発揮しにくく
なる。
If S exceeds 1.5, the width of the wedge of the A component is too wide, which may cause problems during spinning, or the influence of unnecessary characteristics of the A component in dyed woven and knitted fabrics, which may lead to dyeing irritation, in some cases.
Decrease in dye room waxiness 1 Decrease in strength, less non-water absorbing surface when water is absorbed, resulting in a sticky feeling. It tends to have drawbacks such as reducing the rigidity of the fibers when water is absorbed, promoting a sticky feeling. If S is lower than 02, the water absorption surface area will be low, the absorption rate of moisture such as perspiration and drying rate will be low, and the antistatic performance will also be difficult to achieve the desired effect. The ratio of component A to component B that forms the composite synthetic fiber of the present invention, that is, the composite ratio, is also a factor that influences the degree of fiber surface exposure of component A and the shape of the wedge, and the weight ratio of component A to component B is 6. []:
The range of 4'0 to 5:95 is preferable, and 50 to 50 to 10
: A range of 90 is more desirable. If the amount of component A exceeds 60%, the spinning/drawing properties and weaving/weaving properties will often deteriorate, and if it is less than 5%, it will be difficult to exhibit moisture absorption ability and antistatic performance.

また本発明は第5〜8図にモデル的に示したように、前
記A成分が親水性かつ制電性で繊維内部方向に先細りの
くさび形状に複合され、かつA成分の一部が繊維の内部
方向に溝を有し、溝の入口の幅が04〜20ミクロンで
、深さが03〜20ミクロンの範囲であれば1本発明を
織物や編物に使用した場合、A成分の親水性と溝の毛細
管現象効果とあいまって、水分吸収・拡散性を嘉め、水
分の偏在が少なく、水分の発散面積が増加して。
Further, as shown in FIGS. 5 to 8 as models, the A component is hydrophilic and antistatic, and is compounded into a wedge shape that tapers toward the inside of the fiber, and a portion of the A component is contained in the fiber. If the present invention has grooves in the internal direction, and the width of the entrance of the groove is 04 to 20 microns and the depth is in the range of 03 to 20 microns, the hydrophilic property of component A Combined with the capillary effect of the grooves, it improves moisture absorption and diffusion, reduces uneven distribution of moisture, and increases the area for moisture dispersion.

物理的に水を多量に保持し得るにもかかわらず。Even though they can physically hold large amounts of water.

乾燥速度が早くなって、構造的に肌にふれやすい織物表
面が疎水性のB成分であるため、べとつきなどの不快感
を与えない繊維となる。
The drying speed is faster, and since the surface of the fabric, which is structurally easy to touch the skin, is made up of the hydrophobic component B, the fabric becomes a fiber that does not cause discomfort such as stickiness.

ここで1本発明のA成分がB成分に比べて親水性であシ
、かつ繊維の内部方向に溝をつけるためには1例えばA
成分がB成分に比べて親水性、かつ溶剤に対して溶解性
の高いポリマーであれば容易に目的が達せられる。つま
り、繊維または織編物の状態で主としてA成分の一部を
溶剤溶解除去して溝が得られる。この溝は繊維表面に凹
凸があることになり、繊維間や肌との間のきしみ感やし
やシ感を与えて、吸水、吸湿していてもべとつきがなく
、されやかな触感を与える効果がある。
Here, 1. In order to make the component A of the present invention more hydrophilic than the component B, and to form grooves in the inner direction of the fiber, 1.
If the component is a polymer that is more hydrophilic and more soluble in solvents than component B, the objective can be easily achieved. That is, the grooves are obtained by mainly dissolving and removing a part of the component A in the state of fibers or woven or knitted materials. These grooves create unevenness on the surface of the fibers, giving a squeaky, crunchy feel between the fibers and the skin, and giving a soft feel without stickiness even when it absorbs water or moisture. There is.

さらにこの溝は、染色加工物の発色性や光沢の極度な低
下を生じない条件を満足させながら、前記水の運搬・吸
収能や肌触りの良さを得ることができる。このために、
溝の形状と親水性、制電性。
Furthermore, these grooves can provide the above-mentioned water transporting and absorbing ability and good touch while satisfying the condition that the color development and gloss of the dyed product are not extremely reduced. For this,
Groove shape, hydrophilicity, and antistatic properties.

きしみ感2発色性、光沢との関係を種々検削した結果、
A成分の構成要件が少なくとも前記R,Sで、かつ溝の
形状は第10図に例示するように。
As a result of various examinations of the relationship between squeaky feeling 2 color development and gloss,
The constituent elements of the A component are at least the above R and S, and the shape of the groove is as illustrated in FIG.

A成分の一部が溶解除去された形で、きしみのある乾い
た触感をもつためには、溝の深さq、 I p/がOろ
ミクロン以上で、溝の入すの幅1,1/ L/が04ミ
クロン以上、捷た染色時の発色性を低下させないために
は溝の深さ20ミクロン以下、溝の一部20ミクロン以
下が望せしい。したがって両特性を同時に満足させるに
は、溝の深さQ′Pが03〜20ミクロン、溝の入口の
幅M/ L/が04〜2.0ミクロンの範囲が好捷しい
。溝の数は、特に限定されないが、織物や編物に使用さ
れてその表面にも溝が存在することが好捷しく、2本以
上が望せしい。
In order to have a squeaky dry feel with a part of the A component dissolved and removed, the groove depth q, Ip/ should be at least 0 microns, and the groove width should be 1.1. /L/ is preferably 04 microns or more, and in order not to reduce the color development during dyeing after folding, the groove depth is preferably 20 microns or less, and a part of the grooves is preferably 20 microns or less. Therefore, in order to satisfy both characteristics at the same time, it is preferable that the groove depth Q'P be in the range of 03 to 20 microns and the groove entrance width M/L/ be in the range of 04 to 2.0 microns. The number of grooves is not particularly limited, but it is preferable that the fabric is used for woven or knitted fabrics so that grooves also exist on the surface thereof, and two or more grooves are desirable.

複合繊維のB成分ポリマーとしては、繊維形成性のもの
であれば特に限定されるものではなく。
The B component polymer of the composite fiber is not particularly limited as long as it is fiber-forming.

ポリエステル系、ポリアミド系、ポリアクリロニトリル
系、ポリ塩化ビニリデン系、ポリエチレン系、ポリプロ
ピレン系、ポリウレタン系など多数のポリマーが使用可
能である。中でも、織編物に使用して、その通常の染色
加]一工程で風合い調整等が容易であるポリエステル系
のポリマーが有効である。A成分ポリマーとしては、B
成分ポリマーとの複合紡糸が可能で、かつ水や溶剤ある
いは。
Many polymers can be used, such as polyester, polyamide, polyacrylonitrile, polyvinylidene chloride, polyethylene, polypropylene, and polyurethane. Among these, polyester-based polymers are effective because they can be used in woven and knitted fabrics and can be easily adjusted for texture in one step (dying, dyeing, etc.). As the A component polymer, B
Composite spinning with component polymers is possible, and water, solvent, or

摩擦作用で容易に分割・剥離しないものであって。It should not easily split or peel off due to friction.

親水性かつ制電性の高いポリマーであれば特に限定され
ないが、好ましくはA成分に溝をもたせやすいものとし
て、B成分ポリマーより溶剤溶解性の高いポリマーが望
せしい。A−B成分の組合せとしては1例えばB成分ポ
リマーがポリエチレンテレフタレートで、A成分ポリマ
ーが親水性かつ溶剤溶解性の高いポリマーとして、ポリ
エチレングリコール等のポリアルキレングリコールを共
重合したポリエチレンテレフタレート、ブロックポリエ
ーテルアミドをブレンドしたポリエチレンテレフタレー
ト、ポリアミドをブレンドしたポリエチレンテレフクレ
ート、アルキレンオキシド共重合ポリエチレンテレフク
レート、またはポリエチレングリコール共重合ポリエチ
レンテレツクレートと5−ナトリウムスルホインフタレ
ート共重合ポリエチレンテレフタレートをブレンドした
ポリエチl/ンテレフタレート、ブロックポリエーテル
゛アミドと5−ナトリウムスルホイソフタレート共重合
ポリエチレンテレフタレートをブレンドしたポリエチレ
ンテレフタレートなどがあげられる。
The polymer is not particularly limited as long as it is hydrophilic and has high antistatic properties, but it is preferable to use a polymer that has higher solvent solubility than the B component polymer so that the A component can easily have grooves. A combination of A and B components is 1.For example, the B component polymer is polyethylene terephthalate, and the A component polymer is a hydrophilic and highly solvent-soluble polymer, such as polyethylene terephthalate copolymerized with polyalkylene glycol such as polyethylene glycol, or block polyether. Polyethylene terephthalate blended with amide, polyethylene terephthalate blended with polyamide, polyethylene terephthalate copolymerized with alkylene oxide, or polyethylene terephthalate blended with polyethylene terephthalate copolymerized with polyethylene glycol and polyethylene terephthalate copolymerized with 5-sodium sulfoinphthalate. , polyethylene terephthalate, which is a blend of block polyetheramide and 5-sodium sulfoisophthalate copolymerized polyethylene terephthalate.

本発明の複合線8イ(け、フィラメント糸の場合はモノ
フィラメントでもマルチフィラメントでもよく、他の公
知のフィラメントと適宜混繊1合糸。
In the case of the composite wire of the present invention, the filament yarn may be monofilament or multifilament, and may be mixed with other known filaments as appropriate.

交撚してもよい。−!だ生糸使いはもちろん、仮撚。It may be twisted. -! Not only raw silk but also false twisting is used.

交絡、乱流処理9毛羽立て等公知の加工技術を加えても
よい。壕だ本発明の複合繊維をステープノドとじて用い
る場合には、100%紡績糸はもちろん、他の化合繊繊
維、天然繊維と混紡、交撚して紡績糸としてもよい。更
に本発明の複合繊維は不織布やふとん綿として用いるこ
ともできる。
Known processing techniques such as entanglement, turbulence treatment, and fluffing may be added. When the conjugate fiber of the present invention is used as a stapled yarn, it may be used not only as a 100% spun yarn, but also as a spun yarn by blending or twisting with other synthetic fibers or natural fibers. Furthermore, the composite fiber of the present invention can also be used as a nonwoven fabric or futon cotton.

F1本発明の効果 第1〜4図は本発明の複合合成槽8、ILの一例の断面
図を示す。第1図は丸断面のA成分二くさび。
F1 Effects of the present invention Figures 1 to 4 show cross-sectional views of an example of the composite synthesis tank 8 and IL of the present invention. Figure 1 shows two A-component wedges with a round cross section.

第2図は丸断面のA成分三くさび、第6図は三葉断面の
A成分三くさ、び、第4図N五葉断面のA成分五くさび
の一例である。B成分に比べて親水性のA成分が繊維内
部方向に先細りのくさび形状であるため、「親水性成分
の繊維断面内分布が外層部程広くなり9.永存の吸脱着
速度が速い」、「親水性成分が繊維の内部において細く
なっており9かつ繊維軸方向に連続して露出していて水
分の運搬拡散性能が高い」、「A成分とB成分の境界面
が多く、薄皮部分がなくフィブリル化しにくい」。
Fig. 2 shows an example of an A component three wedge with a round cross section, Fig. 6 shows an example of an A component three wedge with a three lobe cross section, and Fig. 4 shows an example of an A component five wedge with an N five lobe cross section. Compared to component B, component A, which is more hydrophilic, has a wedge shape that tapers toward the inside of the fiber. The hydrophilic components are thinner inside the fibers and are exposed continuously in the fiber axis direction, resulting in high moisture transport and diffusion performance.""There are many interfaces between component A and component B, and there is no thin skin. It is difficult to fibrillate.”

LA酸成分極端な偏在化がなく染色イラツキがない」、
「A成分の喰い込みが小さく、失透感や発色低下が生じ
ない」などの効果がある。
There is no extremely uneven distribution of the LA acid component and there is no dyeing irritation."
It has effects such as ``the A component is bitten into a small amount, and there is no devitrification feeling or deterioration of color development.''

さらに、第5〜8図は本発明の複合繊維のA成分の一部
がfa &(&内部方向に溝を有する一例の断面図を示
す。つまシ第5図は丸断面の三溝、第6図は丸断面の三
溝、第7図は三葉断面の三溝、第8図は万葉断面の五溝
の一例である。溝部分の内部は主としてA成分で、B成
分の外表面に比べて高い親水性成分で、かつ溝の形状が
ある限定された範囲、すなわちA成分の一部が繊維内部
方向に溝を有し、溝の入口の幅が0.4〜2.0ミクロ
ンで。
Furthermore, FIGS. 5 to 8 show cross-sectional views of an example in which a part of component A of the composite fiber of the present invention has grooves in the fa &(& inner direction. The figure shows an example of three grooves with a round cross section, Figure 7 shows an example of three grooves with a three-lobed cross section, and Figure 8 shows an example of a five groove with a manyo cross section.The inside of the groove part is mainly composed of component A, which is higher than the outer surface of component B. It is a hydrophilic component and has a groove shape in a limited range, that is, a part of component A has grooves toward the inside of the fiber, and the width of the groove entrance is 0.4 to 2.0 microns.

深さが06〜20ミクロンの範囲にあるため、織物や編
物に使用された場合、「溝の親水性成分を溝の毛細管現
象効j果があい1つて、織編物の水拡散性を高め、かつ
肌にふれやすい布帛表面は主として疎水性のB成分であ
って、べとつきなどあ不快感全力えない」、「溝は摩擦
特性を変え9従来合成繊維の欠点とされていたロウ状感
や湿4′・1時のぬめり感をおさえてきしみのあるされ
やかな触感を与える」、「・一般に親水性ポリマーは染
色物の特に摩擦堅ロウ度が低いものが多いが1本発明で
は親水性成分が布帛表面に出る確率が低く、比較的問題
が少ない」、U光の反射や吸収を特異なものとし2発色
性を高め、かつ光沢のある織編物が得られる」、「疎水
性のB成木の割合が高く、吸水時の繊&(f印行率低下
が少なく、いやなべとつきがないjなどの効果が得られ
る。
Because the depth is in the range of 06 to 20 microns, when used in woven or knitted fabrics, the hydrophilic components of the grooves are combined with the capillary action of the grooves to increase the water diffusivity of the woven or knitted fabrics. In addition, the surface of the fabric, which is easy to touch the skin, is mainly composed of the hydrophobic B component, which eliminates stickiness and other discomfort.''The grooves change the friction characteristics and eliminate the waxy feeling and moisture, which were conventionally considered disadvantages of synthetic fibers.''4'・Gives a squeaky, supple touch by suppressing the slimy feeling of 1. Generally, hydrophilic polymers often have low friction fastness in dyed products, but in the present invention, the hydrophilic component has a low probability of appearing on the surface of the fabric, causing relatively few problems.'', ``Hydrophobic B composition makes the reflection and absorption of U light unique, increases two-color development, and produces glossy woven and knitted fabrics.'' It has a high proportion of wood, and when water is absorbed, there is little decrease in printing rate, and it does not stick to pans.

次に実施例を用いて詳細に説明する。Next, a detailed explanation will be given using examples.

実施例1 B成分として通常のポリエチレンテレフタレート、A成
分として通常のポリアミド(ナイロン−6)に5−ナト
リュームスルホインフタレート5壬ルチを共重合したポ
リエチレンテレフタレートを5重量係ブレンドしたポリ
マーを使用し、複合紡糸装置で吐出孔数2dホールの紡
糸口金で、第2図のような丸断面A成分三もさび状断面
形態に紡糸し、延伸して50デニール、24フイラメン
トの複合繊維延伸糸を得た。表1は、前記紡糸工程で9
口金形状、紡糸温度、A成分とB成分の複合比等の紡糸
条件を変えて得られた糸の断面形状つまり、A成分の繊
維断面に対する深さ割合R1A成分のくさび角Sを示す
Example 1 A polymer obtained by blending ordinary polyethylene terephthalate as the B component and polyethylene terephthalate, which is obtained by copolymerizing ordinary polyamide (nylon-6) with 5-sodium sulfoinphthalate and 5 ruthi, as the A component, was used to make a composite. Using a spinning device with a spinneret having 2 d discharge holes, the yarn was spun into a round cross-section A component tri-wedge cross-section as shown in FIG. 2, and drawn to obtain a 50-denier, 24-filament composite fiber drawn yarn. Table 1 shows 9 in the spinning process.
The figure shows the cross-sectional shape of the yarn obtained by changing spinning conditions such as spinneret shape, spinning temperature, composite ratio of A component and B component, that is, the depth ratio R1 of the A component to the fiber cross section, and the wedge angle S of the A component.

ここで表1の複合糸とけ別に、B成分およびΔ成分単独
ポリマーを通常の溶融紡糸・延伸して。
Here, apart from the composite yarns in Table 1, the B component and Δ component single polymers were melt-spun and stretched in the usual way.

丸断面の50デニール、24フイラメントの糸を製糸し
、この糸をそれぞれ2本引揃えて24ゲージの筒編機で
編果をつくり9通常のポリエステル編物の加工法で精練
9開布9中間セット、アルカリ減量処理(Q%、21%
)、、仕上セットして。
Spun 50 denier, 24 filament yarn with a round cross section, align two of each yarn and create a knitted result using a 24 gauge tubular knitting machine. 9 Scouring using a normal polyester knitting method. 9 Opening. 9 Intermediate set. , alkali weight loss treatment (Q%, 21%
),, finish setting.

天竺編地とした。得られた編地のバイレック法吸水高さ
は、A成分単独糸のアルカリ減量O%が12r+u++
、アルカリ減量21%が57+nmで、B成分単独糸の
アルカリ減量0′%、21%はともに2mmであった。
Made of jersey knitted fabric. The Bayrek method water absorption height of the obtained knitted fabric is 12r+u++
, the alkali loss of 21% was 57+nm, and the alkali loss of 0'% and 21% of the B-component single yarn were both 2 mm.

つまり、A成分ポリマー糸ばB成分ポリマー糸に比べて
親水性で、A成分糸はアルカリ減量処]]l!如よって
さらにその親水度が高くなる性質であった。!、たそれ
ぞれの編地を電子顕微鏡で拡大し、繊維:を観察したと
ころ、B成分糸は、アルカリ減量口幅と21係ともに表
面が滑らかであるのに対し存A成分糸のアルカリ減量2
1%は。
In other words, the A-component polymer thread is more hydrophilic than the B-component polymer thread, and the A-component thread is alkali-reduced]]l! Therefore, its hydrophilicity was further increased. ! When we enlarged each of the knitted fabrics using an electron microscope and observed the fibers, we found that the B component yarn had a smooth surface in both the alkali weight loss opening width and the 21 ratio, whereas the existing A component yarn had alkali weight loss of 2.
1% is.

繊維表面に、繊組:軸に沿って細長い筋状の溝を有し、
この種の溝や孔は繊維の内部にも存在する構造であった
The fiber surface has fiber-like grooves along the axis,
This type of groove and hole also existed inside the fiber.

表1の10水準の複合糸を同一水準どうしでタテおよび
ヨコ糸に用いて、タテ密度102本/1n。
Composite yarns of 10 levels in Table 1 were used as warp and weft yarns at the same level, and the warp density was 102 yarns/1n.

ヨコ密度84本/in の平織にした後1通常のポリエ
ステル織物の染色加工工程およびポリアミド織物の染色
条件を併用して青色に染色した。製織・染色加工上特に
問題になる点けみられなかった。
After it was made into a plain weave with a weft density of 84 threads/in, it was dyed blue using a combination of the usual dyeing process for polyester fabrics and the dyeing conditions for polyamide fabrics. No spots were observed that would pose a particular problem in weaving and dyeing processes.

得られた染色加工織物の特性の一部を表1に示す。水準
1.2および10は1本発明実施例の好ましいA成分く
さび形状水準3〜9を説明するための実施例である。実
施例水準1は、親水性のΔ成分複合割合が低く、かつS
が02未満つ甘り親水成分の繊維表面積が少ないため、
十分な吸水効果が得られなかった。実施例水準2け、R
が025未満かつSが1.5以上であるため、親水成分
の繊維内部への喰い込みがやや不足で、摩擦によるフィ
ブリル化が認められた。
Table 1 shows some of the characteristics of the obtained dyed fabric. Levels 1.2 and 10 are examples for explaining preferred A component wedge shape levels 3 to 9 of the embodiment of the present invention. Example level 1 has a low hydrophilic Δ component composite ratio and S
is less than 02 and the fiber surface area of the hydrophilic component is small,
A sufficient water absorption effect could not be obtained. Example level 2, R
was less than 025 and S was 1.5 or more, so the penetration of the hydrophilic component into the inside of the fiber was somewhat insufficient, and fibrillation due to friction was observed.

実施例水準10は水の吸水速度は高く、良好であるが、
Rが095以上かつSが1.5以上で、染めいらつきと
摩擦によるフィブリル化が認められた。これに対し、実
施例の水準3〜9け9例えば水準4の吸水性、水準9の
フィブリル化が目標レベルぎりぎりであるのを除けば、
いずれも良好な織物が得られた。
Example level 10 has a high water absorption rate and is good;
When R was 095 or more and S was 1.5 or more, dyeing irritation and fibrillation due to friction were observed. On the other hand, except for the Examples, where levels 3 to 9, for example, water absorption at level 4 and fibrillation at level 9, are just at the target level,
Good fabrics were obtained in all cases.

表 1 り 注1)バイレツク法吸水高さ:織編物30x30Qを2
枚採取し2周囲のホッレを防止するため、ミシン縫いし
た後、自動反転うず巻式電気洗タク機の洗タク槽に40
±2°0の2%アニオン系洗剤257を入れ、さらに織
物500g分を入れて洗タク機の強条件で5分間処理す
る。さらに1分間遠心脱水した後、水をオーバーフロー
させながら10間すすぎ、再び1分間遠心脱水して、ド
リップドライする。
Table 1 Note 1) Byreck method water absorption height: 2 pieces of woven and knitted fabric 30x30Q
After collecting 2 sheets and sewing them with a sewing machine to prevent holes from forming around them, they were placed in the washing tank of an automatic reversing spiral type electric washing machine.
Add 2% anionic detergent 257 of ±2°0, add 500 g of fabric, and process for 5 minutes under strong conditions in a washing machine. After further centrifugal dehydration for 1 minute, rinse with water overflow for 10 minutes, centrifuge dehydration again for 1 minute, and drip dry.

以上の洗りク操作を4凹繰返した後、1x20cmの試
験片をタテ・ヨコ方向にそれぞれ5枚ずつ採取する。こ
の試験片の一端をつかみ。
After repeating the above washing operation four times, five 1 x 20 cm test pieces are taken in each of the vertical and horizontal directions. Grasp one end of this specimen.

垂直にして他端を約2cm、20±2°Cの蒸留水に浸
して、10分後の毛細管現象による水の上昇距離をはか
シ、5回の平均値で表わす。
The other end is immersed vertically for about 2 cm in distilled water at 20±2°C, and the distance the water rises due to capillary action after 10 minutes is expressed as the average value of 5 times.

t2) 吸水性(簡便法):注1)と同様に洗タクした
後、直径3cm以上のビーカーの入口側に水平に張シ、
余分の張力がかからない状態で輪ゴムで固定し、試験片
の上に20±2°Cの蒸留水が1滴ずつ滴下するように
調整した1釦の注射針CTvRUyro 26G172
0.45 x13cmを原則とする)の先端が水平に置
いた試験片の表面から5 cm′tMLれるようにホル
ダーに固定して、水滴を試験片に滴下させ、この時の水
滴の拡散速度、拡散面積を肉眼判定する。
t2) Water absorption (simple method): After washing in the same manner as in Note 1), stretch it horizontally on the inlet side of a beaker with a diameter of 3 cm or more.
One-button injection needle CTvRUyro 26G172 fixed with a rubber band without applying any extra tension and adjusted so that distilled water at 20 ± 2 °C drops one drop at a time onto the test piece.
0.45 x 13 cm) is fixed in a holder so that the tip is 5 cm'tML from the surface of the test piece placed horizontally, and a water droplet is dropped onto the test piece, and the diffusion rate of the water droplet at this time is Visually judge the diffusion area.

注3)抗フロスト性=i111I定布を摩擦面が12.
5c+n’の円形ホルダーにセットし、あらかじめ蒸留
水で湿潤させたガーゼで完全に湿らせ、同−測定布の摩
擦対象布との間に750gの押圧荷重をかけた状態で8
5rpmの偏心回転を10分間運転摩擦し、ホルダーセ
ット布を4時間以上放置乾燥した後、摩擦部分の単繊維
のフィブリル化状態を20倍以上の適当な拡大鏡で観察
する。
Note 3) Anti-frost property = i111I constant cloth with friction surface of 12.
Set it in a circular holder of 5c + n', completely moisten it with gauze pre-moistened with distilled water, and apply a pressure load of 750 g between the same measurement cloth and the cloth to be rubbed.
The cloth is rubbed eccentrically at 5 rpm for 10 minutes, and the holder set cloth is left to dry for 4 hours or more, and then the fibrillation state of the single fibers in the rubbed portion is observed with a suitable magnifying glass of 20 times or more.

実施例2 B成分として通常のポリエチレンテレフタレート、A成
分としてエチレングリコール4モル係を共重合したポリ
エチレンテレフタレートベレットにブロックポリエーテ
ルアミド組成物からなるベレットを2.5 li量係ブ
レンドしたボ1,1エチレンテレフタレートを使用し、
複合紡糸装置で吐出孔数56ホールの紡糸口金で第3図
のような三葉断面A成分三〈さび状断面形態に紡糸し、
延伸して。
Example 2 1,1 ethylene was prepared by blending 2.5 li of a block polyether amide composition with a polyethylene terephthalate pellet copolymerized with ordinary polyethylene terephthalate as the B component and 4 moles of ethylene glycol as the A component. using terephthalate,
Using a spinneret with 56 discharge holes in a composite spinning device, the three-lobed cross-section A component as shown in Fig. 3 was spun into a wedge-shaped cross-section.
Stretch it out.

75デニール、36フイラメントの複合繊維延伸糸を得
た。A成分とB成分の複合比itA:B=20:80.
紡糸温度285 ’a 、紡糸速度1200m / m
 i n *延伸速度350m/min、熱ビン温度1
20℃とした。
A drawn composite fiber yarn of 75 denier and 36 filaments was obtained. Composite ratio of A component and B component itA:B=20:80.
Spinning temperature 285'a, spinning speed 1200m/m
i n *Stretching speed 350m/min, heat bottle temperature 1
The temperature was 20°C.

得られた糸のA成分のくさび形状は、繊維断面に対する
深さ割合Rが0.84.(さび角Sが039の糸であっ
た。この糸を用いて24ゲージのm 編機で編地をつく
り9通常のポリエステル編物の加工法で精練、開布、中
間セット、アルカリ減量処理、黒色染色、仕上セットし
た。表2にアルカリ減量率と編地の特性の関係を示す。
The wedge shape of the A component of the obtained yarn has a depth ratio R to the fiber cross section of 0.84. (It was a yarn with a rust angle S of 039. Using this yarn, a knitted fabric was made using a 24-gauge knitting machine.9 It was scoured, opened, intermediate set, alkali weight loss treated, and blackened using the usual processing methods for polyester knitting. It was dyed and finished and set. Table 2 shows the relationship between the alkali weight loss rate and the properties of the knitted fabric.

水準11,12゜18および19は9本発明実施例の好
ましい繊維溝形状水準13〜17を説明するための実施
例である。
Levels 11, 12, 18 and 19 are examples for explaining preferred fiber groove shape levels 13 to 17 of nine embodiments of the present invention.

実施例水準1および水準2け、繊維の溝の幅が0、4ミ
クロン未満で繊維の溝の深さも03ミクロン未満である
ため、目的とするきしみ感が不十分であった。
In Example Level 1 and Level 2, the width of the fiber groove was less than 0.4 microns and the depth of the fiber groove was less than 0.3 micron, so the desired squeaky feeling was insufficient.

実施例水準18および水準19は、繊維の溝の幅または
繊維の溝の深さのいずれか甘たけ両方が2ミクロンを越
えるもので、絹地の発色性が低いもので、これまた目的
の一部を十分に満足しない絹地であった。これら実施例
水準1,2.18゜19に対し、実施例水準13〜17
は、繊維の溝の幅が04〜20ミクロン、繊維の溝の深
さが06〜20ミクロンの範囲であるため、きしみ感が
あシ、かつ編地の発色性ΔLが0以上、つまり溝なしの
繊維に比べて高い発色性が得られるとともに9編地の吸
水性も高い編物が得られた。
Example level 18 and level 19 are those in which either the width of the fiber groove or the depth of the groove in the fiber exceeds 2 microns, and the color development of the silk fabric is low, which is also part of the purpose. It was a silk fabric that was not completely satisfactory. In contrast to these example levels 1 and 2.18°19, example levels 13 to 17
Since the width of the fiber groove is in the range of 04 to 20 microns and the depth of the fiber groove is in the range of 06 to 20 micron, there is a squeaky feeling, and the color development ΔL of the knitted fabric is 0 or more, that is, there is no groove. 9 knitted fabrics were obtained that had higher coloring properties than the above fibers and also had high water absorbency.

注4)繊維の溝の幅および溝の深さ:第10図のような
編織物分解糸の顕微鏡拡大写−Xをとfi、2000倍
拡大写真からノギスで溝の入口の幅M’ TJ’および
溝の深さQ/ T“′を測定しめる。
Note 4) Width and depth of fiber grooves: Microscopically enlarged photograph of the disintegrated yarn of the knitted fabric as shown in Figure 10 - and measure the groove depth Q/T''.

注5)編地のきしみ感:編地の表面と表面を重ねて親指
と人差指の間でゆっくりと摩擦して官能評価した。
Note 5) Creakiness of knitted fabric: Sensory evaluation was performed by slowly rubbing the surfaces of the knitted fabrics together between the thumb and index finger.

注6)編地の発泡性ΔL:同−同性条件色した編地をス
ガ試験機株式会社製デジタル測色色差計算器を用い、L
値をめ、アルカリ減量率り係の水準のL値から各水準の
L値を減じた値をΔLとした(ΔLがO(ハ)減量O%
の編地と同じ発色性で、ΔLが正の値は発色住良、ΔL
が負の値は発色性が悪いことを意味する)。
Note 6) Foaming property ΔL of knitted fabric: A knitted fabric colored under same-sex conditions was measured using a digital color measurement color difference calculator manufactured by Suga Test Instruments Co., Ltd.
ΔL is the value obtained by subtracting the L value of each level from the L value of the level of the alkali weight loss rate factor (ΔL is O(c) weight loss 0%)
The color development is the same as the knitted fabric, and the positive value of ΔL is color development Sumira, ΔL
A negative value means poor color development).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の複合合成繊維断面例を示す。 第5図−・第8図は本発明の溝付複合合成繊維断面例を
示す。第9図は本発明の複合合成繊維の親水性成分の形
態を説明するモデル図、第10図は本発明の複合合成繊
維の親水性成分と溝の形態を説明するモデル図である。 lへ二親水性成分 B:基本成分 P:A成分の頂点 Q:A成分の繊維重心にもつとも近い点Q′:溝の繊維
重心にもつとも近い点 特許出願人 東し株式会社 $I闇 千2F21 竿′3扇 草7F屈 草51 ¥6ω 茸qq ¥9咽
FIGS. 1 to 4 show cross-sectional examples of the composite synthetic fiber of the present invention. Figures 5 to 8 show cross-sectional examples of the grooved composite synthetic fiber of the present invention. FIG. 9 is a model diagram explaining the form of the hydrophilic component of the composite synthetic fiber of the present invention, and FIG. 10 is a model diagram explaining the hydrophilic component and groove configuration of the composite synthetic fiber of the present invention. Bihydrophilic component B: Basic component P: Vertex of A component Q: Point closest to the fiber center of gravity of A component Q': Point closest to the fiber center of gravity of the groove Patent applicant Toshi Co., Ltd. $I Yami Sen2F21 Rod'3 fan grass 7F kakugusa 51 ¥6ω mushroom qq ¥9 throat

Claims (4)

【特許請求の範囲】[Claims] (1) A成分とB成分からなる複合合成繊維において
、A成分がB成分に比べて親水性成分で、がつA成分は
繊維横断面から見て内部方向に先細りのくさび形状を有
し、かつA成分に繊維の長さ方向に連続化されているこ
とを特徴とする親水性複合合成繊維。
(1) In a composite synthetic fiber consisting of A component and B component, the A component is a more hydrophilic component than the B component, and the A component has a wedge shape that tapers inward when viewed from the cross section of the fiber. A hydrophilic composite synthetic fiber characterized in that the A component is continuous in the length direction of the fiber.
(2)A成分のくさび形状の繊維横断面に対する采さ割
合が0.25〜095で、A成分のくさび角が02〜1
.5の範囲であることを特徴とする特許請求の範囲第(
1,j項記載の親水性複合合成繊維。
(2) The roughness ratio of the A component to the wedge-shaped fiber cross section is 0.25 to 095, and the wedge angle of the A component is 02 to 1.
.. The scope of claim No. 5 (
The hydrophilic composite synthetic fiber described in Section 1, j.
(3)A成分の一部が繊維の内部方向に溝を有し。 溝の入口の幅が04〜2.0ミクロンで、深さが06〜
20 ミクロンの範囲であることを特徴とする特許請求
の範囲第(1)項記載の親水性複合合成繊維。
(3) A part of component A has grooves in the inner direction of the fiber. The groove entrance width is 0.4~2.0 microns and the depth is 0.6~2.0 microns.
The hydrophilic composite synthetic fiber according to claim (1), characterized in that the fiber has a diameter in the range of 20 microns.
(4)複合合成繊維がエチレンテレフタシーl−金主成
分とするポリエステル繊維であることを特徴とする特許
請求の範囲第(11項記載の親水性複合合成繊維。
(4) The hydrophilic composite synthetic fiber according to claim 11, characterized in that the composite synthetic fiber is a polyester fiber containing ethylene terephthalate as a main component (gold).
JP22691783A 1983-12-02 1983-12-02 Hydrophilic conjugate synthetic fiber Granted JPS60119220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22691783A JPS60119220A (en) 1983-12-02 1983-12-02 Hydrophilic conjugate synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22691783A JPS60119220A (en) 1983-12-02 1983-12-02 Hydrophilic conjugate synthetic fiber

Publications (2)

Publication Number Publication Date
JPS60119220A true JPS60119220A (en) 1985-06-26
JPS6358932B2 JPS6358932B2 (en) 1988-11-17

Family

ID=16852621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22691783A Granted JPS60119220A (en) 1983-12-02 1983-12-02 Hydrophilic conjugate synthetic fiber

Country Status (1)

Country Link
JP (1) JPS60119220A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139816A (en) * 1983-12-26 1985-07-24 Toray Ind Inc Antistatic conjugate synthetic fiber
US4954398A (en) * 1988-02-16 1990-09-04 Eastman Kodak Company Modified grooved polyester fibers and process for production thereof
US4996107A (en) * 1988-02-16 1991-02-26 Eastman Kodak Company Ink reservoir containing modified polyester fibers
US5124205A (en) * 1988-02-16 1992-06-23 Eastman Kodak Company Ink reservoir containing modified polyester fibers
KR100430631B1 (en) * 1997-01-30 2004-07-30 주식회사 코오롱 Polyester yarn having different dyeing properties and excellent drapeability, and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139816A (en) * 1983-12-26 1985-07-24 Toray Ind Inc Antistatic conjugate synthetic fiber
US4954398A (en) * 1988-02-16 1990-09-04 Eastman Kodak Company Modified grooved polyester fibers and process for production thereof
US4996107A (en) * 1988-02-16 1991-02-26 Eastman Kodak Company Ink reservoir containing modified polyester fibers
US5124205A (en) * 1988-02-16 1992-06-23 Eastman Kodak Company Ink reservoir containing modified polyester fibers
KR100430631B1 (en) * 1997-01-30 2004-07-30 주식회사 코오롱 Polyester yarn having different dyeing properties and excellent drapeability, and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6358932B2 (en) 1988-11-17

Similar Documents

Publication Publication Date Title
US10745829B2 (en) Core-sheath conjugated fiber, slit fiber, and method of manufacturing such fibers
WO2009150745A1 (en) Water-absorbing rapidly dryable woven or knitted fabric
EP0270019A2 (en) Synthetic polymer multifilament yarn useful for bulky yarn and process for producing the same
JP2010281013A (en) Nap-raised knitted fabric excellent in stretchability
JPS60119220A (en) Hydrophilic conjugate synthetic fiber
JP2004346461A (en) False twist yarn having specific cross-sectional shape and method for producing the same
JPS6127484B2 (en)
JP2008150728A (en) Water-absorbing/quick-drying woven and knitted fabrics
JP2007239146A (en) Composite false-twisted yarn excellent in transparency preventing property and method for producing the same
JPH07252744A (en) Woven fabric of wool/rayon blended yarn
JPS6189321A (en) Polyester yarn having high dyeing properties
JP2849424B2 (en) Woven and knitted fabric
JP4332272B2 (en) Method for producing water-absorbing composite false twisted yarn and water-absorbing fabric
JP4789791B2 (en) Water-absorbing quick-drying polyester composite fiber and method for producing the same
JP4145205B2 (en) Special composite false twisted yarn and method for producing the same
JPS60139816A (en) Antistatic conjugate synthetic fiber
JPS62110916A (en) Conjugated yarn
JPH06192940A (en) Water/moisture-absorbable composite fabric
JP2009144263A (en) Water-absorbing quick-drying polyester undrawn fiber and method for producing the same
JP3139557B2 (en) Composite entangled yarn and fabric using the yarn
JP4228504B2 (en) Woven knitted fabric made of blended yarn
JPH10219551A (en) Multilayered structural fabric containing artificial cellulosic fiber
JP3855384B2 (en) Synthetic fiber multifilament and fabric with thick and thin
JP4063962B2 (en) Manufacturing method of long and short composite spun yarn knitted fabric
JP3689994B2 (en) Polyester composite fiber and method for producing the same