JPS6127484B2 - - Google Patents

Info

Publication number
JPS6127484B2
JPS6127484B2 JP16795081A JP16795081A JPS6127484B2 JP S6127484 B2 JPS6127484 B2 JP S6127484B2 JP 16795081 A JP16795081 A JP 16795081A JP 16795081 A JP16795081 A JP 16795081A JP S6127484 B2 JPS6127484 B2 JP S6127484B2
Authority
JP
Japan
Prior art keywords
thick
thin
yarn
roller
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16795081A
Other languages
Japanese (ja)
Other versions
JPS5870711A (en
Inventor
Kenkichi Nose
Kozo Kyomitsu
Hiroyuki Nagai
Kikuo Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16795081A priority Critical patent/JPS5870711A/en
Publication of JPS5870711A publication Critical patent/JPS5870711A/en
Publication of JPS6127484B2 publication Critical patent/JPS6127484B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエステルよりなるシツクアンドシ
ンヤーンの製造方法に関する。 ポリエステルシツクアンドシンヤーン、即ち繊
度が変化する単糸よりなるポリエステルヤーン
は、それによつて得られる布帛が特異な風合を呈
し、またこの布帛を染色すると霜降り状を呈する
ことから、特殊なヤーンとして知られている。 従来より、ポリエステルシツクアンドシンヤー
ンの製造方法として、ポリエステルヤーンの紡糸
中又は延伸中に、溝付ローラ又はガイドとの接触
角を変化させてヤーン張力を変動させる方法,2
成分よりなる複合繊維を紡糸する際に2成分の吐
出割合を変化させる方法等が知られている。しか
しながら、かかる方法では装置が複雑になり、し
かも生産性が悪いため工業的には実施されない。 また、ポリエステル未延伸糸を低温,低倍率で
延伸することによつてシツクアンドシンヤーンと
する方法も知られている。しかしながら、この方
法によると、シツクアンドシンのパターンは、使
用する未延伸糸の経時変化によつて大きく変動す
る。更に、この方法では、使用する未延伸糸パツ
ケージの内外層によつても、シツクアンドシンの
パターンが大きく変動する。従つて、この方法で
は、所定のシツクアンドシンのパターンを有する
ヤーンを安定して製造することはできず、工業的
に採用できない。 本発明者らは、特別な装置を使用せず、生産性
よく、所定のシツクアンドシンヤーンを安定して
製造する方法について検討の結果、ポリエステル
を溶融紡糸し、一旦捲取ることなく特定の条件で
引取り、続いて特定の条件で延伸すれば、上記目
的を達成できることを知り、先に提案した。しか
しながら、この方法で得られたシツクアンドシン
ヤーンを仮撚加工,撚糸加工に付すと、断糸,毛
羽が生じ易く、更にアルカリ減量加工を施すとシ
ツク部の強力が低下し摩擦堅牢度が悪化するとい
う問題が起つてくる。 更にこの方法で得られたシツクアンドシンヤー
ンは、シツク部とシン部の繰返周期が大きくなる
と共にシツク部とシン部のコントラストが強くな
りすぎて織編物とした場合に風合,品位が低下す
るという欠点も有している。 本発明者らは、これらの問題点を解消すべく更
に検討を重ねた結果、特定条件下で紡糸,延伸し
た後、更に特定の条件下で再延伸すればよいこと
を見出し、本発明に到達した。 即ち、本発明は、ポリエステルを溶融吐出して
引取つてから流体交絡処理を施してから、複屈折
率(△n)が0.05以下の未延伸糸を、引続いて一
旦巻取ることなく、ポリエステルの二次転移点以
下の温度で下記(1)式を満足する第1段延伸倍率
(DR1)にて延伸し、次いで全延伸倍率(DRT)が
下記(2)式を満足する如く、再延伸することを特徴
とするシツクアンドシンヤーンの製造方法であ
る。 −3.5×△n+1.2≦DR1≦−13.3×△n+2.3
……(1) −6.5×△n+1.6≦DRT≦−30×△n+3.3 ……(2) 但し、上記(1),(2)の式において△nは0.05以下
である。 本発明で言うポリエステルとはポリエチレンテ
レフタレートを主たる対象とするが、テレフタル
酸成分の一部(通常15モル%以下)を他の二塩基
酸成分、例えばイソフタル酸、5−スルホイソフ
タル酸、アジピン酸等で置き換えてもよく、エチ
レングリコール成分の一部又は全部を炭素数3〜
10のアルキレングリコール、特にブチレングリコ
ールで置き換えても、また一部であればポリオキ
シエチレングリコールの如きポリオキシアルキレ
ングリコールで置き換えてもよい。かかるポリエ
ステルの重合度は、ポリエステルの種類、製品の
シツクアンドシンヤーンの用途に応じて適宜選定
すべきである。通常ポリエチレンテレフタレート
の場合、35℃のo−クロロフエノール溶液で測定
した値より求めた極限粘度〔η〕にして0.55〜
0.7のものが好ましい。 上記ポリエステルを溶融押出しするに際して
は、特別の手段を採用する必要はなく、任意の方
法が採用されるが、肝要なことは流体交絡処理を
施すことであり、これにより延伸時には糸条の各
交絡点に優先的に延伸応力が集束しシツクアンド
シンパターンのランダム化が奏される。紡糸に引
続いて延伸するに当つても、任意の直延方法が採
用されるが、通常、紡糸口金下に給油ローラ,引
取ローラと予熱供給ローラを兼ねたローラを順に
設け、このローラの下流に延伸ローラを設置した
装置が設備的にコンパクトで製造上有利である。
第1段延伸の後に行なう再延伸は、第1段延伸終
了後、一旦巻取ることなく連続して行つてもよい
し、一旦巻取つた後、別の延伸装置を用いて行つ
てもよい。 第1図は、再延伸を連続して行なう好ましい直
延方式の一例を示す概略図であり、図中1は紡糸
装置,Yは紡出ヤーン,2はオイリングローラ,
3は流体交絡処理ノズル,4は予熱供給ローラを
兼ねた引取ローラ,5はセパレートローラ,6は
第1段延伸ローラ,7はセパレートローラ,8は
第2段延伸ローラ,9はセパレートローラ,10
はワインダーである。 紡糸装置1より紡出されたヤーンYは、オイリ
ングローラ2により油剤を付与され、流体交絡処
理ノズル3によつて交絡処理された後、延伸温度
に予熱した引取ローラ4にセパレートローラ5を
介して数回巻かれて所定速度で引取られると同時
に延伸温度に予熱され、下流の第1段延伸ローラ
6,セパレートローラ7により所定倍率に延伸さ
れ、引続き、第2段延伸ローラ8,セパレートロ
ーラ9により再延伸されて、ワインダー10に巻
取られる。この場合、第2段延伸ローラ8を加熱
ローラと、該ローラ上でヤーンを定長熱処理して
もよく、また、該ローラ8を段付加熱ローラとし
て、該ローラ上でヤーンを弛緩処理してもよい。 本発明においては、溶融吐出して引取られた後
であつて、第1段延伸に付される前の未延伸糸の
複屈折率(△n)が0.05以下であることが必要で
ある。複屈折率(△n)が0.05を超えると、得ら
れるシツクアンドシンヤーンのシツク部とシン部
のコントラストが不充分になる。複屈折率(△
n)が0.05以下となるようにするには、通常、引
取速度即ち引取ローラ4の周速度を3500m/分以
下にすればよい。この引取速度をあまりに遅くす
ると、生産性が低下するので1000m/分以、複屈
折率(△n)にして0.01以上とするのが好まし
い。 第1段延伸温度、即ち上記引取ローラ4の予熱
温度は、使用するポリエステルの二次転移点以下
にすべきである。二次転移点より高くすると、シ
ツクアンドシンのコントラストが小さくなり、且
つシツクアンドシンの発生も不安定になる。ま
た、このローラ温度をあまり低くすると、この温
度が雰囲気温度によつて変動し易くなり、そのた
めシツクアンドシンの発生が不安定になるので、
常温(通常25℃)以上にするのが好ましい。 第1段延伸倍率(DR1)は、−3.5×△n+1.2≦
DR1≦−13.3×△n+2.3なる条件を満足する範囲
内で選択することが必要である。この第1段延伸
倍率(DR1)が低すぎると、後で再延伸を行つて
も、シツク部とシン部の周期が長くなりすぎて、
良好なシツクアンドシン効果を呈するヤーンが得
られない。一方、第1段延伸倍率(DR1)が高く
なりすぎると、シツク部が少くなりすぎてシツク
アンドシン効果が小さくなつてしまう。 更に、本発明においては、この第1段延伸倍率
終了後再延伸を行うわけであるが、再延伸倍率は
全延伸倍率(DRT)が−6.5×△n+1.6≦DRT
−30×△n+3.3の範囲内に入るように選択す
る。全延伸倍率(DRT)が低すぎると、仮撚,撚
糸工程で断糸,毛羽が生じ易く、アルカリ減量加
工を施すとシツク部の強力が低下し、摩擦堅牢度
が低下する。また、シツク部とシン部の繰返周期
が長くなると共に両者のコントラストが強くなり
すぎ織編物とした場合の風合,品位が低下すると
いう問題も生じてくる。一方、全延伸倍率
(DRT)が高くなりすぎるとシツク部が少なくな
つて、シツクアンドシン効果がなくなつてくる。
この再延伸は2段以上に分割して行つてもよい。
再延伸温度は20〜200℃の間で任意に選択するこ
とができ、この温度を高くすれば、シツク部とシ
ン部のコントラストが弱くなり、逆に低くすれば
コントラストが強くなるので、再延伸温度を変更
することによりシツク部とシン部のコントラスト
を調整することができる。 第2図は前記(1)および(2)式の意義について説明
するグラフである。ここで、第2図イは後記第1
表の実施例1〜9(〇印で囲む)及び比較例1〜
9(△印で囲む)をプロツトしたもので、これよ
り(1)式が求められる。また第2図ロは同様にして
第1表の実施例10〜18(〇印で囲む)及び比較例
10〜15(△印で囲む)をプロツトしたもので、こ
れより(2)式が求められる。 本発明の最大の特徴は、紡糸し、且つ交絡を付
与した未延伸糸を一旦巻取ることなく、連続して
第1段延伸し、次いで再延伸する点にある。紡出
糸条を一旦巻取ることなく連続して第1段延伸す
ることによつて、未延伸糸の経時による影響を完
全に排除することができ、常に一定形態のシツク
アンドシンヤーンを安定に製造することができ
る。更に加えて、第1段延伸を紡糸と直結させて
連続して行ない、その後で再延伸すると、第1段
延伸工程で発生したシツク部が更に2個以上に分
割され、シツク部とシン部の繰返周期が非常に短
かいシツクアンドシンヤーンが得られる。 紡糸後一旦巻取つた未延伸糸を第1段延伸した
後、再延伸したのでは、シツク部が細化するだけ
であつて、本発明の場合のようにシツク部が2個
以上に分割するようなことはないのである。 このように、紡糸して得た特定の複屈折率(△
n)を有する交絡未延伸糸を一旦巻取ることなく
連続して特定の温度及び倍率で延伸し、更に特定
の倍率で再延伸することによつて、シツク部とシ
ン部の繰返周期が短かくて優れたシツクアンドシ
ン効果を有し、加工性が良好で、アルカリ処理に
よつてもシツク部の強力低下,摩擦堅牢度の悪化
が起らないシツクアンドシンヤーンが得られるの
であつて、上記条件のいずれを欠いても本発明の
目的は達成されない。 かくして得られるシツクアンドシンヤーンは、
そのまま織編してもよく、また熱処理,仮撚加
工,延伸仮撚加工等を施してもよい。 以下に実施例をあげて本発明を更に説明する。
実施例中におけるシツクアンドシンの評価は次の
ようにした。 1 シツクアンドシンの形態 シツクアンドシンヤーンを筒編にし、染料とし
てイーストマンコダツクポリエステルネイビーブ
ルーを用いて、100℃の熱水中で染色し、シツク
部(濃染部)とシン部(淡染部)のコントラス
ト、割合、周期を観察した。 2 摩擦堅牢度 シツクアンドシンヤーンに2000T/Mの撚りを
かけ、ジヨーゼツトに製織後、沸水中で20分間リ
ラツクス処理し、次いで180℃で45秒間プレセツ
トを施し、その後、濃度35g/のカ性ソーダ水
溶液中で煮沸処理して、15%の減量処理を行な
い、次いで110℃で45秒間、イーストマンポリエ
ステルネイビーブルーを用いて染色し、160℃で
45秒間フアイナルセツトしたものをサンプル布帛
として使用する。 測定は、該サンプル布帛の上に、水で湿めした
綿布(カナキン)を重ね合せ、学振型摩擦試験器
(昭和重器(株)製)にて、500gの荷重下で、100回
擦過した後、綿布にサンプル布帛から摩耗,脱落
した着色繊維がどの程度付着しているかを肉眼で
判定し、1〜5級にランク付けすることにより行
う。1級は多量の着色繊維が付着していて摩擦堅
牢度が悪いものであり、5級は全く着色繊維の付
着が認められず摩擦堅牢度が良好なものである。
級が大きくなるにつれて摩擦堅牢度が良くなるこ
とを示す。 実施例1〜18及び比較例1〜15 艷消剤として0.3重量%の二酸化チタンを含有
する極限粘度0.65のポリエチレンテレフタレート
を、図に示す装置を用いて296℃で溶融吐出し、
10個/mの交絡を噴射ノズル3によつて付与し、
一旦巻取ることなく連続して50℃に加熱した引取
ローラ4を介して8回巻回して第1表記載の引取
り速度で引取りつつ予熱し、引取ローラ4と第1
段延伸ローラ6との間にて第1表記載の倍率で第
1段延伸を行ない、次いで60℃に加熱した第1段
延伸ローラ6と160℃に加熱した第2段延伸ロー
ラ8との間で第1表記載の倍率で再延伸すると共
に第2段延伸ローラ8上で熱処理を施して、75デ
ニール/36フイラメントの9Kg捲きのパツケージ
として巻取つた。 得られたシツクアンドシンヤーンの評価は、第
1表に示す通りであつた。
The present invention relates to a method for producing thick-and-thin yarn made of polyester. Polyester thick-and-thin yarn, that is, polyester yarn consisting of single yarns with varying fineness, is used as a special yarn because the fabric obtained from it exhibits a unique texture, and when this fabric is dyed, it exhibits a marbled appearance. Are known. Conventionally, as a method for manufacturing polyester thick-and-thin yarn, there is a method in which the yarn tension is varied by changing the contact angle with a grooved roller or guide during spinning or drawing of the polyester yarn.
A method is known in which the ejection ratio of two components is changed when spinning a composite fiber made of the components. However, such a method requires a complicated apparatus and has poor productivity, so it is not implemented industrially. It is also known to draw undrawn polyester yarn at a low temperature and low magnification to form a thick-and-thin yarn. However, according to this method, the thick-and-thin pattern varies greatly depending on the aging of the undrawn yarn used. Furthermore, in this method, the thick-and-thin pattern varies greatly depending on the inner and outer layers of the undrawn yarn package used. Therefore, this method cannot stably produce yarn having a predetermined thick-and-thin pattern and cannot be used industrially. The present inventors investigated a method for stably producing a specified thick-and-thin yarn with high productivity without using special equipment, and found that they could melt-spun polyester and spin it under specific conditions without having to wind it up. I learned that the above objective could be achieved by taking it up and then stretching it under specific conditions, so I proposed it earlier. However, when the thick-and-thin yarn obtained by this method is subjected to false twisting or twisting processing, yarn breakage and fluffing are likely to occur, and furthermore, when subjected to alkali reduction processing, the strength of the thick part decreases and the fastness to friction deteriorates. The problem arises. Furthermore, in the thick-and-thin yarn obtained by this method, the repetition period of the thick part and the thin part increases, and the contrast between the thick part and the thin part becomes too strong, resulting in a decrease in texture and quality when made into a woven or knitted fabric. It also has the disadvantage of As a result of further studies to solve these problems, the present inventors discovered that after spinning and drawing under specific conditions, it is sufficient to re-draw the fibers under specific conditions, and thus arrived at the present invention. did. That is, the present invention melts and discharges polyester, takes it off, performs fluid entanglement treatment, and then undrawn yarn with a birefringence index (△n) of 0.05 or less without subsequently winding it. Stretching is carried out at a first stage draw ratio (DR 1 ) that satisfies the following formula (1) at a temperature below the secondary transition point, and then re-stretched so that the total stretch ratio (DR T ) satisfies the following formula (2). This is a method for producing thick-and-thin yarn, which is characterized by stretching. −3.5×△n+1.2≦DR 1 ≦−13.3×△n+2.3
...(1) −6.5×△n+1.6≦DR T ≦−30×△n+3.3 (2) However, in the above equations (1) and (2), △n is 0.05 or less. The polyester referred to in the present invention mainly refers to polyethylene terephthalate, but a part of the terephthalic acid component (usually 15 mol% or less) can be used as other dibasic acid components, such as isophthalic acid, 5-sulfoisophthalic acid, adipic acid, etc. It may also be replaced with a part or all of the ethylene glycol component having 3 to 3 carbon atoms.
10 may be replaced by an alkylene glycol, especially butylene glycol, or may be partially replaced by a polyoxyalkylene glycol such as polyoxyethylene glycol. The degree of polymerization of such polyester should be appropriately selected depending on the type of polyester and the use of the product as a thick-and-thin yarn. Normally, in the case of polyethylene terephthalate, the intrinsic viscosity [η] determined from the value measured in an o-chlorophenol solution at 35°C is 0.55~
A value of 0.7 is preferred. When melt-extruding the polyester mentioned above, there is no need to adopt any special means, and any method can be adopted, but the important thing is to perform fluid entanglement treatment, which allows each yarn to be entangled during drawing. Stretching stress is focused preferentially on points, creating a randomized thick-and-thin pattern. For drawing following spinning, any direct stretching method can be adopted, but usually an oil supply roller, a take-up roller, and a roller that also serves as a preheating supply roller are installed in this order under the spinneret, and the downstream side of this roller is A device equipped with stretching rollers is compact in terms of equipment and is advantageous in manufacturing.
The re-stretching performed after the first-stage stretching may be performed continuously without winding up after the first-stage stretching, or may be performed using another stretching device after winding. FIG. 1 is a schematic diagram showing an example of a preferable straight-drawing method in which re-stretching is performed continuously. In the figure, 1 is a spinning device, Y is a spun yarn, 2 is an oiling roller,
3 is a fluid entanglement treatment nozzle, 4 is a take-up roller that also serves as a preheating supply roller, 5 is a separate roller, 6 is a first stage stretching roller, 7 is a separate roller, 8 is a second stage stretching roller, 9 is a separate roller, 10
is a winder. The yarn Y spun from the spinning device 1 is applied with an oil agent by an oiling roller 2, and after being entangled by a fluid entangling treatment nozzle 3, it is transferred to a take-up roller 4 preheated to a drawing temperature via a separate roller 5. It is wound several times and taken off at a predetermined speed, and at the same time is preheated to a stretching temperature, and is stretched to a predetermined magnification by a downstream first-stage stretching roller 6 and a separate roller 7, and then by a second-stage stretching roller 8 and a separate roller 9. It is re-stretched and wound up on the winder 10. In this case, the second stage drawing roller 8 may be a heating roller, on which the yarn is heat-treated for a fixed length, or the roller 8 may be a stepped heating roller, on which the yarn is subjected to relaxation treatment. Good too. In the present invention, it is necessary that the birefringence index (Δn) of the undrawn yarn after being melted and discharged and taken off and before being subjected to the first drawing is 0.05 or less. If the birefringence (Δn) exceeds 0.05, the contrast between the thick and thin portions of the obtained thick-and-thin yarn will be insufficient. Birefringence (△
In order for n) to be 0.05 or less, the take-up speed, that is, the circumferential speed of the take-up roller 4, should normally be set to 3500 m/min or less. If the take-up speed is too slow, the productivity will decrease, so it is preferable to set it to 1000 m/min or more and the birefringence (Δn) to 0.01 or more. The first stage stretching temperature, ie, the preheating temperature of the take-off roller 4, should be below the secondary transition point of the polyester used. If the temperature is higher than the second-order transition point, the contrast of the thick-and-thin decreases, and the occurrence of the thick-and-thin also becomes unstable. Also, if the roller temperature is too low, this temperature will easily fluctuate depending on the ambient temperature, which will make the occurrence of the ``thick-and-thin'' unstable.
It is preferable to keep it at room temperature (usually 25°C) or above. The first stage stretching ratio (DR 1 ) is -3.5×△n+1.2≦
It is necessary to select within a range that satisfies the following condition: DR 1 ≦−13.3×Δn+2.3. If this first stage stretching ratio (DR 1 ) is too low, even if the film is re-stretched later, the period between the thick and thin parts will become too long.
A yarn exhibiting a good thick and thin effect cannot be obtained. On the other hand, if the first stage stretching ratio (DR 1 ) becomes too high, the number of thick portions becomes too small and the thick and thin effect becomes small. Furthermore, in the present invention, re-stretching is performed after the first stage stretching ratio is completed, and the re-stretching ratio is such that the total stretching ratio (DR T ) is -6.5×△n+1.6≦DR T
Select so that it falls within the range of -30×△n+3.3. If the total draw ratio (DR T ) is too low, yarn breakage and fluffing are likely to occur during the false twisting and twisting processes, and when alkali weight reduction processing is performed, the strength of the thick part decreases and the fastness to friction decreases. Further, as the repetition period of the thick and thin portions becomes longer, the contrast between them becomes too strong, resulting in a problem that the texture and quality of the woven or knitted fabric deteriorate. On the other hand, if the total stretching ratio (DR T ) becomes too high, the number of thick portions decreases and the thick and thin effect disappears.
This re-stretching may be performed in two or more stages.
The re-stretching temperature can be arbitrarily selected between 20 and 200°C.If the temperature is set higher, the contrast between the thick and thin parts will be weaker, and if the temperature is lowered, the contrast will be stronger. By changing the temperature, the contrast between the thick and thin areas can be adjusted. FIG. 2 is a graph explaining the significance of equations (1) and (2) above. Here, Figure 2 A is shown in Figure 1 below.
Examples 1 to 9 (circled with a circle) and Comparative Examples 1 to 9 in the table
9 (enclosed with a △ mark), from which equation (1) can be obtained. In addition, Figure 2 (b) shows Examples 10 to 18 (circled with circles) and comparative examples in Table 1.
10 to 15 (enclosed with a △ mark) are plotted, and equation (2) can be obtained from this. The most important feature of the present invention is that the spun and entangled undrawn yarn is continuously drawn in the first stage and then re-drawn without being wound up. By continuously drawing the spun yarn in the first stage without winding it up, it is possible to completely eliminate the effects of aging on the undrawn yarn, making it possible to maintain stable thick-and-thin yarn that always has a constant shape. can be manufactured. In addition, if the first-stage drawing is directly connected to the spinning process and then re-stretched, the thick part generated in the first-stage drawing process is further divided into two or more parts, and the thick part and the thin part are divided into two or more parts. A pick-and-thin yarn with a very short repetition period can be obtained. If the undrawn yarn that has been wound up after spinning is first drawn and then redrawn, the thick part will only become thinner, and the thick part will be divided into two or more pieces as in the case of the present invention. There is no such thing. In this way, the specific birefringence (△
By continuously drawing the intertwined undrawn yarn having the structure n) at a specific temperature and magnification without winding it up, and then re-drawing it at a specific magnification, the repetition cycle of the thick and thin portions can be shortened. In this way, it is possible to obtain a stick-and-thin yarn that has an excellent stick-and-thin effect, has good workability, and does not suffer from a decrease in the strength of the stick part or a deterioration of its fastness to friction even when treated with alkali. The object of the present invention cannot be achieved without any of the above conditions. The thus obtained pick-and-thin yarn is
It may be woven or knitted as it is, or may be subjected to heat treatment, false twisting, stretching and false twisting, etc. The present invention will be further explained below with reference to Examples.
The evaluation of the SHICK-N-THIN in the Examples was carried out as follows. 1 Form of Thick and Thin The Thick and Thin yarn is knitted into a tube and dyed in hot water at 100℃ using Eastman Kodak Polyester Navy Blue as the dye. The contrast, proportion, and period of the dyed area were observed. 2 Rubbing fastness Thick-and-thin yarn was twisted at 2000T/M, woven into a jersey, relaxed in boiling water for 20 minutes, then preset at 180°C for 45 seconds, and then washed with caustic soda at a concentration of 35 g/m. Boiling in aqueous solution for 15% weight loss, followed by dyeing with Eastman Polyester Navy Blue at 110°C for 45 seconds and at 160°C.
Use the final set for 45 seconds as a sample fabric. The measurement was performed by placing a cotton cloth (Kanakin) moistened with water on top of the sample fabric and rubbing it 100 times under a load of 500g using a Gakushin friction tester (manufactured by Showa Juiki Co., Ltd.). After that, the extent to which the colored fibers that have been abraded and fallen off from the sample fabric adhere to the cotton fabric is visually judged and ranked from 1 to 5. Grade 1 indicates that a large amount of colored fibers are attached and the fastness to rubbing is poor, and Grade 5 is that in which no colored fibers are observed at all and the fastness to rubbing is good.
This indicates that as the grade increases, the abrasion fastness improves. Examples 1 to 18 and Comparative Examples 1 to 15 Polyethylene terephthalate with an intrinsic viscosity of 0.65 containing 0.3% by weight of titanium dioxide as a dissipating agent was melted and discharged at 296°C using the apparatus shown in the figure.
10 entanglements/m are applied by the injection nozzle 3,
It is wound 8 times through the take-off roller 4 which is continuously heated to 50°C without being wound up once, and preheated while being taken off at the take-up speed listed in Table 1.
The first stage stretching is performed at the magnification shown in Table 1 between the stage stretching roller 6, and then between the first stage stretching roller 6 heated to 60°C and the second stage stretching roller 8 heated to 160°C. The film was then re-stretched at the magnification shown in Table 1 and heat-treated on the second-stage stretching roller 8, and wound up as a 9 kg package of 75 denier/36 filament. The evaluation of the obtained thick and thin yarn was as shown in Table 1.

【表】【table】

【表】 第1表からも明らかなように、複屈折率(△
n)が0.05以下の未延伸糸を一旦巻取ることな
く、二次転移点以下の温度にて−3.5×△n+1.2
≦DR1≦−13.3×△n+2.3なる式を満足する条件
で第1段延伸し、次いで全延伸倍率(DRT)が−
6.5×△n+1.6≦DRT≦−30×△n+3.3なる式を
満足するように第2段延伸した実施例1〜18のシ
ツクアンドシンヤーンは、アルカリ処理による劣
化が少なくて、摩擦堅牢度が高く、しかもシツク
部とシン部の繰返周期が短かくて、優れたシツク
アンドシン効果を呈する。 これに対して、第1段延伸倍率(DR1)が−3.5
×△n+1.2未満である、比較例2,4,6は、
シツク部とシン部の繰返周期が長く(即ち、単位
長さ当りのシツク部の数が少なく)良好なシツク
アンドシン効果が得られない。一方、第1段延伸
倍率(DR1)が−13.3×△n+2.3を超える場合
(比較1,3,5)は、シツク部の個数が少なく
なり、シツクアンドシン効果が小さくなつてしま
う。更に全延伸倍率(DRT)が−6.5×△n+1.6
未満である比較例11,13,15は、アルカリ処理に
よる摩擦堅牢度の低下が大きく、シツク部とシン
部の繰返周期も長くなり、織編物としての風合,
品位が低下する。また、仮撚,撚糸加工時の毛
羽,断糸の発生も多くなる。全延伸倍率(DRT
が−30×△n+3.3を超える比較例10,12,14で
は、シツク部が少くかつ細化して、シツクアンド
シン効表が劣つたものとなる。 更に、第1段延伸前の未延伸糸の複屈折率(△
n)が0.05を超える場合(比較例7〜9)はシツ
ク部とシン部のコントラストが不充分となる。 実施例19,20 比較例16,17 艷消剤として0.3重量%の二酸化チタンを含有
し、極限粘度が0.56の、5−スルホイソフタル酸
ナトリウムを3モル%共重合させたポリエチレン
テレフタレート共重合体を295℃で溶融押出して
から10個/mの交絡を付与し、引き続き図に示す
装置を用いて2000m/分の引取速度で引取ローラ
4により引取り、引続き巻取ることなく、第1段
延伸ローラ6,セパレートローラ7に巻回させて
1.5倍で第1段延伸を行ない、その後、第2段延
伸ローラ8,セパレートローラ9は巻回させるこ
となく直接ワインダー10に巻取つた。この際、
引取ローラ4の予熱温度(第1段延伸温度)を第
2表に示すように種々変更した。 次いで、加熱供給ローラと延伸ローラの間に加
熱スリツトヒータを設けた延伸装置にこの巻取つ
た糸条を通して再延伸を施した。この際の加熱供
給ローラ温度は65℃、,加熱スリツトヒータ温度
は180℃,延伸倍率(第2段延伸倍率)は1.3倍,
全延伸倍率(DRT)は1.95倍であつた。 尚、第1段延伸前の未延伸糸の複屈折率(△
n)は0.022であつた。得られたシツクアンドシ
ンヤーンの評価結果を第2表に示す。
[Table] As is clear from Table 1, birefringence (△
-3.5×△n+1.2 at a temperature below the secondary transition point without winding the undrawn yarn with n) of 0.05 or less.
≦DR 1 ≦ −13.3×△n+2.3 The first stage of stretching is carried out under the condition that the formula is satisfied, and then the total stretching ratio (DR T ) is −13.3×△n+2.3.
The thick-and-thin yarns of Examples 1 to 18, which were drawn in the second stage to satisfy the formula 6.5×△n+1.6≦DR T ≦−30×△n+3.3, showed little deterioration due to alkali treatment and had low friction. It has high fastness, and the repetition period of the thick and thin parts is short, providing an excellent thick and thin effect. On the other hand, the first stage draw ratio (DR 1 ) is -3.5
Comparative Examples 2, 4, and 6, which are less than ×△n+1.2,
The repetition period of the thick part and thin part is long (that is, the number of thick parts per unit length is small), and a good pick-and-thin effect cannot be obtained. On the other hand, when the first stage stretching ratio (DR 1 ) exceeds -13.3×Δn+2.3 (Comparisons 1, 3, and 5), the number of thick portions decreases, and the thick and thin effect becomes small. Furthermore, the total stretching ratio (DR T ) is -6.5×△n+1.6
In Comparative Examples 11, 13, and 15, which are less than
Quality deteriorates. In addition, fuzz and yarn breakage occur more often during false twisting and twisting. Total stretching ratio (DR T )
In Comparative Examples 10, 12, and 14 in which Δn exceeds -30×Δn+3.3, the thick portions are small and thin, resulting in poor thick and thin effects. Furthermore, the birefringence index (△
When n) exceeds 0.05 (Comparative Examples 7 to 9), the contrast between the thick portion and the thin portion becomes insufficient. Examples 19 and 20 Comparative Examples 16 and 17 A polyethylene terephthalate copolymer containing 0.3% by weight of titanium dioxide as a dissipating agent and having an intrinsic viscosity of 0.56 and copolymerized with 3 mol% of sodium 5-sulfoisophthalate was used. After melt extrusion at 295°C, entanglement of 10 pieces/m is applied, and then the device shown in the figure is taken up by a take-up roller 4 at a take-off speed of 2000 m/min, and then transferred to the first drawing roller without winding. 6. Wind it around the separate roller 7.
First stage stretching was carried out at a magnification of 1.5 times, and then the film was directly wound onto a winder 10 without winding the second stage stretching roller 8 and separate roller 9. On this occasion,
The preheating temperature (first stage stretching temperature) of the take-up roller 4 was varied as shown in Table 2. Next, the wound yarn was passed through a drawing device equipped with a heating slit heater between a heating supply roller and a drawing roller to be redrawn. At this time, the heating supply roller temperature was 65℃, the heating slit heater temperature was 180℃, the stretching ratio (second stage stretching ratio) was 1.3 times,
The total stretching ratio (DR T ) was 1.95 times. In addition, the birefringence index (△
n) was 0.022. Table 2 shows the evaluation results of the obtained thick and thin yarn.

【表】 紡糸引取速度2000m/分で引取つた本実施例の
ポリエステルの二次転移点は約72℃であり、第1
段延伸温度が二次転移点以下である実施例19,20
では、シツク部とシン部の繰返周期が短かくて、
良好なシツクアンドシン効果を示すが、第1段延
伸温度が二次転移点より高い比較例16,17ではシ
ツク部の発生個数が減少し、シツクアンドシンの
コントラストが小さくなつて、シツクアンドシン
の発生も不安定になる。 比較例 18 実施例19において、引取速度2000m/分で紡糸
した未延伸糸を一旦5Kg巻のパツケージに巻取
り、温度25℃,温度65%の雰囲気中で2日間及び
30日間放置したものを、予熱ローラ温度65℃,延
伸倍率1.5倍で延伸し、次いで、実施例19と同一
条件で再延伸した。得られたシツクアンドシンヤ
ーンの評価結果は第3表に示した通りであつた。
なお、第3表中の「2日経時」、「30日経時」はそ
れぞれ、未延伸糸パツケージを2日経過後延伸し
た場合と30日経過後延伸した場合を示すものであ
る。 尚、「パツケージ内外層差」とは未延伸糸パツ
ケージの内層部と外層部におけるシツクアンドシ
ンの形態の差を意味する。
[Table] The secondary transition point of the polyester of this example taken at a spinning take-off speed of 2000 m/min was approximately 72°C, and the
Examples 19 and 20 where the stage stretching temperature is below the secondary transition point
Then, the repetition period of the thick part and thin part is short,
A good thick-and-thin effect is shown, but in Comparative Examples 16 and 17, where the first-stage stretching temperature is higher than the second-order transition point, the number of thick portions decreases, and the contrast of the thick-and-thin decreases. The occurrence of this will also become unstable. Comparative Example 18 In Example 19, the undrawn yarn spun at a take-up speed of 2,000 m/min was wound into a 5 kg package, and then heated for 2 days in an atmosphere at a temperature of 25°C and a temperature of 65%.
The film left for 30 days was stretched at a preheating roller temperature of 65° C. and a stretching ratio of 1.5 times, and then re-stretched under the same conditions as in Example 19. The evaluation results of the obtained thick and thin yarn were as shown in Table 3.
In Table 3, "2 days" and "30 days" indicate the cases where the undrawn yarn package was stretched after 2 days and when it was stretched after 30 days, respectively. The term "difference between the inner and outer layers of the package" means the difference in the shape of the thick-and-thin layer between the inner layer and the outer layer of the undrawn yarn package.

【表】 未延伸糸の経時によつて、シツクアンドシンの
形態が変化すると共に、パツケージの内外層で
も、シツクアンドシン形態に差が生じ、一定の形
態を有するシツクアンドシンヤーンを安定に製造
することができない。また、シツク部とシン部の
繰返周期が長く(即ち単位長さ当りのシツク部個
数が少なく)同一条件で、紡糸引取後、未延伸糸
を一旦巻取らずに連続して第1段延伸した実施例
19と比較して、シツクアンドシン効果が著しく劣
つていた。
[Table] As the undrawn yarn ages, the shape of the thick-and-thin changes, and differences occur in the shape of the thick-and-thin between the inner and outer layers of the package, making it difficult to stably produce thick-and-thin yarn with a constant shape. Can not do it. In addition, under the same conditions that the repetition period of the thick part and the thin part is long (that is, the number of thick parts per unit length is small), the undrawn yarn is continuously drawn in the first stage without being wound once after the yarn is taken off. Example
Compared to 19, the pick-and-sink effect was significantly inferior.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するに適した装置の一例
を示す簡略図である。 4は予熱供給ローラを兼ねた引取ローラ、6は
第1段延伸ローラ、8は第2段延伸(再延伸)ロ
ーラである。第2図は本発明で採用するDR1
DRTの意義について説明するグラフである。
FIG. 1 is a simplified diagram illustrating an example of an apparatus suitable for carrying out the invention. 4 is a take-up roller that also serves as a preheat supply roller, 6 is a first-stage stretching roller, and 8 is a second-stage stretching (re-stretching) roller. Figure 2 shows DR 1 adopted in the present invention,
This is a graph explaining the significance of DRT .

Claims (1)

【特許請求の範囲】 1 ポリエステルを溶融吐出してから流体交絡処
理を施してから引取つた、屈折率(△n)が0.05
以下の未延伸糸を、引続いて一旦巻取ることな
く、ポリエステルの二次転移点以下の温度で下記
(1)式を満足する第1段延伸倍率(DR1)にて延伸
し、次いで全延伸倍率(DRT)が下記(2)式を満足
する如く、再延伸することを特徴とするシツクア
ンドシンヤーンの製造方法。 −3.5×△n+1.2≦DR1≦−13.3×△n+2.3
……(1) −6.5×△n+1.6≦DRT≦−30×△n+3.3 ……(2) 〔但し、上記(1),(2)式において△nは0.05以下
である。〕
[Claims] 1. Polyester is melted and discharged, subjected to fluid entanglement treatment, and then taken back, and the refractive index (△n) is 0.05.
The undrawn yarn shown below was heated at a temperature below the secondary transition point of polyester without being wound up.
A thick and dry method characterized by stretching at a first stage draw ratio (DR 1 ) that satisfies formula (1), and then re-stretching so that the total stretch ratio (DR T ) satisfies formula (2) below. How to make thin yarn. −3.5×△n+1.2≦DR 1 ≦−13.3×△n+2.3
...(1) −6.5×Δn+1.6≦DR T ≦−30×Δn+3.3 …(2) [However, in the above formulas (1) and (2), Δn is 0.05 or less. ]
JP16795081A 1981-10-22 1981-10-22 Preparation of thick and thin yarn Granted JPS5870711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16795081A JPS5870711A (en) 1981-10-22 1981-10-22 Preparation of thick and thin yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16795081A JPS5870711A (en) 1981-10-22 1981-10-22 Preparation of thick and thin yarn

Publications (2)

Publication Number Publication Date
JPS5870711A JPS5870711A (en) 1983-04-27
JPS6127484B2 true JPS6127484B2 (en) 1986-06-25

Family

ID=15859048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16795081A Granted JPS5870711A (en) 1981-10-22 1981-10-22 Preparation of thick and thin yarn

Country Status (1)

Country Link
JP (1) JPS5870711A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103784U (en) * 1989-01-27 1990-08-17
JPH05168222A (en) * 1991-12-18 1993-07-02 Heriosu:Kk Method of preventing excessive torque and its preventive device
JP2018162531A (en) * 2017-03-24 2018-10-18 東レ株式会社 Cation-dyeable polyester thick and thin multifilament

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58203115A (en) * 1982-05-24 1983-11-26 Teijin Ltd Combined filamentary yarn
JPS60134019A (en) * 1983-12-21 1985-07-17 Toray Ind Inc Direct spinning and drawing of polyester yarn
EP0187362B1 (en) * 1984-12-24 1991-12-18 Teijin Limited Polyester yarn and fabric made of the same
JPS6285021A (en) * 1985-10-04 1987-04-18 Teijin Ltd Polyester uneven yarn having high drape property
JPS6285024A (en) * 1985-10-04 1987-04-18 Teijin Ltd Polyester slub yarn dyeable with ionic dye
CN103526431B (en) * 2013-10-18 2015-04-22 绍兴三立达纺织阻燃新材料有限公司 Colorful inflaming retarding polyester linen imitation shading fabric and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103784U (en) * 1989-01-27 1990-08-17
JPH05168222A (en) * 1991-12-18 1993-07-02 Heriosu:Kk Method of preventing excessive torque and its preventive device
JP2018162531A (en) * 2017-03-24 2018-10-18 東レ株式会社 Cation-dyeable polyester thick and thin multifilament

Also Published As

Publication number Publication date
JPS5870711A (en) 1983-04-27

Similar Documents

Publication Publication Date Title
JPS5947726B2 (en) Polyester fiber manufacturing method
JPS6127484B2 (en)
JPS584089B2 (en) Polyester Senino Seizouhouhou
JP5718045B2 (en) Polyester fibers and fiber aggregates with excellent dyeability
JPS6125802B2 (en)
JP4639889B2 (en) Polytrimethylene terephthalate extra fine yarn
JPS6347803B2 (en)
JP4505960B2 (en) High stretch durability polyester composite fiber and manufacturing method
JPH03185103A (en) Conjugate fiber for artificial hair having thick single fiber and production thereof
JPH0335412B2 (en)
JP4596503B2 (en) Direct spinning method of polyester multifilament
US3538566A (en) Process for making crimped filaments of polyester
JPH04240214A (en) Production of splittable type fiber
JPH11241242A (en) Thick and thin yarn and its production
JP2004277912A (en) Antistatic polyester-based conjugate fiber and method for producing the same
JP2715190B2 (en) Manufacturing method of long and short composite yarn
JPH0232382B2 (en) TOKUSHUKARYORIKAKOITONOSEIZOHOHO
JPH02154018A (en) Covering yarn
JPH05302210A (en) Production of high-shrinkage polyester fiber
JPH09273043A (en) Self-elongation polyester filament yarn, its production and combined filament yarn containing the same
JPH0617332A (en) Heteroshrink combined filament yarn and its production
JPH04108125A (en) Raw yarn useful as long and short composite yarn use
JP2003306830A (en) Cation-dyeable polyester thick and thin multifilament yarn and method for producing the same and woven or knitted fabric
JP2002235239A (en) Cationic dyeable polyester thick-and-thin multifilament yarn, method for producing the same, and woven or knitted fabric
JP2001064823A (en) Polyester thick and thin multifilament yarn and its production