JPH02154018A - Covering yarn - Google Patents

Covering yarn

Info

Publication number
JPH02154018A
JPH02154018A JP30263488A JP30263488A JPH02154018A JP H02154018 A JPH02154018 A JP H02154018A JP 30263488 A JP30263488 A JP 30263488A JP 30263488 A JP30263488 A JP 30263488A JP H02154018 A JPH02154018 A JP H02154018A
Authority
JP
Japan
Prior art keywords
component
fiber
polyamide
core
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30263488A
Other languages
Japanese (ja)
Inventor
Takuji Sato
卓治 佐藤
Akira Ogura
小椋 彬
Isoo Saito
磯雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP30263488A priority Critical patent/JPH02154018A/en
Publication of JPH02154018A publication Critical patent/JPH02154018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject yarn resistant to the lowering of physical properties in wet state and having excellent post-processability, abrasion resistance, etc., by using a conjugate fiber of a non-elastic fiber containing a specific polyester as the core component and a polyamide as the sheath component and winding the conjugate fiber around an elastic fiber. CONSTITUTION:In a covering yarn produced by winding a non-elastic fiber (in multiple layers) around an elastic yarn, a conjugate fiber having a sheath- core conjugate structure containing (A) a core component consisting of a polyester composed mainly of ethylene terephthalate unit and (B) a sheath component consisting of a polyamide is used as the non-elastic fiber of the outermost layer. The ratio of the component A is 30-90wt.%, the core component has an intrinsic viscosity [eta] of >=0.6, a birefringence of 150X10<-3> - 190X10<-3> and a density of >=1.39g/cm<3>, the polyamide sheath component of the component B has a relative viscosity etar of >=2.6 (in sulfuric acid) and a birefringence of >=40X10<-3> and the core component has a highly oriented and highly crystalline fiber structure.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、ポリウレタン系等の弾性1i1に熱可塑性合
成i&維糸条を巻き付けてなるカバリングヤーンに関す
るものである。更に詳しくは湿潤時の物性低下が抑制さ
れ、後加工性に優れ、耐摩耗性、染色特性、機械的強度
の改良されたカバリングヤーンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a covering yarn formed by winding a thermoplastic synthetic fiber thread around an elastic material such as polyurethane material. More specifically, the present invention relates to a covering yarn that suppresses deterioration of physical properties when wet, has excellent post-processability, and has improved abrasion resistance, dyeing properties, and mechanical strength.

[従来の技術] ポリウレタン系等の弾性繊維である芯糸の周りに、ポリ
アミドやポリエステルなどの非弾性熱可塑性合成繊維を
1重あるいは多重に巻き付けることにより、弾性繊維の
欠点である染色特性、機械的強度、耐摩耗性、高次加工
性などを改良して用いることが特開昭53−23(33
35号公報などに示されている。そうしたカバリングヤ
ーンはこれまでパンティーストッキング、タイツ、靴下
、口ゴム、テープ、レース、インサイドベルト、水着、
スキーウェア、ウェットスーツなどの衣料用途に用いら
れてきた。
[Prior art] By wrapping inelastic thermoplastic synthetic fibers such as polyamide or polyester in one or multiple layers around a core thread that is an elastic fiber such as polyurethane fiber, it is possible to improve the dyeing properties and mechanical properties that are disadvantageous to elastic fibers. JP-A-53-23 (33
This is shown in Publication No. 35, etc. Such covering yarns have been used in pantyhose, tights, socks, cuffs, tape, lace, inside belts, swimwear,
It has been used for clothing such as ski wear and wet suits.

また該非弾性繊維のポリアミドとしてナイロン4Gを用
いることが特開昭61−119739号公報に示されて
いる。
Further, JP-A-61-119739 discloses the use of nylon 4G as the polyamide of the inelastic fiber.

更に最近ではカバリングヤーンの有する弾性特性、機械
的強度を生かして産業用途、例えば歯付きベルトの補強
用繊維などに、特開昭63−19443号公報に示され
る如く用いられつつある。
Furthermore, recently, covering yarns have been used for industrial purposes, such as reinforcing fibers for toothed belts, by taking advantage of their elastic properties and mechanical strength, as shown in Japanese Patent Application Laid-Open No. 19443/1983.

[発明が解決しようとする課題] 従来カバリング糸の非弾性繊維としてよく知られている
ポリアミド、例えばナイロン6、ナイロン66、ナイロ
ン6]0のフラットヤーン(各種の加工を行な)ていな
い延伸糸)や仮撚加工糸を使用した場合、ポリアミドと
しての鮮明色は得られるものの、湿潤状態での寸法安定
性が悪く均一性および風合いが低下し、更にいわゆるへ
たり現象を生じるといった問題があった。それを改良す
るために、ポリアミドとしてナイロン46を用いること
が特開昭61−119739号公報に示されている。
[Problems to be Solved by the Invention] A drawn yarn that is not a flat yarn (through various processing) of polyamide, such as nylon 6, nylon 66, or nylon 6], which is well known as an inelastic fiber of conventional covering yarn. ) or false-twisted yarn, although the vivid color of polyamide can be obtained, there are problems such as poor dimensional stability in wet conditions, resulting in poor uniformity and texture, and furthermore, the so-called sagging phenomenon occurs. . In order to improve this, JP-A-61-119739 discloses the use of nylon 46 as the polyamide.

しかしながら、ナイロン46を用いた場合、湿潤時での
機械的強伸度の変化が少なく、いわゆるへたり現象は抑
制されるものの、湿召状態での寸法安定性は改良されず
、均一性および風合いは良好なものとはいえず、かえっ
て耐摩耗性などの特性は悪化した。
However, when nylon 46 is used, although there is little change in mechanical strength and elongation when wet and the so-called sagging phenomenon is suppressed, the dimensional stability when wet is not improved, and the uniformity and texture are not improved. It could not be said that the results were good, and on the contrary, properties such as wear resistance deteriorated.

一方、カバリング糸の非弾性w、碓としてポリエステル
繊維、例えばポリエチレンテレフタレート、ボリブチレ
ンチレフタレートなとのフラットヤーンや仮撚加工糸を
使用した場合、湿潤時の物性の低下は防止されるものの
、本質的に高温染色が必須のため、弾性繊維の物性が低
下し、かつ耐摩耗性などの耐久性はポリアミドに比べ劣
るため毛羽立ちなどの問題が生じ、高次加工性が低下す
るどいフた課題があった。
On the other hand, if a flat yarn or false twisted yarn made of polyester fiber such as polyethylene terephthalate or polybutylene ethylene phthalate is used as the covering yarn's inelasticity, deterioration of physical properties when wet is prevented, but the Because high-temperature dyeing is required, the physical properties of the elastic fibers deteriorate, and durability such as abrasion resistance is inferior to that of polyamide, leading to problems such as fluffing, which reduces high-order processability. Ta.

本発明は上記課題を克服することにより、湿潤時の物性
低下が抑制され、後加工性に優れ、耐摩耗性、染色特性
、機械的強度の改良されたカバリングヤーンを提供する
ことにある。特にカバリングヤーンの非弾性繊維として
、従来技術では達せられなかった、ポリエステル並の改
良された湿潤時寸法安定性、ポリアミド基の染色特性お
よび耐久性を兼備し、かつ芯鞘複合界面のポリマの剥離
に対して十分な耐久性を有する複合*維を用いたカバリ
ングヤーンを提供することにある。
The object of the present invention is to overcome the above problems and provide a covering yarn that suppresses deterioration of physical properties when wet, has excellent post-processability, and has improved abrasion resistance, dyeing properties, and mechanical strength. In particular, as an inelastic fiber for covering yarn, it has improved wet dimensional stability comparable to that of polyester, dyeing properties and durability of polyamide groups, which could not be achieved with conventional technology, and the peeling of the polymer at the core-sheath composite interface. An object of the present invention is to provide a covering yarn using a composite* fiber having sufficient durability against.

[!!題を解決するための手段および作用コ上記目的を
達成するため、本発明は弾性繊維の周囲に1重あるいは
多重に非弾性繊維を巻き付けてなるカバリングヤーンに
おいて、少なくとも最外層の非弾性繊維がエチレンテレ
フタレート単位を主成分とするポリエステルを芯成分と
し、ポリアミドを鞘成分とする芯鞘型複合構造を有する
複合繊維であって、該複合繊維に於いて、前記ポリエス
テル芯成分の割合が30〜90重量%、該芯成分の極限
粘度〔η〕が0゜6以上、複屈折が150X10−3〜
190XIO″3 密度が1.39g/cm3以上、ポ
リアミド鞘成分の硫酸相対粘度ηrが2.6以上、複屈
折が40X10−3以上であって、芯成分が高配向、高
結晶繊維構造を有することを特徴−とするカバリングヤ
ーンによって達成される。
[! ! Means and Effects for Solving the Problems In order to achieve the above object, the present invention provides a covering yarn in which inelastic fibers are wound around elastic fibers in one or more layers, in which at least the inelastic fibers in the outermost layer are made of ethylene. A composite fiber having a core-sheath type composite structure in which the core component is polyester containing terephthalate units as a main component and the sheath component is polyamide, wherein the ratio of the polyester core component in the composite fiber is 30 to 90% by weight. %, the intrinsic viscosity [η] of the core component is 0°6 or more, and the birefringence is 150X10-3 ~
190XIO″3 The density is 1.39 g/cm3 or more, the relative sulfuric acid viscosity ηr of the polyamide sheath component is 2.6 or more, the birefringence is 40X10-3 or more, and the core component has a highly oriented, highly crystalline fiber structure. This is achieved by a covering yarn characterized by:

本発明カバリングヤーンは上記構成からなるが、特に本
発明の目的とする、カバリングヤーンの非弾性繊維とし
て、従来技術では達せられなかった、ポリエステル並の
改良された湿潤時寸法安定性、ポリアミド基の染色特性
および耐久性、かつ芯鞘複合界面ポリマの剥離耐久性の
改良等は芯及び鞘をそれぞれ形成するポリエステル及び
ポリアミド繊維部分の特定された複屈折と密度を組合せ
ることによって得ることができる。
The covering yarn of the present invention has the above-mentioned structure, and in particular, as an inelastic fiber of the covering yarn, which is the object of the present invention, it has an improved wet dimensional stability comparable to that of polyester, which has not been achieved with the prior art, and a polyamide group. Improvements in dyeing properties and durability, as well as peel durability of core-sheath composite interfacial polymers, can be obtained by combining the specified birefringence and density of the polyester and polyamide fiber portions forming the core and sheath, respectively.

以下に本発明を構成する各要素の内容とその作用効果に
ついて詳述する。
The contents and effects of each element constituting the present invention will be explained in detail below.

本発明で用いる弾性繊維は、スパンデックス繊維と一般
的に言われるボリウしタン系弾性繊維が好適であるが、
池の種類の弾性繊維であってもよい。
The elastic fibers used in the present invention are preferably polyurethane elastic fibers, which are generally referred to as spandex fibers.
It may also be a type of elastic fiber.

被覆用糸をなす非弾性複合繊維の形態はフラットヤーン
でもよいし、仮撚加工などの各種後加工を加えた繊維で
もよいし、長繊維であっても短繊維であってもよい。
The form of the inelastic conjugate fibers constituting the covering yarn may be flat yarns, fibers subjected to various post-processing such as false twisting, long fibers or short fibers.

また前記複合繊維の断面形状は特に限定されず、必要に
応じて丸、3葉、4葉以上の多葉、中空およびこれらの
組み合わされたものでもよく、繊維表面および内部に細
孔、溝があフてもよい。
Further, the cross-sectional shape of the composite fiber is not particularly limited, and may be round, three-lobed, multi-lobed with four or more leaves, hollow, or a combination thereof, and may have pores and grooves on the surface and inside of the fiber. It's okay to be lazy.

前記複合繊維の繊度にも制限はなく、用途に応じて用い
られる。
There is no limit to the fineness of the composite fiber, and it can be used depending on the purpose.

なお、最外層の非弾性繊維とは、1重のカバリング糸(
シングルカバリングヤーン)では非弾性繊維が、2重(
ダブルカバリングヤーン)以上多重のカバリング糸では
最も外側に巻き付けられている非弾性繊維を表わしてい
る。
Note that the inelastic fiber in the outermost layer is a single covering yarn (
Single covering yarn) has inelastic fibers, double covering yarn (
(Double Covering Yarn) In a multiple covering yarn, the inelastic fibers are wound on the outermost side.

前記複合t&唯の芯成分となるポリエステルは実質的に
ポリエチレンテレフタレート単位からなるポリエステル
が好ましい。ポリエチレンテレフタレートポリマの物理
的、化学的特性を実質的に低下させない程度、例えば1
0%未満の共重合成分を含んでも良い。共1合成分とし
てはイソフタル酸、ナフタレンジカルボン酸、ジフェニ
ルジカルボン酸等のジカルボン酸、及びエチレンオキサ
イド、プロピレングリコール、ブチレングリコール等の
ジオール成分を含んでいてもよい。同様に本発明繊維の
物性を実質的に低下させない程度、例えば10%未満の
ポリブチレンテレフタレート ポリエチレンナフタレー
トなどのポリエステルをブレンドしていてもよい。
The polyester serving as the core component of the composite t & sole is preferably a polyester consisting essentially of polyethylene terephthalate units. to an extent that does not substantially reduce the physical and chemical properties of the polyethylene terephthalate polymer, e.g.
It may contain less than 0% copolymer component. The co-components may include dicarboxylic acids such as isophthalic acid, naphthalene dicarboxylic acid and diphenyldicarboxylic acid, and diol components such as ethylene oxide, propylene glycol and butylene glycol. Similarly, polyesters such as polybutylene terephthalate and polyethylene naphthalate may be blended to an extent that does not substantially reduce the physical properties of the fibers of the present invention, for example, less than 10%.

前記複合繊維の強度5.0g/d以上を得るために芯成
分のポリエチレンテレフタレート繊維は極限粘度〔η〕
は0.6以上、好ましくは0.7以上と比較的高粘度で
ある。
In order to obtain the strength of the composite fiber of 5.0 g/d or more, the core component polyethylene terephthalate fiber has an intrinsic viscosity [η]
has a relatively high viscosity of 0.6 or more, preferably 0.7 or more.

一方、ポリアミド鞘成分はポリカブラミド、ポリヘキサ
メチレンアジパミド、ポリテトラメチレンアジバミF、
ポリへキサメチレンドデカミド、ポリヘキサメチレンド
デカミド等の通常のポリアミドからなるが、ポリヘキサ
メチレンアジパミド系ポリマが好ましい。なお本発明繊
維の物性を実質的に低下させない程度に、例えば10%
未満のε−カブラミド、テトラメチレンアジパミド、ヘ
キサメチレンドデカミド、ヘキサメチレンドデカミド等
の成分を共重合したり、10%未満のポリテトラメチレ
ンアジパミド、ポリヘキサメチレンアジパミド、ポリへ
キサメチレンドデカミド等をブレンドしてもよい。
On the other hand, the polyamide sheath components include polycabramide, polyhexamethyleneadipamide, polytetramethyleneadipamide F,
It is made of ordinary polyamides such as polyhexamethylene dodecamide and polyhexamethylene dodecamide, but polyhexamethylene adipamide-based polymers are preferred. It should be noted that, for example, 10% may be added to an extent that does not substantially reduce the physical properties of the fiber of the present invention.
Copolymerization of less than 10% of components such as ε-cabramide, tetramethylene adipamide, hexamethylene dodecamide, hexamethylene dodecamide, etc., or less than 10% of polytetramethylene adipamide, polyhexamethylene adipamide, poly to You may also blend xamethylene dodecamide or the like.

またポリアミド鞘成分には、必要に応じて、本発明Wi
維の物性を低下させない程度に、艶消し剤、顔料、光安
定剤、熱安定剤、酸化防止剤、帯電防止剤、染色性向上
剤、接着性向上剤等を添加することができる。特に、熱
酸化劣化防止剤としては銅塩、及びその他の有機、無機
化合物が添加することができる。産業用途として用いる
場合は、特に沃化鋼、酢酸鋼、塩化鋼、ステアリン酸鋼
等の銅塩を銅として30〜500ppmと沃化カリウム
、沃化ナトリウム、臭化カリウム等のハロゲン化アルカ
リ金属を0.01〜0.5重量%、及び/或いは有機、
無機の燐化合物を0.01〜0. 1重量%含有させる
ことが好ましい。
In addition, the polyamide sheath component may include the present invention Wi
Matting agents, pigments, light stabilizers, heat stabilizers, antioxidants, antistatic agents, dyeability improvers, adhesion improvers, etc. can be added to the extent that the physical properties of the fibers are not deteriorated. In particular, copper salts and other organic and inorganic compounds can be added as thermal oxidative deterioration inhibitors. When used for industrial purposes, copper salts such as iodide steel, acetate steel, chloride steel, and stearate steel should be used in an amount of 30 to 500 ppm as copper and alkali metal halides such as potassium iodide, sodium iodide, potassium bromide, etc. 0.01 to 0.5% by weight, and/or organic,
Inorganic phosphorus compound at 0.01 to 0. It is preferable to contain 1% by weight.

前記複合繊維のポリエステル芯成分の割合は30〜90
MfJ%である。ポリエステル!戊分が30重量%未満
てはポリエステル成分が有する湿潤時寸法安定性を有効
に利用する複合繊維とすることができず、好ましいカバ
リングヤーンを得ることができない。一方、90重量%
を超えてポリエステル芯成分が占めると、ポリアミド成
分が有する染色特性を有効に利用する複合!l5I−碓
とすることができr、またカバリング糸として粗硬とな
り、好ましいカバリングヤーンを得ることができない。
The ratio of the polyester core component of the composite fiber is 30 to 90
MfJ%. polyester! If the fraction is less than 30% by weight, a composite fiber that effectively utilizes the wet dimensional stability of the polyester component cannot be obtained, and a preferable covering yarn cannot be obtained. On the other hand, 90% by weight
When the polyester core component occupies more than , it is a composite that effectively utilizes the dyeing properties of the polyamide component! In addition, the covering yarn becomes coarse and hard, making it impossible to obtain a preferable covering yarn.

前記複合繊維はポリエステル芯成分が特に高度に配向、
結晶化していることが特徴である。
The composite fiber has a polyester core component that is particularly highly oriented,
It is characterized by being crystallized.

即ちポリエステル芯成分の複屈折は150X10−3〜
190X 10−3である。150X10−’未満ては
複合a維の強度5.0g/d以上、初期引張り抵抗度6
0g/d以上を達成することはできない。一方、190
X10−3を越えていると寸法安定性及び耐久性の改良
がされない。
That is, the birefringence of the polyester core component is 150X10-3~
It is 190X 10-3. If it is less than 150X10-', the strength of the composite A fiber is 5.0 g/d or more, and the initial tensile resistance is 6.
It is not possible to achieve 0 g/d or more. On the other hand, 190
If it exceeds X10-3, dimensional stability and durability cannot be improved.

後述する前記複合繊維の新規な製造方法によっては通常
複屈折は190X10−3を越えない。
Depending on the novel manufacturing method of the composite fiber described below, the birefringence usually does not exceed 190.times.10@-3.

一方、ポリアミド鞘成分の複屈折は40×10−1以上
、通常は45X10−”以上と比較的高配向である。複
屈折が40X10−3未満では高強度で高い染色堅牢性
を有する複合繊維は得られない。
On the other hand, the birefringence of the polyamide sheath component is 40 x 10-1 or more, usually 45 x 10-'' or more, which is relatively highly oriented.If the birefringence is less than 40 x 10-3, the composite fiber has high strength and high color fastness. I can't get it.

芯鞘複合繊維の複屈折の測定は次のようにして行うこと
ができる。即ちミ 鞘部はそのまま透過干渉顕微鏡で測
定し、芯部はポリアミド鞘成分を蟻酸、硫酸、弗素化ア
ルコール等で溶解した後透過干渉顕微鏡で測定する。
The birefringence of the core-sheath composite fiber can be measured as follows. That is, the core part is measured using a transmission interference microscope as it is, and the core part is measured using a transmission interference microscope after dissolving the polyamide sheath component in formic acid, sulfuric acid, fluorinated alcohol, etc.

密度はポリエステル芯成分が1.39g/cm3以上で
あり、高度に結晶化している。密度が上記の値以上にな
いと複合繊維の寸法安定性、及び耐久性は改良されない
The density of the polyester core component is 1.39 g/cm3 or more, and it is highly crystallized. Unless the density is above the above value, the dimensional stability and durability of the composite fiber will not be improved.

なおポリエステル芯成分の密度の測定は、ポリアミド鞘
成分を蟻酸、硫酸、弗素化アルコール等で溶解除去して
行なった。
The density of the polyester core component was measured by dissolving and removing the polyamide sheath component with formic acid, sulfuric acid, fluorinated alcohol, or the like.

上記によって特徴づけられる前記複合繊維は5.0g/
d以上の高強度、60g/d以上の初期引張り抵抗度を
有している。より好ましい複合繊維特性は強度6g/d
以上、初期引張り抵抗度70g/d以上であり、これは
前記条件を適正に組合せることによって達せられる。
The composite fiber characterized by the above is 5.0g/
It has high strength of d or more and initial tensile resistance of 60 g/d or more. A more preferable composite fiber characteristic is a strength of 6 g/d.
As described above, the initial tensile resistance is 70 g/d or more, which can be achieved by appropriately combining the above conditions.

以上の特徴を有する前記複合繊維は以下に示す新規な方
法によって製造されろ。
The composite fiber having the above-mentioned characteristics is manufactured by the novel method shown below.

前記したポリエステル芯成分のポリマ物性を得るために
は、極限粘度〔η〕が0.65以上、通常は0.75以
上の実質的にポリエチレンテレフタレートからなるポリ
マを用いる。
In order to obtain the polymer physical properties of the polyester core component described above, a polymer consisting essentially of polyethylene terephthalate and having an intrinsic viscosity [η] of 0.65 or more, usually 0.75 or more is used.

ポリアミド鞘成分ポリマは硫酸相対粘度で2゜6以上、
通常は2.7以上の高重合度ポリマを用いる。
The polyamide sheath component polymer has a sulfuric acid relative viscosity of 2°6 or more,
Usually, a polymer with a high polymerization degree of 2.7 or more is used.

該ポリマの溶融紡糸には2基のプレッシャーメルク型紡
糸機あるいはエクストルーダー型紡糸機を用いることが
好ましい。それぞれのメルクあるいはエクストルーダー
で溶融されたポリエステル及びポリアミドポリマを複合
紡糸バックに導き、複合紡糸用口金を通して芯部にポリ
エステル、鞘部にポリアミドを配した複合繊維として紡
糸する。
It is preferable to use two pressure Melk type spinning machines or an extruder type spinning machine for melt spinning the polymer. The polyester and polyamide polymers melted in each Merck or extruder are introduced into a composite spinning bag, passed through a composite spinning nozzle, and spun into a composite fiber with polyester in the core and polyamide in the sheath.

紡糸速度は1500m/分以上、好ましくは2000 
m /分取上の高速とする。 高粘度ポリマを紡糸する
際には、紡糸口金直下に保温筒、加熱筒等により口金直
下10 c m以上、11〕1以内にわたって200℃
以上、好ましくは260℃以上の加熱雰囲気をつくるこ
とによって紡糸するが、ポリマ粘度が比較的低い場合は
、保温筒、加熱筒等はなくてもよい。その後紡出糸条は
冷風で急冷固化され、次いで油剤を付与された後紡糸速
度を制御する引取りロールで引取られる。引取られた未
延伸糸は一旦巻取ってもよいし、巻取ることなく連続し
て延伸してもよい。
The spinning speed is 1,500 m/min or more, preferably 2,000 m/min.
m/preparative high speed. When spinning high-viscosity polymers, a heat insulating cylinder, heating cylinder, etc. is placed directly under the spinneret to maintain the temperature at 200°C over a distance of 10 cm or more and 11 cm or less directly below the spinneret.
As described above, spinning is preferably carried out by creating a heating atmosphere of 260° C. or higher, but if the polymer viscosity is relatively low, the heat-insulating tube, heating tube, etc. may be omitted. Thereafter, the spun yarn is quenched and solidified with cold air, then applied with an oil agent and taken off with a take-off roll that controls the spinning speed. The taken-off undrawn yarn may be wound up once, or may be drawn continuously without being wound up.

延伸前の未延伸糸の物性を把握する目的で引取りロール
上でサンプリングした未延伸糸の複屈折はポリアミド鞘
部が15X10−3以上、好ましくは25XIO−3以
上、ポリエステル芯部も20X10−3以上、好ましく
は30X10−3以上、と高度に配向している。
The birefringence of the undrawn yarn sampled on a take-up roll for the purpose of understanding the physical properties of the undrawn yarn before stretching is 15X10-3 or more for the polyamide sheath, preferably 25XIO-3 or more, and 20X10-3 for the polyester core. As mentioned above, it is highly oriented, preferably 30×10 −3 or more.

高速紡糸の採用は複合繊維の湿潤時寸法安定性、及び耐
久性の改良効果をもたらすが、驚くべきことに芯鞘複合
界面の耐久性が著しく向上することである。おそら〈従
来の低速紡糸法のように、吸湿結晶化の進んだポリアミ
ド成分と非晶状態のポリエステル成分が組合される場合
と異なり、高速紡糸法ではポリアミド成分、ポリエステ
ル成分ともに配向結晶化が進む状態にあること、紡糸後
の延伸倍率が少なくて済むこと等が複合界面耐久性に寄
与しているものと考えられる。
Adoption of high-speed spinning brings about the effect of improving the wet dimensional stability and durability of the composite fiber, but surprisingly, the durability of the core-sheath composite interface is significantly improved. Unlike the conventional low-speed spinning method, in which a polyamide component that has undergone moisture absorption and crystallization is combined with an amorphous polyester component, in the high-speed spinning method, oriented crystallization progresses in both the polyamide component and the polyester component. It is thought that the following factors contribute to the durability of the composite interface: the condition of the fiber, the fact that the stretching ratio after spinning is small, and the like.

次に該未延伸糸は連続的あるいは逐次的に延伸を行なう
。用途によって延伸条件は異なるが、1段の冷延伸を1
テなってもよいし、180℃以上、好ましくは200°
C以上の高温で、2段以上の多段熱延伸を行なってもよ
い。いずれも延沖倍率は1.4〜3.5倍の範囲である
Next, the undrawn yarn is drawn continuously or sequentially. Stretching conditions vary depending on the application, but one stage of cold stretching is
The temperature may be higher than 180℃, preferably 200℃.
Multi-stage hot stretching of two or more stages may be performed at a high temperature of C or higher. In all cases, the Nobeki magnification is in the range of 1.4 to 3.5 times.

かくして得られろ繊維は本発明のカバリングヤーンの被
覆用非弾性複合繊維の特徴を有する。
The fiber thus obtained has the characteristics of an inelastic composite fiber for coating the covering yarn of the invention.

カバリングの方法は例えば特開昭53−236335号
公報あるいは特公昭45−18063号公報に開示され
ている一般的に公知の方法によった。
The covering method was a generally known method disclosed in, for example, Japanese Patent Application Laid-Open No. 53-236335 or Japanese Patent Publication No. 45-18063.

次に実施例に基づいて説明するが、零発明明!lII書
本文、及び実施例中に記載した繊維特性、及び測定法は
次の通りである Oポリエステル芯繊維の特性 ポリアミド鞘成分を蟻酸で溶解除去した後、試料とした
Next, I will explain based on an example, but zero invention! The fiber properties and measurement methods described in the main text of the book III and the examples are as follows.O Properties of the polyester core fiber A sample was prepared after the polyamide sheath component was dissolved and removed with formic acid.

(イ)極限粘度〔η〕: 試料をオルソクロロフェノール溶液に溶解し、オストワ
ルド粘度計を用いて25℃で測定した。
(a) Intrinsic viscosity [η]: A sample was dissolved in an orthochlorophenol solution and measured at 25°C using an Ostwald viscometer.

(ロ)複屈折: カールツアイスイエナ社(東独)製透過定量型干渉顕微
鏡を用いて、干渉縞法によって繊維の側面から観察した
平均複屈折を求めた。繊維の表層から中心方向に2 l
t間隔て測定し、平均値を求めた。
(b) Birefringence: The average birefringence observed from the side of the fiber was determined by the interference fringe method using a transmission quantitative interference microscope manufactured by Carl Zeiss Jena (East Germany). 2 l from the surface layer of the fiber towards the center
Measurements were taken at intervals of t, and the average value was determined.

(ハ)密度: 四塩化炭素を重液、n−ヘプタンを軽液として作製した
密度勾配管を用い、25℃で測定した。
(c) Density: Measured at 25° C. using a density gradient tube prepared using carbon tetrachloride as a heavy liquid and n-heptane as a light liquid.

○ポリアミド鞘繊維の特性 (ニ)硫酸相対粘度ηr: 試料を蟻酸に溶解させ、溶解部分を常法により再沈澱さ
せ、洗浄、乾燥させて測定試料に洪した。
Characteristics of polyamide sheath fibers (d) Relative viscosity of sulfuric acid ηr: A sample was dissolved in formic acid, and the dissolved portion was reprecipitated by a conventional method, washed, dried, and applied to a measurement sample.

その試料1gを98%5R酸25ccに溶解し、オスト
ワルド粘度計を用いて25℃で測定した。
One gram of the sample was dissolved in 25 cc of 98% 5R acid and measured at 25°C using an Ostwald viscometer.

(ボ)複屈折: ポリエステル芯繊維と同様に透過定量型干渉顕微鏡によ
る干渉縞法で側面から表層のポリアミド繊維部分のみを
測定した。
(B) Birefringence: As with the polyester core fiber, only the surface layer polyamide fiber portion was measured from the side using the interference fringe method using a transmission quantitative interference microscope.

O複合繊維の特性 (へ)強度、伸度、初訪引張り抵抗度;強度、伸度、初
期引張り抵抗度はJIS−L1017の定義及び測定法
によった。尚、SS曲線を得るための引張り試験の具体
的条件は次の通りである。
Characteristics of O-conjugated fiber: Strength, elongation, and initial tensile resistance; Strength, elongation, and initial tensile resistance were determined according to the definition and measurement method of JIS-L1017. The specific conditions for the tensile test to obtain the SS curve are as follows.

試料を綻状にとり、20℃、65%RHの温湿度調節さ
れた部屋に24時間以上放置後、テンシロン U T 
L −4L ”型引張試験81(オリエンチック@製)
を用い、試長25 Cnl、引張速度30cm/分で測
定した。
After taking the sample into a shape and leaving it in a temperature and humidity controlled room at 20℃ and 65% RH for more than 24 hours, Tensilon U T
L-4L” type tensile test 81 (manufactured by Orientic@)
The measurement was carried out using a sample length of 25 Cnl and a tensile speed of 30 cm/min.

(ト)乾熱収縮率: 試料を紹状にとり、20℃、65%RHの温湿度調節室
で24時間以上放置した後、試料の0.1g/d  に
相当する荷重を掛けて測定した長さL8の試料を無緊張
状態で150℃のオーブン中で30分間処理する。処理
後のサンプルを風乾し、上記温湿度調節室で24時間以
上放置し、再び上記荷重をかけて測定した長さL+から
次式によって算出した。
(G) Dry heat shrinkage rate: Take a sample and leave it in a temperature and humidity controlled room at 20°C and 65% RH for 24 hours or more, then apply a load equivalent to 0.1 g/d of the sample and measure the length. A sample of size L8 is processed in an oven at 150°C for 30 minutes under no tension. The treated sample was air-dried, left in the temperature and humidity control room for 24 hours or more, and the load was applied again, and the measured length L+ was calculated using the following formula.

乾熱収縮率(%)= (us−L+)/Ls× 100 O被覆弾性繊維および編地の特性 (チ)被覆性: 拡大鏡を用いて目視により、次の基準で評価した。Dry heat shrinkage rate (%) = (us-L+)/Ls×100 Characteristics of O-coated elastic fibers and knitted fabrics (h) Coverability: Evaluation was made by visual observation using a magnifying glass according to the following criteria.

○:良好 △:やや不良 ×:不良 (す)編地の均整性: 得られた被覆弾性繊維を通常の方法で編地とし、その均
整性を、拡大鏡を用いて目視により、次の基準で評価し
た。
○: Good △: Slightly poor ×: Poor (S) Uniformity of knitted fabric: The obtained covered elastic fibers were made into a knitted fabric using a normal method, and its evenness was visually inspected using a magnifying glass according to the following criteria. It was evaluated by

O:良好 △:やや不良 ×:不良 (ヌ)複合wc碓の界面剥離耐久性: 上記編地を通常の酸性染料で染色しく例えば、Xyle
ne  Fast  Blue  1.O%owf  
98℃×30分)、この筒編地をピリングテスタ(東洋
精[1作所製)を用いて、下記条件で繰り返し摩擦を加
えた。
O: Good △: Slightly poor ×: Poor (N) Interfacial peeling durability of composite wc Usui: When the above knitted fabric is dyed with ordinary acid dye, for example, Xyle
ne Fast Blue 1. O%owf
(98° C. x 30 minutes), and friction was repeatedly applied to this tubular knitted fabric using a pilling tester (Toyosei [manufactured by 1 Seisakusho]) under the following conditions.

摩擦手段・・・ 平面摩耗(回転) 摩擦テーブル・・・ 86±3  rpm加圧・・・ 
750 g 摩擦接触面・・・ 4 cぜ g探子・・・ ナイロンフィラメント織物状態・・・ 
湿式 摩擦回数・・・ 1000回 上記摩擦により、編地摩擦面の被覆弾繊維の複合界面剥
離が生じた場合、編地色が白化する。
Friction means... Plane wear (rotation) Friction table... 86±3 rpm pressurization...
750 g Frictional contact surface... 4 czeg probe... Nylon filament woven state...
Number of wet frictions: 1000 times If the above friction causes composite interfacial peeling of the coated bullet fibers on the friction surface of the knitted fabric, the color of the knitted fabric turns white.

白化状態を目視により観察し、白化が全くないものを○
:良好とし、以下次の基準で評価した。
Visually observe the whitening condition, and if there is no whitening at all, mark it as ○.
: Good, and evaluated based on the following criteria.

O:良好 Δ:やや不良 ×:不良 (ル)吸水伸長率: 20℃、65%RHの温湿度調整室において24時間以
上放置した絽状試料について、試料の0.1g/dの荷
重をかけて測定した長さLOの試料を無緊張状態で20
℃の水中に浸漬し、30分後に試料を取り出し、直ちに
上記と同じ荷重をかけて測定した長さLlとから次式に
よって 吸水伸長率を算出した。
O: Good Δ: Slightly poor ×: Poor (ru) Water absorption and elongation rate: A sample of 0.1 g/d was applied to a cage-shaped sample that had been left in a temperature and humidity controlled room at 20°C and 65% RH for 24 hours or more. A sample of length LO measured by
The sample was immersed in water at .degree. C., taken out after 30 minutes, and immediately subjected to the same load as above.The water absorption elongation rate was calculated from the measured length Ll using the following formula.

吸水伸長率(%)= (Ll  La)/Le(ワ)耐
摩耗性: 上記剥離耐久性の評価方法のうち、摩擦回数を1000
0回にした以外は同一方法で、編地を摩擦させ、その被
覆弾性繊維の毛羽立ち状態を、拡大鏡を用いて目視によ
り、次の基準で評価した。
Water absorption elongation rate (%) = (Ll La) / Le (wa) Abrasion resistance: Among the above peeling durability evaluation methods, the number of times of friction was 1000
The knitted fabric was rubbed in the same manner except that it was rubbed 0 times, and the fluffing state of the coated elastic fibers was evaluated visually using a magnifying glass according to the following criteria.

Q:良好 △:やや不良 ×:不良 [実施例1.2および比較例1乃至3]極限粘度〔η)
1.05、カルボキシル末端基濃度10.5eq/10
8gのポリエチレンテレフタレート(PET)および沃
化銅0.02重量%と沃化カリウム0. 1重量%を含
むヘキサメチレンアジパミド(N66:硫酸相対粘度η
r3.3)をそれぞれ20φ工クストルーダー型紡糸機
で溶融し、複合紡糸バックに導き、芯鞘複合紡糸口金よ
り芯部にポリエチレンテレフタレート、鞘部にポリアミ
ドの複合糸として紡出した。芯成分及び鞘成分の割合は
第1表のように変化させた。口金は孔径0,51φ、孔
数7ホールを用いた。ポリマー温度はポリエチレンテレ
フタレートを295℃、ポリアミドを290℃でそれぞ
れ溶融し、紡糸バック温度を300°Cとして紡出した
。口金直下には15cn1の加熱筒を取り付け、筒内雰
囲気温度を290°Cとなるように加熱した。雰囲気温
度とは口金面より10cm下の位置で、且つ最外周糸条
より1cm離れた位置で測定した雰囲気温度である。加
熱宵の下には長さ400 cmの環状型チムニ−を取り
付け、糸条の周囲より25℃で40m/分の冷風を糸条
に直角に吹き付け、冷却した。
Q: Good △: Slightly poor ×: Poor [Example 1.2 and Comparative Examples 1 to 3] Intrinsic viscosity [η)
1.05, carboxyl end group concentration 10.5eq/10
8 g of polyethylene terephthalate (PET) and 0.02% by weight of copper iodide and 0.02% by weight of potassium iodide. Hexamethylene adipamide (N66: sulfuric acid relative viscosity η
r3.3) were each melted using a 20 φ spindle type spinning machine, introduced into a composite spinning bag, and spun from a core-sheath composite spinneret into a composite yarn of polyethylene terephthalate in the core and polyamide in the sheath. The proportions of the core and sheath components were varied as shown in Table 1. The cap used had a hole diameter of 0.51φ and seven holes. Polyethylene terephthalate and polyamide were melted at 295°C and 290°C, respectively, and spun at a spinning back temperature of 300°C. A 15cn1 heating cylinder was attached directly below the mouthpiece, and the cylinder was heated to an atmospheric temperature of 290°C. The ambient temperature is the ambient temperature measured at a position 10 cm below the mouth surface and 1 cm away from the outermost thread. An annular chimney with a length of 400 cm was installed under the heating chamber, and cold air was blown perpendicularly to the yarn at 25° C. at a rate of 40 m/min from around the yarn to cool the yarn.

ついで油剤を付与した後、第1表に示した速度で回転す
る引取りロールて糸条速度を制御した後−旦巻取ること
なく連続して延伸した。延伸は3対のネルソン型ロール
によって2段延伸したのち3%のリラックスを与えて弛
緩熱処理して巻き取フた。延伸条件は、引取りロール温
度を60°C1第1延伸ロ一ル温度を120°C1第2
延伸ロ一ル温度を210℃、延伸後の張力調整ロールは
非加熱とし、1段延伸倍率は全延伸倍率の70%として
延伸した。紡糸速度、全延伸倍率等を変化させて製糸し
たが、延伸糸の繊度が20デニールとなるよう紡糸速度
、延伸倍率に対応させて吐出量を変化させた。
After applying an oil agent, the yarn speed was controlled using a take-up roll rotating at the speed shown in Table 1, and then the yarn was continuously stretched without being wound up. The film was stretched in two stages using three pairs of Nelson type rolls, then subjected to a relaxation heat treatment with 3% relaxation, and then wound up. The stretching conditions were as follows: take-up roll temperature: 60°C; first stretching roll temperature: 120°C; second stretching roll temperature: 120°C;
Stretching was carried out at a stretching roll temperature of 210° C., a tension adjusting roll after stretching without heating, and a first-stage stretching ratio of 70% of the total stretching ratio. The yarn was produced by varying the spinning speed, total draw ratio, etc., and the discharge amount was changed in accordance with the spinning speed and draw ratio so that the fineness of the drawn yarn was 20 denier.

比較糸としてナイロン66フィラメント(20D−7F
il)およびポリエチレンテレフタレートフィラメント
(20D−7F i I)を製糸し、それらを含め、製
糸条件、得られた延伸糸特性、及び繊維構造パラメータ
ーを第1表に示した。
Nylon 66 filament (20D-7F
il) and polyethylene terephthalate filaments (20D-7F i I), including the spinning conditions, obtained drawn yarn properties, and fiber structure parameters are shown in Table 1.

(以下余白) 第1表 次に弾性繊維として20デニール、3フイラメントの市
販スパンデックス糸を3.5倍に伸長しつつ、通常のカ
バリング機で前記の複合繊維および比較糸を被覆用非弾
性繊維としてダブルカバリングを行なった。カバリング
1然数は2000し伽〕とした。
(Margin below) Table 1 Next, a commercially available spandex yarn of 20 denier and 3 filaments was stretched 3.5 times as an elastic fiber, and the composite fiber and comparative yarn were used as inelastic fibers for covering using a normal covering machine. We did double covering. The covering number is 2000.

被覆弾性繊維の評価を第2表に示す。Evaluations of the coated elastic fibers are shown in Table 2.

第2表 註)PET芯成分物性のうち、0内はPET織碓物性を
示し、ポリアミド鞘成分物性のうち、0内はポリアミド
縁唯物性を示す。
Table 2 Note: Among the physical properties of the PET core component, numbers within 0 indicate the PET woven properties, and among the physical properties of the polyamide sheath component, those within 0 indicate the polyamide edge material properties.

第1. 2表の結果かられかるように、本発明カバリン
グヤーンは被覆性、均整性に優れるとともに、従来のポ
リエステル/ナイロンの芯鞘複合繊維に比べ画期的に剥
離耐久性に優れ、従来のナイロンにない低い吸水伸長率
を有し、従来のポリエステルにない耐摩耗性を有してい
る。
1st. As can be seen from the results in Table 2, the covering yarn of the present invention not only has excellent covering properties and uniformity, but also has revolutionary superior peeling durability compared to conventional polyester/nylon core-sheath composite fibers, and is superior to conventional nylon. It has a low water absorption elongation rate that is not found in conventional polyesters, and has abrasion resistance that is not found in conventional polyesters.

[発明の効果コ 本発明カバリングヤーンは、被覆性、均整性に優れると
ともに、従来のポリエステル/ナイロンの芯鞘複合繊維
に比べ画期的に剥離耐久性および染色特性に優れ、従来
のナイロンにない湿潤時寸法安定性を有し、従来のポリ
エステルにない耐摩耗性を有している。従って、パンテ
ィーストッキング、タイツ、靴下、口ゴム、テープ、レ
ース、インサイドベルト、水着、スキーウェア、ウェッ
トスーツなどの衣料用途に用いた場合、優れた風合い、
耐久性、肌触りなどを有することができる。
[Effects of the invention] The covering yarn of the present invention not only has excellent covering properties and uniformity, but also has revolutionary peeling durability and dyeing properties compared to conventional polyester/nylon core-sheath composite fibers, and has properties not found in conventional nylon. It has dimensional stability when wet and has abrasion resistance not found in conventional polyester. Therefore, when used for clothing such as pantyhose, tights, socks, cuffs, tape, lace, inside belts, swimwear, ski wear, and wet suits, it has an excellent texture and
It can have durability, texture, etc.

また、本発明カバリングヤーンの有する弾性特性、機械
的強度、寸法安定性、耐久性を生かして産業用途、例え
ば歯付きベルトの補強用繊維などに用いることができる
Further, by taking advantage of the elastic properties, mechanical strength, dimensional stability, and durability of the covering yarn of the present invention, it can be used for industrial purposes, such as reinforcing fibers for toothed belts.

Claims (2)

【特許請求の範囲】[Claims] (1)弾性繊維の周囲に1重あるいは多重に非弾性繊維
を巻き付けてなるカバリングヤーンにおいて、前記弾性
繊維の外周に巻き付けられた少なくとも最外層の非弾性
繊維がエチレンテレフタレート単位を主成分とするポリ
エステルを芯成分とし、ポリアミドを鞘成分とする芯鞘
型複合構造を有する複合繊維であって、該複合繊維にお
ける前記ポリエステル芯成分の割合が30〜90重量%
、該芯成分の極限粘度〔η〕が0.6以上、複屈折が1
50×10^−^3〜190×10^−^3、密度が1
.39g/cm^3以上、ポリアミド鞘成分の硫酸相対
粘度ηrが2.6以上、複屈折が40×10^−^3以
上であって、芯成分が高配向、高結晶繊維構造を有する
ことを特徴とするカバリングヤーン。
(1) In a covering yarn in which inelastic fibers are wound singly or multiple times around elastic fibers, at least the outermost layer of inelastic fibers wound around the outer periphery of the elastic fibers is made of polyester whose main component is ethylene terephthalate units. A composite fiber having a core-sheath type composite structure with polyamide as a core component and polyamide as a sheath component, wherein the proportion of the polyester core component in the composite fiber is 30 to 90% by weight.
, the core component has an intrinsic viscosity [η] of 0.6 or more and a birefringence of 1
50 x 10^-^3 ~ 190 x 10^-^3, density is 1
.. 39 g/cm^3 or more, the relative sulfuric acid viscosity ηr of the polyamide sheath component is 2.6 or more, the birefringence is 40 x 10^-^3 or more, and the core component has a highly oriented, highly crystalline fiber structure. Features covering yarn.
(2)前記複合繊維の強度が5.0g/d以上、初期引
張り抵抗度が60g/d以上、乾熱収縮率が7%以下で
あることを特徴とする特許請求の範囲第(1)項記載の
カバリングヤーン。
(2) Claim (1) characterized in that the composite fiber has a strength of 5.0 g/d or more, an initial tensile resistance of 60 g/d or more, and a dry heat shrinkage rate of 7% or less. Covering yarn as described.
JP30263488A 1988-11-30 1988-11-30 Covering yarn Pending JPH02154018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30263488A JPH02154018A (en) 1988-11-30 1988-11-30 Covering yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30263488A JPH02154018A (en) 1988-11-30 1988-11-30 Covering yarn

Publications (1)

Publication Number Publication Date
JPH02154018A true JPH02154018A (en) 1990-06-13

Family

ID=17911346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30263488A Pending JPH02154018A (en) 1988-11-30 1988-11-30 Covering yarn

Country Status (1)

Country Link
JP (1) JPH02154018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442815A (en) * 1990-01-09 1995-08-22 Alliedsignal, Inc. Cut resistant protective glove
JP2002162595A (en) * 2000-11-24 2002-06-07 Olympus Optical Co Ltd Galvano mirror

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442815A (en) * 1990-01-09 1995-08-22 Alliedsignal, Inc. Cut resistant protective glove
US5568657A (en) * 1990-01-09 1996-10-29 Alliedsignal Inc. Cut resistant protective glove
JP2002162595A (en) * 2000-11-24 2002-06-07 Olympus Optical Co Ltd Galvano mirror

Similar Documents

Publication Publication Date Title
US20030054718A1 (en) Poly(lactic acid) fiber
WO2003083194A1 (en) Stretchable core-sheath type composite yarn and stretchable woven-knit fabric
KR20010081027A (en) Polyester yarn and method of manufacturing the same
JP3885468B2 (en) Bulky polyester composite yarn, production method thereof and fabric
JP5718045B2 (en) Polyester fibers and fiber aggregates with excellent dyeability
JPS6127484B2 (en)
JPH02154018A (en) Covering yarn
JP3167677B2 (en) Polyester irregular cross section fiber
JP3506129B2 (en) False twisted yarn and method for producing the same
JP3753844B2 (en) Polytrimethylene terephthalate sheath-core type composite fiber and fabric using the same
JP4007856B2 (en) Polyester different shrinkage mixed yarn
WO2001023650A1 (en) Poly(trimethylene terephthalate) multifilament yarn
JPH08269820A (en) Easily dyeable modified polyester fiber and its production
JPH11181626A (en) Antistatic polyester fiber and lining fabric using the same
JP2001081640A (en) Composite crimped yarn, method for production thereof and cloth
JPH02293411A (en) Production of ultrasoft special combined filament yarn assuming brightness
JPS58169514A (en) Polyester conjugated and crimped yarn
JPH03279428A (en) Combined polyester filament yarn
JP2002201530A (en) Polyester conjugate fiber for stretchable woven or knitted fabric and method for producing the same
JP2000248439A (en) Covered yarn and pantyhose or tights using the same
JPS6347803B2 (en)
JP2002069772A (en) Covered yarn, and panty hose or tights by using the same
JPH03137228A (en) Dope dyed yarn for fishing net and fishing net
JPH1193021A (en) Sheath-core polyester yarn
JP4866110B2 (en) Blended yarn