JP4505960B2 - High stretch durability polyester composite fiber and manufacturing method - Google Patents

High stretch durability polyester composite fiber and manufacturing method Download PDF

Info

Publication number
JP4505960B2
JP4505960B2 JP2000212391A JP2000212391A JP4505960B2 JP 4505960 B2 JP4505960 B2 JP 4505960B2 JP 2000212391 A JP2000212391 A JP 2000212391A JP 2000212391 A JP2000212391 A JP 2000212391A JP 4505960 B2 JP4505960 B2 JP 4505960B2
Authority
JP
Japan
Prior art keywords
composite
component
yarn
intrinsic viscosity
stretch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000212391A
Other languages
Japanese (ja)
Other versions
JP2002030527A (en
Inventor
義斉 森
正英 松村
弘隆 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000212391A priority Critical patent/JP4505960B2/en
Publication of JP2002030527A publication Critical patent/JP2002030527A/en
Application granted granted Critical
Publication of JP4505960B2 publication Critical patent/JP4505960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Multicomponent Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高伸縮性を有するポリエステル系複合繊維に関するものであり、詳しくは該複合繊維がポリトリメチレンテレフタレートが主体のA成分とポリブチレンテレフタレートが主体のB成分とで構成される高伸縮および耐久性を有するポリエステル系複合繊維および製造方法に関するものである。
【0002】
【従来の技術】
従来、ポリエステルは機械的特性をはじめ、様々な優れた特性を有しているため、衣料用のみならず幅広く展開されている。また、近年のストレッチブームにより、ポリエステル糸に伸縮性、捲縮性を与えるため種々の方法が採用されている。
【0003】
例えば、ポリエステル繊維に仮撚り加工を施し、加撚/解撚トルクを発現させて伸縮性を付与する方法がある。しかしながら、このトルクは織物に使用した際には織物表面にシボを発生し、織物欠点となり易い問題がある。一方、収縮特性または溶融粘度の異なる重合体をサイドバイサイド型や偏芯芯鞘型に複合紡糸し、捲縮糸を得る技術も種々提案されている。例えば、特公昭44−2504号公報や特開平4−308271号公報には、固有粘度差あるいは極限粘度差を有するポリエチレンテレフタレート(以下PETと略す)のサイドバイサイド型複合糸が記載され、特開平5−295634号公報にはホモPETとそれより高収縮性の共重合PETのサイドバイサイド型複合糸が記載されている。このような捲縮性ポリエステル複合糸を用いれば、確かにある程度の伸縮性を得ることができるが、織物に使用した際の伸縮性が不十分となり、満足な伸縮性織物が得られにくいという問題があった。上記したようなサイドバイサイド型複合糸は織物拘束中での捲縮発現性能が低く、また捲縮がヘタリ易いためである。
【0004】
また、特開平11−189923号公報には、PETとそれより溶融粘度の低いポリトリメチレンテレフタレート(以下PTTと略す)からなるポリエステル系複合糸が提案されている。しかし、PTTをPETより低粘度とすると、発現する捲縮形態の大部分について、捲縮コイル内側がPET成分、外側がPTT成分となるために、得られる捲縮糸の伸縮性、捲縮発現性について十分満足のいくものではなく、また伸縮性、捲縮発現性の保持性も非常に低いものとなり、実質的には固有粘度や極限粘度の異なるPETを用いたサイドバイサイド型複合により捲縮糸を得る公知の技術と何ら変わりのないものとなってしまうなどの問題がある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、前記のような従来技術の有する問題を解消し、安定した生産性と優れた伸縮性および品位を有する高伸縮耐久性のポリエステル系複合繊維および製造方法を提供するものである。
【0006】
【課題を解決するための手段】
前記目的を達成するために本発明は、以下の構成を採用する。すなわち、
(1)粘度の異なるポリエステルを65:35〜35:65の複合比率でサイドバイサイド型に複合したポリエステル系複合繊維において、COOH末端基量が20eq/ton以下であるポリトリメチレンテレフタレートが主体のA成分と、ポリブチレンテレフタレートが主体のB成分からなり、A成分とB成分の固有粘度が次式(イ)を満足し、捲縮伸び率が20%以下、伸縮伸長率が10%以上、伸縮弾性率が90%以上、ウースター斑が2.0%以下であることを特徴とするポリエステル系複合繊維。
【0007】
1.5≦(Ia/Ib)≦2.5 ・・・(イ)
(ただし、IaはA成分の固有粘度、IbはB成分の固有粘度(IV
【0008】
)粘度の異なるポリエステルを65:35〜35:65の複合比率でサイドバイサイド型に複合したポリエステル系複合繊維において、COOH末端基量が20eq/ton以下であるポリトリメチレンテレフタレートが主体の高粘度成分とポリブチレンテレフタレートが主体の低粘度成分を用いて複合紡糸を行うに際し、紡糸温度260〜280℃、予備加熱温度50〜80℃、熱セット温度100〜180℃で複合紡糸した未延伸糸条を、一旦巻き取ることなく連続して延伸することを特徴とする高伸縮耐久性ポリエステル系複合繊維の製造方法。
【0009】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。本発明において、複合繊維を構成する2成分の重合体のうち、A成分はポリトリメチレンテレフタレートが主体のポリエステルである。PTTは、結晶構造においてアルキレングリコール部のメチレン鎖がゴーシュ−ゴーシュの構造(分子鎖が90度に屈曲)であること、さらにはベンゼン環同士の相互作用(スタッキング、並列)による拘束点密度が低く、フレキシビリティーが高いことから、メチレン基の回転により分子鎖が容易に伸長・回復するという特有の伸縮性を有している。このPTT固有の伸縮性を複合繊維においても十分発揮するためである。なお、本発明において、複合繊維を構成する2成分の複合比率は通常サイドバイサイド型複合による伸縮性付与に用いられる複合比率であれば特に規定するものではなく、一般的には重量比で65:35〜35:65の範囲であり、好ましくは60:40〜40:60である。
【0010】
本発明において、複合繊維を構成するB成分はブチレンテレフタレートが主体であるポリブチレンテレフタレート(以下PBTと略す)である。K.Tashiro,Macromoleules,13,1378(1980)によると、PBTは外部より加えられた応力により、結晶c軸の短いα−fromと結晶c軸の長いβ−formとが可逆的に変化し、結晶c軸長が約1.4オングストローム程度伸縮するとある。このPBT固有の応力起因の結晶構造の変化は、外部からの応力を繊維構造の伸縮性に転移させるものであり、伸縮性の耐久性を向上するものである。
【0011】
本発明において、A成分の固有粘度とB成分の固有粘度は次式(イ)を満足するものである。
【0012】
1.5≦(Ia/Ib)≦2.5 ・・・(イ)
ただし、Ia:A成分の固有粘度、Ib:B成分の固有粘度である。
【0013】
A成分の固有粘度IaがB成分の固有粘度Ibに対し、Ia=1.5×Ibを下回る場合、複合繊維の伸縮性を主に受け持つPTT成分が、発現する捲縮コイルの内側となってしまい、PTT固有の伸縮性が十分発揮されないばかりでなく、織編物に使用したときの嵩高性が得られにくくなる。さらには、PBT固有の結晶構造の変化に起因する伸縮耐久性が発揮されにくいものとなる。また、Ia=2.5×Ibを上回る場合、複合紡糸する際の吐出糸条の糸曲がりが大きくなり、安定して複合繊維を得ることができにくいばかりでなく、複合界面が大きく湾曲したサイドバイサイド型あるいは偏芯芯鞘型の複合繊維となってしまい、伸縮性に優れたものとすることができない。
【0014】
本発明における複合繊維は、捲縮伸び率が20%以下のものであり、より好ましくは15%以下である。織編物に使用した際の伸縮性の耐久性を発揮するものである。また、伸縮伸長率は10%以上あるものである。織編物に使用した際の伸び性を発揮するものである。また、伸縮弾性率は90%以上あるものであり、より好ましくは95%以上である。織編物に使用した際の縮み性を発揮するものである。伸縮伸長率が10%以上で、かつ伸縮弾性率が90%以上の特性を同時に満足することにより、良好な伸縮性ポリエステル系複合繊維とすることができる。
【0015】
また、本発明における複合繊維は、ウースター糸斑が2.0%以下のものである。ウースター糸斑を2%以下とすることにより、織編物に使用した際の美しい布帛表面を得るばかりでなく、染色における染色斑の発生を回避できるものである。ウースター斑は好ましくは1.3%以下である。
【0016】
本発明において、ポリトリメチレンテレフタレートのCOOH末端基量は20eq/ton以下であることが好ましく、15eq/ton以下であることがより好ましい。複合紡糸時のポリマー熱劣化を抑制し連続紡糸性を向上するものである。
【0017】
次に、本発明の複合繊維の好ましい製造方法の一例について説明する。
【0018】
本発明の複合繊維の製造方法において、該複合繊維を複合紡糸するに際し、紡糸温度260〜280℃で複合紡糸した糸条を一旦巻き取ることなく連続して、50〜80℃の予備加熱後に延伸し、100〜180℃の温度で熱セットすることが好ましい。この際、PTTおよびPBTはPETに比べて、融点が低く、耐熱性が劣るため、紡糸温度は260〜280℃の範囲が好ましい。また、糸条を均一に加熱し、さらには過剰な加熱によるPTTおよびPBTの劣化を抑制するために、延伸時の予備加熱温度は50〜80℃の範囲とすることが好ましく、より好ましくは60〜80℃の範囲であり、ウースター斑が2.0%以下の繊維を得やすくするものである。さらに、延伸時の熱セット温度については100〜180℃の範囲が好ましく、PTTおよびPBTの熱劣化を抑制しつつ得られた複合繊維を織物に加工する際の取り扱いを容易にするためのものである。延伸倍率は特に規定するものではないが、2.0〜3.5倍が好ましく、より好ましくは2.5〜3.3倍であり、サイドバイサイド型複合により十分な伸縮性と捲縮発現性を付与するためである。
【0019】
本発明において、糸条への交絡付与は特に必須の条件ではなく、交絡付与する方法も特に規定するものではないが、後加工における解舒性などの取り扱い性を向上するためには、通常の交絡付与装置により1.0〜5.0個/mの交絡を付与することが好ましい。
【0020】
【実施例】
以下、本発明を実施例によりさらに詳細に説明する。なお、本文および実施例中のCOOH末端基量、固有粘度、伸縮伸長率、伸縮弾性率、捲縮伸び率、ウースター斑、交絡数、製糸性、伸縮耐久性は次に示す内容のものである。
(1)COOH末端基量:
ポリマ0.5gをo−クレゾール10ml中で溶解し、25℃に冷却後、NaOH/MA溶液を用い、電位差滴定で測定した値(eq/ton)である。
(2)固有粘度:
オルソクロロフェノール(以下OCPと略す)10ml中に試料ポリマーを0.8g溶かし、25℃にてオストワルド粘度計を用いて相対粘度ηrを次式により算出した値(IV)である。
【0021】
ηr=η/η0=(t×q)/(t0×q0
IV=0.0242ηr+0.2634
ただし、η:ポリマー溶液の粘度、η0:OCPの粘度、t:溶液の落下時間(秒)、q:溶液の密度(g/cm3)t0:OCPの落下時間(秒)、q0:OCPの密度(g/cm3)。
(3)伸縮伸長率、伸縮弾性率:
原長560mmのカセを作り、3.53×10-3cN/dtexの荷重を掛けた状態で、90℃の熱水で20分間処理を施す。その後1.76×10-3N/dtexの荷重(以下M1と略す)を掛けて30秒後のカセ長L0を測定し、次にM1を外した後に0.09cN/dtexの荷重(以下M2と略す)を掛けて30秒後のカセ長L1を測定し、さらにM2を外した後に再びM1を掛けて30秒後のカセ長L2を測定し、次式より求めた値(%)である(図2参照)。
【0022】
伸縮伸長率(%)={(L1−L0)/L0}×100
伸縮弾性率(%)={(L1−L2)/(L1−L0)}×100
(4)捲縮伸び率:
伸縮伸長率および伸縮弾性率測定におけるカセ長L2を測定した後M1を外して、さらに、M2を30秒間掛け、M2を外してM1を30秒間掛ける作業を10回繰り返した後の、M1を掛けて30秒後のカセ長L3を測定し、次式より求めた値(%)である(図2参照)。
【0023】
捲縮伸び率(%)={(L3−L2)/L2}×100
(5)ウースター斑:
Zellweger社製USTER TESTER 1 M0delCを使用し、200m/分の速度で糸を給糸しながらノーマルモードで測定した。
(6)交絡数:
スイスROTHSCHILD製AUTO MATIC ENTAGLEMENT TESTER R2060を用い、糸速4cm/秒で30回測定し、次式より求めた値(個/m)である。
【0024】
交絡数(個/m)=1000mm/交絡距離mm
(7)製糸性:
連続紡糸の際の糸切れ回数が少ない順に次の4段階で評価した。
【0025】
○○:2.0回/t未満
○:2.5回/t未満
△:3.0回/t未満
×:3.0回/t以上
(8)伸縮耐久性:
捲縮伸び率が小さいものから順に次の4段階で評価した。
【0026】
○○:10%未満
○:15%未満
△:20%未満
:20%以上
(9)製品風合い:
伸縮性、嵩高性、表面凹凸感について熟練者5名による官能評価を行い、次の判定による4段階評価とした。
【0027】
○○:優
○:良
△:可
×:不可
なお、ここでの製品とは、本発明により得られた複合糸に1000T/mの撚糸を施したものを緯糸とし、経糸には56デシテックス18フィラメントの通常PET糸を用い1/3綾にて緯打ち込み織物とし、通常のポリエステル染色工程によって捲縮発現処理、染色仕上げ加工を行ったものを示す。
【0028】
実施例1
図1に示した市販の直接紡糸延伸機を用いて、固有粘度1.76、COOH末端基量18.2eq/tonのPTTと、固有粘度0.80のPBTを用いて、紡糸温度270℃で複合比率60:40の56デシテックス24フィラメントのサイドバイサイド型複合糸を得た。すなわち、複合紡糸口金1より複合糸条2を吐出し、チムニー糸条冷却装置3で十分冷却した後、オイリングローラー4で油剤を付与した。さらに軽交絡装置5で油剤均一化を施した後に、第1ホットローラー6で予備加熱後、第2ホットローラー7との速度比により延伸した。この時第2ホットローラー7温度にて熱セットし、本交絡装置8で交絡付与し、さらにゴデーローラー9を介してワインダー10に巻き取ったものである。
【0029】
実施例1では、第1ホットローラー速度(以下1HRVと略す)1800m/分で引き取り、第1ホットローラー温度(以下1HRTと略す)65℃にて予備加熱した後、第2ホットローラー速度(以下2HRVと略す)5040m/分とし、2つのローラーの速度比にて延伸倍率2.8倍で延伸すると同時に第2ホットローラー温度(以下2HRTと略す)150℃で熱セット後、ワインダーで巻き取った。糸切れ回数は1.8回/tと安定しており、伸縮伸長率24.4%、伸縮弾性率95.1%、と伸縮性は良好な複合糸を得た。また、捲縮伸び率は14.3%と良好な伸縮耐久性を有しており、ウースター斑は1.0%と糸の太さ斑も小さく、この糸を用いた製品における風合いは、伸縮性、嵩高性、表面品位の優れたものが得られた。結果をまとめて表1に示す。
【0030】
実施例2
固有粘度1.36、COOH末端基量15.4eq/tonのPTTと固有粘度0.80のPBTを用いて、実施例1と同様、図1に示す装置を用いて、紡糸温度265℃で複合比率50:50の56デシテックス24フィラメントのサイドバイサイド型複合糸を得た。このとき1HRV:1600m/分で引き取り、1HRT:70℃にて予備加熱した後、2HRV:5000m/分とし、延伸倍率3.1倍で延伸すると同時に2HRT:150℃で熱セット後、ワインダーで巻き取った。糸切れ回数は2.2回/tと実際生産には問題のないレベルであり、伸縮伸長率33.4%、伸縮弾性率99.2%、捲縮伸び率は9.3%と優れた伸縮性および伸縮耐久性を有した複合糸を得た。ウースター斑は1.2%と糸の太さ斑は小さく、この糸を用いた製品における風合いは、伸縮性、嵩高性、表面品位の優れたものが得られた。結果をまとめて表1に示す。
【0031】
実施例3
固有粘度1.65、COOH末端基量11.6eq/tonのPTTと固有粘度1.10のPBTを用いて、実施例1と同様、図1に示す装置を用いて、紡糸温度280℃で複合比率50:50の56デシテックス24フィラメントのサイドバイサイド型複合糸を得た。このとき1HRV:1500m/分で引き取り、1HRT:60℃にて予備加熱した後、2HRV:4350m/分とし、延伸倍率2.9倍で延伸すると同時に2HRT:170℃で熱セット後、ワインダーで巻き取った。糸切れ回数は1.3回/tと非常に安定した製糸性を示し、伸縮伸長率18.3%、伸縮弾性率96.6%、捲縮伸び率は9.0%と優れた伸縮性および伸縮耐久性を有した複合糸を得た。ウースター斑は1.8%と糸の太さ斑は問題のないものであり、この糸を用いた製品における風合いは、伸縮性、嵩高性は若干低いが伸縮性素材としては十分なものであり、表面品位の優れたものが得られた。結果をまとめて表1に示す。
【0032】
実施例4
固有粘度1.44、COOH末端基量10.9eq/tonのPTTと固有粘度0.80のPBTを用いて、実施例1と同様、図1に示す装置を用いて、紡糸温度275℃で複合比率50:50の56デシテックス24フィラメントのサイドバイサイド型複合糸を得た。このとき1HRV:1000m/分で引き取り、1HRT:80℃にて予備加熱した後、2HRV:3000m/分とし、延伸倍率3.0倍で延伸すると同時に2HRT:160℃で熱セット後、ワインダーで巻き取った。糸切れ回数は0.8回/tと非常に安定した製糸性を示し、伸縮伸長率27.8%、伸縮弾性率98.5%、捲縮伸び率は8.5%と優れた伸縮性および伸縮耐久性を有した複合糸を得た。ウースター斑は0.8%と糸の太さ斑は非常に小さく、この糸を用いた製品における風合いは、伸縮性、嵩高性、表面品位共に伸縮性素材として非常に優れたものが得られた。結果をまとめて表1に示す。
【0033】
実施例5
固有粘度2.00、COOH末端基量13.8eq/tonのPTTと固有粘度0.80のPBTを用いて、実施例1と同様、図1に示す装置を用いて、紡糸温度280℃で複合比率65:35の56デシテックス24フィラメントのサイドバイサイド型複合糸を得た。このとき1HRV:1200m/分で引き取り、1HRT:60℃にて予備加熱した後、2HRV:3840m/分とし、延伸倍率3.2倍で延伸すると同時に2HRT:180℃で熱セット後、ワインダーで巻き取った。糸切れ回数は2.3回/tと実際生産には問題のないレベルであり、伸縮伸長率30.7%、伸縮弾性率92.3%と優れた伸縮性を有しており、捲縮伸び率18.1%と問題の無い伸縮耐久性を有した複合糸を得た。ウースター斑は1.5%であり、糸の太さ斑は問題なく、この糸を用いた製品における風合いは、伸縮性、嵩高性、表面品位共に良好なものが得られた。結果をまとめて表1に示す。
【0034】
比較例1
固有粘度0.96、COOH末端基量23.8eq/tonのPTTと固有粘度0.80のPBTを用いて、実施例1と同様、図1に示す装置を用いて、紡糸温度260℃で複合比率50:50の56デシテックス24フィラメントのサイドバイサイド型複合糸を得た。このとき1HRV:1100m/分で引き取り、1HRT:60℃にて予備加熱した後、2HRV:3200m/分とし、延伸倍率2.9倍で延伸すると同時に2HRT:150℃で熱セット後、ワインダーで巻き取った。糸切れ回数は1.7回/tと安定した製糸性であったが、得られた糸の伸縮伸長率は7.5%、伸縮弾性率62.3%、捲縮伸び率は23.4%と伸縮性および伸縮耐久性の劣る結果となった。ウースター斑は3.3%と糸の太さ斑は大きく、この糸を用いた製品における風合いは、伸縮性が低く、また嵩高性に欠けており、表面品位も劣るものとなった。結果をまとめて表1に示す。
【0035】
比較例2
固有粘度2.40、COOH末端基量11.1eq/tonのPTTと固有粘度0.80のPBTを用いて、実施例1と同様、図1に示す装置を用いて、紡糸温度280℃で複合比率60:40の56デシテックス24フィラメントのサイドバイサイド型複合糸を紡糸した。このとき1HRV:1200m/分で引き取り、1HRT:70℃にて予備加熱した後、2HRV:3300m/分とし、延伸倍率2.8倍で延伸すると同時に2HRT:160℃で熱セット後、ワインダーで巻き取ろうとしたが、紡糸口金での糸曲がりが著しく吐出したポリマが口金面に付着して安定した紡糸が行えず、実際に生産するのが困難であった。極少量得られた糸については、伸縮伸長率6.2%、伸縮弾性率52.8%、捲縮伸び率31.9%と高伸縮性とはなり得なかった。結果をまとめて表1に示す。
【0036】
比較例3
固有粘度1.10、COOH末端基量19.6eq/tonのPTTと固有粘度1.10のPBTを用いて、実施例1と同様、図1に示す装置を用いて、紡糸温度275℃で複合比率50:50の56デシテックス24フィラメントのサイドバイサイド型複合糸を紡糸した。このとき1HRV:1300m/分で引き取り、1HRT:70℃にて予備加熱した後、2HRV:4700m/分とし、延伸倍率3.6倍で延伸すると同時に2HRT:150℃で熱セット後、ワインダーで巻き取った。糸切れ回数は2.3回/tとなり、実際生産には問題のないレベルであったが、伸縮伸長率5.5%、伸縮弾性率99.2%、捲縮伸び率4.2%と耐久性は高い数値を示し、ウースター斑は1.4%と糸の太さ斑は問題ないものの、伸縮性が非常に低く、この糸を用いた製品においては、伸縮性、嵩高性がなく、高伸縮性とはなり得なかった。結果をまとめて表1に示す。
【0037】
比較例4
実施例5と同様に、固有粘度2.00、COOH末端基量13.8eq/tonのPTTと固有粘度0.80のPBTを用いて、実施例1と同様、図1に示す装置を用いて、紡糸温度280℃で複合比率65:35の56デシテックス24フィラメントのサイドバイサイド型複合糸を得た。このとき1HRT:100℃とし高温で予備加熱した後、2HRT:180℃で熱セット後、ワインダーで巻き取った。その他の紡糸条件は実施例5と同一である。糸切れ回数は2.2回/tと実際生産には問題のないレベルであり、伸縮伸長率32.1%、伸縮弾性率91.5%と優れた伸縮性を有しており、捲縮伸び率20.0%と問題のない伸縮耐久性を有した複合糸を得たが、ウースター斑は4.1%であり、糸の太さ斑が非常に大きいものとなった。この糸を用いた製品における風合いは、伸縮性、嵩高性には問題ないものの、表面品位が非常に悪く、未染色の生機においても布帛表面に筋状模様が見られ、表面凹凸感が非常に目立ち、品位の非常に悪いものとなった。結果をまとめて表1に示す。
【0038】
【表1】

Figure 0004505960
【0039】
【発明の効果】
上述したように、本発明によれば、PTTとPBTを用いたサイドバイサイド型複合糸において、2成分の固有粘度を適切な関係とし、捲縮伸び率、伸縮伸長率、伸縮弾性率を適切な範囲とすることによって、優れた伸縮性と伸縮耐久性を有する高伸縮耐久性のポリエステル系複合繊維を得ることができる。
【図面の簡単な説明】
【図1】本発明における実施の形態で用いる複合紡糸装置の一例を示す説明図である。
【図2】本発明における伸縮伸長率、伸縮弾性率、捲縮伸び率の測定方法を示す説明図である。
1:口金
2:吐出糸条
3:チムニー糸条冷却装置
4:オイリングローラー
5:交絡ガイド
6:第1ホットローラー
7:第2ホットローラー
8:交絡ガイド
9:リラックスローラー
10:ワインダー
11:パッケージ
12:スピンドル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyester-based composite fiber having high stretchability. Specifically, the composite fiber is composed of a high-stretch and high-strength structure composed of an A component mainly composed of polytrimethylene terephthalate and a B component mainly composed of polybutylene terephthalate. The present invention relates to a polyester-based composite fiber having durability and a manufacturing method.
[0002]
[Prior art]
Conventionally, since polyester has various excellent properties including mechanical properties, it has been widely deployed not only for clothing. In addition, various methods have been adopted to give stretchability and crimpability to polyester yarns due to recent stretch booms.
[0003]
For example, there is a method of imparting stretchability by applying false twisting to a polyester fiber to express twisting / untwisting torque. However, when this torque is used for a woven fabric, there is a problem that the surface of the woven fabric is creased to easily cause a fabric defect. On the other hand, various techniques for obtaining crimped yarns by composite spinning of polymers having different shrinkage characteristics or melt viscosities into side-by-side types or eccentric core-sheath types have been proposed. For example, Japanese Patent Publication No. 44-2504 and Japanese Patent Laid-Open No. 4-308271 describe a side-by-side type composite yarn of polyethylene terephthalate (hereinafter abbreviated as PET) having an intrinsic viscosity difference or an intrinsic viscosity difference. No. 295634 describes side-by-side type composite yarns of homo-PET and copolymer PET having higher shrinkage than that. If such a crimped polyester composite yarn is used, a certain degree of stretchability can be surely obtained, but the stretchability when used in a fabric is insufficient, and it is difficult to obtain a satisfactory stretch fabric. was there. This is because the side-by-side type composite yarn as described above has a low crimping performance in restraining the fabric and is easy to crimp.
[0004]
Japanese Patent Application Laid-Open No. 11-189923 proposes a polyester composite yarn comprising PET and polytrimethylene terephthalate (hereinafter abbreviated as PTT) having a lower melt viscosity. However, when the viscosity of PTT is lower than that of PET, for the majority of the crimped forms that develop, the crimped coil inner side becomes the PET component and the outer side becomes the PTT component. Is not sufficiently satisfactory, and the retention of stretchability and crimp development is very low, and the crimped yarn is substantially made by side-by-side type composite using PET with different intrinsic viscosity and intrinsic viscosity. There is a problem that the technology is not different from the known technology for obtaining the above.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the problems of the prior art as described above, and to provide a highly stretchable and durable polyester composite fiber having stable productivity, excellent stretchability and quality, and a production method. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention adopts the following configuration. That is,
(1) A polyester-based composite fiber in which polyesters having different viscosities are combined in a side-by-side manner at a composite ratio of 65:35 to 35:65, and the component A is mainly composed of polytrimethylene terephthalate having a COOH end group amount of 20 eq / ton or less. And B component mainly composed of polybutylene terephthalate, the intrinsic viscosity of the A component and the B component satisfies the following formula (A), the crimp elongation is 20% or less, the stretch elongation is 10% or more, and stretch elasticity A polyester-based composite fiber having a rate of 90% or more and Wooster spots of 2.0% or less.
[0007]
1.5 ≦ (Ia / Ib) ≦ 2.5 (A)
(However, Ia is the intrinsic viscosity of component A, Ib is the intrinsic viscosity of component B (IV ))
[0008]
( 2 ) A polyester-based composite fiber in which polyesters having different viscosities are combined in a side-by-side manner at a composite ratio of 65:35 to 35:65, and a high viscosity mainly composed of polytrimethylene terephthalate having a COOH end group amount of 20 eq / ton or less. When performing composite spinning using a low-viscosity component mainly composed of a component and polybutylene terephthalate, an undrawn yarn obtained by composite spinning at a spinning temperature of 260 to 280 ° C., a preheating temperature of 50 to 80 ° C., and a heat setting temperature of 100 to 180 ° C. A method for producing a highly stretchable and durable polyester composite fiber, characterized in that the fiber is continuously stretched without being wound up.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail. In the present invention, among the two-component polymers constituting the composite fiber, the component A is a polyester mainly composed of polytrimethylene terephthalate. In PTT, the methylene chain of the alkylene glycol part in the crystal structure is a Gauche-Gauche structure (the molecular chain is bent at 90 degrees), and further, the density of restraint points due to the interaction between benzene rings (stacking, parallel) is low. Because of its high flexibility, it has a unique elasticity that the molecular chain can be easily extended and recovered by the rotation of the methylene group. This is because the elasticity inherent to PTT is sufficiently exerted in the composite fiber. In the present invention, the composite ratio of the two components constituting the composite fiber is not particularly specified as long as it is a composite ratio that is usually used for imparting stretchability by a side-by-side composite, and is generally 65:35 by weight. It is the range of -35: 65, Preferably it is 60: 40-40: 60.
[0010]
In the present invention, the component B constituting the composite fiber is polybutylene terephthalate (hereinafter abbreviated as PBT) mainly composed of butylene terephthalate. K. According to Tashiro, Macromolecules, 13, 1378 (1980), in PBT, α-from having a short crystal c-axis and β-form having a long crystal c-axis reversibly change due to externally applied stress, and crystal c The axial length is about 1.4 angstroms. This change in crystal structure due to the stress inherent to PBT is to transfer external stress to the stretchability of the fiber structure, and to improve the stretch durability.
[0011]
In the present invention, the intrinsic viscosity of component A and the intrinsic viscosity of component B satisfy the following formula (A).
[0012]
1.5 ≦ (Ia / Ib) ≦ 2.5 (A)
However, Ia: Intrinsic viscosity of component A, Ib: Intrinsic viscosity of component B.
[0013]
When the intrinsic viscosity Ia of the A component is less than Ia = 1.5 × Ib with respect to the intrinsic viscosity Ib of the B component, the PTT component mainly responsible for the stretchability of the composite fiber is inside the crimped coil that develops. Therefore, not only the elasticity inherent in PTT is not sufficiently exhibited, but also the bulkiness when used in a woven or knitted fabric is difficult to obtain. Furthermore, the stretch durability due to the change in the crystal structure unique to PBT is hardly exhibited. Further, when Ia = 2.5 × Ib is exceeded, not only is it difficult to obtain a composite fiber in a stable manner, but also the side-by-side where the composite interface is greatly curved is increased. It becomes a composite fiber of a mold or an eccentric core-sheath type and cannot be made excellent in stretchability.
[0014]
The composite fiber in the present invention has a crimp elongation of 20% or less, more preferably 15% or less. Exhibits stretch durability when used in woven or knitted fabrics. The expansion / contraction elongation rate is 10% or more. It exhibits extensibility when used in woven and knitted fabrics. Further, the elastic modulus is 90% or more, more preferably 95% or more. Demonstrates shrinkage when used in woven and knitted fabrics. By simultaneously satisfying the properties that the stretch elongation rate is 10% or more and the stretch elastic modulus is 90% or more, a good stretchable polyester composite fiber can be obtained.
[0015]
Moreover, the composite fiber in the present invention has a Wooster yarn unevenness of 2.0% or less. By setting the Worcester yarn unevenness to 2% or less, not only a beautiful fabric surface when used in a woven or knitted fabric can be obtained, but also the occurrence of stained unevenness in dyeing can be avoided. Wooster spots are preferably 1.3% or less.
[0016]
In the present invention, the amount of COOH end groups of polytrimethylene terephthalate is preferably 20 eq / ton or less, and more preferably 15 eq / ton or less. It suppresses thermal degradation of the polymer during composite spinning and improves continuous spinnability.
[0017]
Next, an example of the preferable manufacturing method of the composite fiber of this invention is demonstrated.
[0018]
In the composite fiber manufacturing method of the present invention, when the composite fiber is composite-spun, the yarn that has been composite-spun at a spinning temperature of 260 to 280 ° C. is continuously wound without being wound once, and is stretched after preheating at 50 to 80 ° C. And it is preferable to heat-set at the temperature of 100-180 degreeC. At this time, since PTT and PBT have a lower melting point and inferior heat resistance than PET, the spinning temperature is preferably in the range of 260 to 280 ° C. Further, in order to uniformly heat the yarn and further suppress deterioration of PTT and PBT due to excessive heating, the preheating temperature during stretching is preferably in the range of 50 to 80 ° C., more preferably 60 It is in a range of ˜80 ° C., and makes it easy to obtain fibers having Wooster spots of 2.0% or less. Further, the heat setting temperature at the time of stretching is preferably in the range of 100 to 180 ° C., in order to facilitate handling when processing the composite fiber obtained while suppressing the thermal deterioration of PTT and PBT into a woven fabric. is there. Although the draw ratio is not particularly specified, it is preferably 2.0 to 3.5 times, more preferably 2.5 to 3.3 times, and sufficient stretchability and crimp expression can be achieved by the side-by-side type composite. It is for granting.
[0019]
In the present invention, the provision of entanglement to the yarn is not a particularly essential condition, and the method of imparting entanglement is not particularly specified, but in order to improve handling properties such as unwinding in post-processing, It is preferable to give 1.0-5.0 pieces / m of entanglement by the entanglement applying device.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, the amount of COOH end groups, the intrinsic viscosity, the stretch elongation rate, the stretch elastic modulus, the crimp elongation rate, the Wooster spots, the number of entanglement, the yarn making property, and the stretch durability in the text and examples are as follows. .
(1) COOH end group amount:
This is a value (eq / ton) measured by potentiometric titration using NaOH / MA solution after dissolving 0.5 g of polymer in 10 ml of o-cresol and cooling to 25 ° C.
(2) Intrinsic viscosity:
This is a value (IV) obtained by dissolving 0.8 g of a sample polymer in 10 ml of orthochlorophenol (hereinafter abbreviated as OCP) and calculating the relative viscosity ηr by the following equation using an Ostwald viscometer at 25 ° C.
[0021]
ηr = η / η 0 = (t × q) / (t 0 × q 0 )
IV = 0.0242ηr + 0.2634
Where η: viscosity of the polymer solution, η 0 : OCP viscosity, t: solution drop time (seconds), q: solution density (g / cm 3 ) t 0 : OCP drop time (seconds), q 0 : OCP density (g / cm 3 ).
(3) Stretch / extension rate, stretch / elastic modulus:
A casserole having an original length of 560 mm is made and treated with hot water at 90 ° C. for 20 minutes under a load of 3.53 × 10 −3 cN / dtex. Thereafter, a load of 1.76 × 10 −3 N / dtex (hereinafter abbreviated as M1) is applied to measure the sword length L0 after 30 seconds. Next, after removing M1, a load of 0.09 cN / dtex (hereinafter referred to as M2) is measured. And the case length L1 after 30 seconds is measured, and after removing M2, the case length L2 after 30 seconds is measured by multiplying M1 again. (See FIG. 2).
[0022]
Expansion / contraction elongation (%) = {(L1-L0) / L0} × 100
Elastic modulus of elasticity (%) = {(L1-L2) / (L1-L0)} × 100
(4) Crimp elongation:
After measuring the length L2 of the expansion / contraction elongation and the elastic modulus of elasticity, remove M1, then multiply M2 for 30 seconds, remove M2 and multiply M1 for 30 seconds, and then multiply M1. Then, the scabbard length L3 after 30 seconds is measured and is a value (%) obtained from the following equation (see FIG. 2).
[0023]
Crimp elongation (%) = {(L3-L2) / L2} × 100
(5) Wooster spots:
The measurement was performed in the normal mode while feeding the yarn at a speed of 200 m / min, using USTER TESTER 1 M0delC manufactured by Zellweger.
(6) Number of confounding:
This is a value (pieces / m) obtained from the following equation, measured 30 times at a yarn speed of 4 cm / sec using an AUTO MATCH ENTAGLEMENT TESTER R2060 manufactured by ROTHSCHILD, Switzerland.
[0024]
Number of entanglements (pieces / m) = 1000 mm / entanglement distance mm
(7) Spinnability:
The evaluation was made in the following four stages in ascending order of yarn breakage during continuous spinning.
[0025]
○○: Less than 2.0 times / t ○: Less than 2.5 times / t Δ: Less than 3.0 times / t ×: 3.0 times / t or more (8) Stretch durability:
The evaluation was made in the following four stages in order from the smallest crimp elongation.
[0026]
○○: Less than 10% ○: Less than 15% Δ: Less than 20%: 20% or more (9) Product texture:
Sensory evaluation was performed by five experts on stretchability, bulkiness, and surface roughness, and a four-step evaluation was made based on the following determination.
[0027]
○○: Excellent ○: Good Δ: Acceptable ×: Impossible Note that the product here is a composite yarn obtained according to the present invention with a 1000 T / m twisted yarn as a weft, and a warp of 56 dtex 18 This shows a fabric in which weft is woven at 1/3 twill using normal PET yarn of filaments and subjected to crimp expression treatment and dye finish processing by a normal polyester dyeing process.
[0028]
Example 1
Using a commercially available direct spinning stretcher shown in FIG. 1, using a PTT having an intrinsic viscosity of 1.76, a COOH end group amount of 18.2 eq / ton, and a PBT having an intrinsic viscosity of 0.80 at a spinning temperature of 270 ° C. A side-by-side type composite yarn of 56 dtex 24 filaments with a composite ratio of 60:40 was obtained. That is, the composite yarn 2 was discharged from the composite spinneret 1, sufficiently cooled by the chimney yarn cooling device 3, and then the oil agent was applied by the oiling roller 4. Further, the light agent was homogenized with the light entanglement device 5, then preheated with the first hot roller 6, and then stretched at a speed ratio with the second hot roller 7. At this time, the heat is set at the temperature of the second hot roller 7, entangled by the present entanglement device 8, and wound around the winder 10 via the godet roller 9.
[0029]
In Example 1, the first hot roller speed (hereinafter abbreviated as 1 HRV) was taken at 1800 m / min, preheated at the first hot roller temperature (hereinafter abbreviated as 1 HRT) at 65 ° C., and then the second hot roller speed (hereinafter referred to as 2 HRV). It was 5040 m / min. The film was stretched at a stretching ratio of 2.8 times at a speed ratio of the two rollers, and at the same time, heat set at a second hot roller temperature (hereinafter abbreviated as 2HRT) at 150 ° C., and wound with a winder. The number of yarn breaks was stable at 1.8 times / t, and a composite yarn having a stretchability of 24.4% and a stretch elastic modulus of 95.1% and a good stretchability was obtained. In addition, the crimp elongation rate is excellent at 14.3%, and the stretchability is excellent. Wooster patches are 1.0%, and the thread thickness is small. A product having excellent properties, bulkiness and surface quality was obtained. The results are summarized in Table 1.
[0030]
Example 2
Using PTT having an intrinsic viscosity of 1.36, a COOH end group amount of 15.4 eq / ton and an intrinsic viscosity of 0.80, the composite shown in FIG. 1 was used at a spinning temperature of 265 ° C. in the same manner as in Example 1. A side-by-side type composite yarn of 56 dtex 24 filaments in a ratio of 50:50 was obtained. At this time, it was taken up at 1HRV: 1600 m / min, preheated at 1 HRT: 70 ° C., then 2HRV: 5000 m / min, stretched at a draw ratio of 3.1 times and simultaneously heat set at 2 HRT: 150 ° C., and then wound with a winder I took it. The number of yarn breaks is 2.2 times / t, which is a level that does not cause any problems in actual production, and the stretch elongation rate is 33.4%, the stretch elastic modulus is 99.2%, and the crimp elongation rate is excellent at 9.3%. A composite yarn having stretchability and stretch durability was obtained. Worcester spots were 1.2%, and the thread thickness spots were small. The texture of the products using these threads was excellent in stretchability, bulkiness and surface quality. The results are summarized in Table 1.
[0031]
Example 3
Using PTT having an intrinsic viscosity of 1.65, a COOH end group amount of 11.6 eq / ton and an intrinsic viscosity of 1.10, the composite shown in FIG. 1 was used at the spinning temperature of 280 ° C. in the same manner as in Example 1. A side-by-side type composite yarn of 56 dtex 24 filaments in a ratio of 50:50 was obtained. At this time, it was taken out at 1 HRV: 1500 m / min, preheated at 1 HRT: 60 ° C., then 2HRV: 4350 m / min, drawn at a draw ratio of 2.9 times and simultaneously heat-set at 2 HRT: 170 ° C., and then wound with a winder I took it. The number of yarn breaks is 1.3 times / t, indicating very stable yarn-making properties, with an excellent stretchability of 18.3% stretch elongation, 96.6% stretch elastic modulus, and 9.0% crimp elongation. A composite yarn having stretch durability was obtained. Wooster spots are 1.8%, and the thickness of the threads is not a problem. The texture of the products using these threads is slightly low in elasticity and bulkiness, but is sufficient as an elastic material. An excellent surface quality was obtained. The results are summarized in Table 1.
[0032]
Example 4
Using PTT having an intrinsic viscosity of 1.44, a COOH end group amount of 10.9 eq / ton and an intrinsic viscosity of 0.80, the composite shown in FIG. 1 was used at the spinning temperature of 275 ° C. in the same manner as in Example 1. A side-by-side type composite yarn of 56 dtex 24 filaments in a ratio of 50:50 was obtained. At this time, it was taken up at 1 HRV: 1000 m / min, preheated at 1 HRT: 80 ° C., then 2 HRV: 3000 m / min, stretched at a draw ratio of 3.0, and simultaneously heat-set at 2 HRT: 160 ° C., then wound with a winder I took it. The thread breakage is 0.8 times / t, indicating very stable yarn-making properties, with an excellent stretchability of 27.8% stretch elongation, 98.5% stretch elastic modulus, and 8.5% crimp elongation. A composite yarn having stretch durability was obtained. Worcester spots were 0.8%, and the thread thickness spots were very small. The texture of the products using these threads was very excellent as a stretchable material in terms of stretchability, bulkiness and surface quality. . The results are summarized in Table 1.
[0033]
Example 5
Using a PTT having an intrinsic viscosity of 2.00, a COOH end group amount of 13.8 eq / ton and a PBT having an intrinsic viscosity of 0.80, using the apparatus shown in FIG. A side-by-side type composite yarn of 56 dtex 24 filaments in a ratio of 65:35 was obtained. At this time, it was taken out at 1 HRV: 1200 m / min, preheated at 1 HRT: 60 ° C., then 2 HRV: 3840 m / min, stretched at a draw ratio of 3.2 times and simultaneously heat set at 2 HRT: 180 ° C., and then wound with a winder I took it. The number of yarn breaks is 2.3 times / t, which is a level that is not a problem for actual production, and has excellent stretchability of 30.7% stretch elongation and 92.3% stretch elastic modulus. A composite yarn having an elongation rate of 18.1% and no problem of stretching durability was obtained. Worcester spots were 1.5%, and the thread thickness spots were no problem, and the texture of the product using this thread was good in terms of stretchability, bulkiness and surface quality. The results are summarized in Table 1.
[0034]
Comparative Example 1
Using PTT having an intrinsic viscosity of 0.96, a COOH end group amount of 23.8 eq / ton and an intrinsic viscosity of 0.80, using the apparatus shown in FIG. A side-by-side type composite yarn of 56 dtex 24 filaments in a ratio of 50:50 was obtained. At this time, it was taken up at 1HRV: 1100 m / min, preheated at 1 HRT: 60 ° C., then 2HRV: 3200 m / min, stretched at a draw ratio of 2.9 times and simultaneously heat set at 2 HRT: 150 ° C., and then wound with a winder I took it. The number of yarn breaks was 1.7 times / t, which was a stable yarn-making property. The obtained yarn had a stretch elongation rate of 7.5%, a stretch elastic modulus of 62.3%, and a crimp elongation rate of 23.4. %, The stretchability and the stretch durability were inferior. Worcester spots were 3.3% and the thickness of the thread was large, and the texture of the product using this thread was low in elasticity, lacked in bulkiness, and inferior in surface quality. The results are summarized in Table 1.
[0035]
Comparative Example 2
Using PTT having an intrinsic viscosity of 2.40, a COOH end group amount of 11.1 eq / ton and an intrinsic viscosity of 0.80, the composite shown in FIG. 1 was used at the spinning temperature of 280 ° C. in the same manner as in Example 1. A side-by-side composite yarn of 56 dtex 24 filaments with a ratio of 60:40 was spun. At this time, it was taken up at 1 HRV: 1200 m / min, preheated at 1 HRT: 70 ° C., then 2 HRV: 3300 m / min, stretched at a draw ratio of 2.8 times and simultaneously heat-set at 2 HRT: 160 ° C., and then wound with a winder Attempts were made to take the polymer, however, the twisted yarn at the spinneret was ejected so that the polymer adhered to the die surface and stable spinning could not be performed, making it difficult to actually produce. A very small amount of the obtained yarn could not be highly stretchable with a stretch elongation rate of 6.2%, a stretch elastic modulus of 52.8%, and a crimped stretch rate of 31.9%. The results are summarized in Table 1.
[0036]
Comparative Example 3
Using PTT having an intrinsic viscosity of 1.10, a COOH end group amount of 19.6 eq / ton and an intrinsic viscosity of 1.10, using the apparatus shown in FIG. 1 and a spinning temperature of 275 ° C. A side-by-side composite yarn of 56 dtex 24 filaments in a 50:50 ratio was spun. At this time, it is taken up at 1HRV: 1300 m / min, preheated at 1 HRT: 70 ° C., then 2HRV: 4700 m / min, stretched at a draw ratio of 3.6 times and simultaneously heat-set at 2 HRT: 150 ° C., and wound with a winder I took it. The number of yarn breaks was 2.3 times / t, which was a level that was not a problem for actual production. However, the stretch elongation rate was 5.5%, the stretch elastic modulus was 99.2%, and the crimp elongation rate was 4.2%. Durability shows a high numerical value, Wooster's spot is 1.4% and the thickness of the thread has no problem, but the elasticity is very low, and in products using this thread, there is no elasticity and bulkiness, It could not be highly stretchable. The results are summarized in Table 1.
[0037]
Comparative Example 4
As in Example 5, using PTT having an intrinsic viscosity of 2.00, COOH end group amount of 13.8 eq / ton and intrinsic viscosity of 0.80, using the apparatus shown in FIG. A side-by-side type composite yarn of 56 dtex 24 filaments having a spinning ratio of 280 ° C. and a composite ratio of 65:35 was obtained. At this time, 1HRT: 100 ° C was preliminarily heated at a high temperature, 2HRT: after heat setting at 180 ° C, it was wound with a winder. Other spinning conditions are the same as in Example 5. The number of yarn breaks is 2.2 times / t, which is a level that does not pose any problem in actual production, and has excellent stretchability with a stretch elongation rate of 32.1% and a stretch elastic modulus of 91.5%. A composite yarn having an elongation rate of 20.0% and no problem of stretching durability was obtained, but the Wooster spot was 4.1%, and the thickness spot of the thread was very large. The texture of the product using this yarn has no problem in stretchability and bulkiness, but the surface quality is very poor, and even in the undyed raw machine, a streak pattern is seen on the fabric surface, and the surface unevenness is very good. It was conspicuous and very poor quality. The results are summarized in Table 1.
[0038]
[Table 1]
Figure 0004505960
[0039]
【The invention's effect】
As described above, according to the present invention, in the side-by-side type composite yarn using PTT and PBT, the intrinsic viscosity of the two components is set to an appropriate relationship, and the crimp elongation rate, the stretch extension rate, and the stretch elastic modulus are set in an appropriate range. By doing so, a highly stretchable and durable polyester composite fiber having excellent stretchability and stretchability can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of a composite spinning apparatus used in an embodiment of the present invention.
FIG. 2 is an explanatory view showing a method for measuring stretch elongation rate, stretch elastic modulus, and crimp elongation rate in the present invention.
1: base 2: discharge yarn 3: chimney yarn cooling device 4: oiling roller 5: entanglement guide 6: first hot roller 7: second hot roller 8: entanglement guide 9: relax roller 10: winder 11: package 12 :spindle

Claims (2)

粘度の異なるポリエステルを65:35〜35:65の複合比率でサイドバイサイド型に複合したポリエステル系複合繊維において、COOH末端基量が20eq/ton以下であるポリトリメチレンテレフタレートが主体のA成分と、ポリブチレンテレフタレートが主体のB成分からなり、A成分とB成分の固有粘度が次式(イ)を満足し、捲縮伸び率が20%以下、伸縮伸長率が10%以上、伸縮弾性率が90%以上、ウースター斑が2.0%以下であることを特徴とするポリエステル系複合繊維。
1.5≦Ia/Ib≦2.5 ・・・(イ)
(ただし、IaはA成分の固有粘度、IbはB成分の固有粘度(IV)である)
In a polyester-based composite fiber in which polyesters having different viscosities are combined in a side-by-side type with a composite ratio of 65:35 to 35:65, an A component mainly composed of polytrimethylene terephthalate having a COOH terminal group amount of 20 eq / ton or less, Butylene terephthalate is mainly composed of B component, the intrinsic viscosity of A component and B component satisfies the following formula (A), the crimp elongation is 20% or less, the stretch elongation is 10% or more, and the stretch elastic modulus is 90 % Polyester fiber, wherein Worcester spots are 2.0% or less.
1.5 ≦ Ia / Ib ≦ 2.5 (A)
(However, Ia is the intrinsic viscosity of component A, Ib is the intrinsic viscosity (IV) of component B)
粘度の異なるポリエステルを65:35〜35:65の複合比率でサイドバイサイド型に複合したポリエステル系複合繊維において、COOH末端基量が20eq/ton以下であるポリトリメチレンテレフタレートが主体の高粘度成分とポリブチレンテレフタレートが主体の低粘度成分を用いて複合紡糸を行うに際し、紡糸温度260〜280℃、予備加熱温度50〜80℃、熱セット温度100〜180℃で複合紡糸した未延伸糸条を、一旦巻き取ることなく連続して延伸することを特徴とするポリエステル系複合繊維の製造方法。In a polyester-based composite fiber in which polyesters having different viscosities are combined in a side-by-side type with a composite ratio of 65:35 to 35:65, a high-viscosity component mainly composed of polytrimethylene terephthalate having a COOH terminal group amount of 20 eq / ton or less When performing composite spinning using a low-viscosity component mainly composed of butylene terephthalate, an undrawn yarn that has been composite-spun at a spinning temperature of 260 to 280 ° C., a preheating temperature of 50 to 80 ° C., and a heat setting temperature of 100 to 180 ° C. A method for producing a polyester-based composite fiber, which is continuously drawn without being wound up.
JP2000212391A 2000-07-13 2000-07-13 High stretch durability polyester composite fiber and manufacturing method Expired - Fee Related JP4505960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000212391A JP4505960B2 (en) 2000-07-13 2000-07-13 High stretch durability polyester composite fiber and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000212391A JP4505960B2 (en) 2000-07-13 2000-07-13 High stretch durability polyester composite fiber and manufacturing method

Publications (2)

Publication Number Publication Date
JP2002030527A JP2002030527A (en) 2002-01-31
JP4505960B2 true JP4505960B2 (en) 2010-07-21

Family

ID=18708319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000212391A Expired - Fee Related JP4505960B2 (en) 2000-07-13 2000-07-13 High stretch durability polyester composite fiber and manufacturing method

Country Status (1)

Country Link
JP (1) JP4505960B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036094A (en) * 2002-10-23 2004-04-30 주식회사 휴비스 High crimp false-twisted conjugate polytrimethyleneterephtalate fiber and method of producing thereof
KR100667624B1 (en) * 2002-11-26 2007-01-11 주식회사 코오롱 A high shrinkage side by side type composite filament, and a process of preparing the same
US7094466B2 (en) 2004-10-28 2006-08-22 E. I. Du Pont De Nemours And Company 3GT/4GT biocomponent fiber and preparation thereof
CN100359057C (en) * 2004-11-10 2008-01-02 新光合成纤维股份有限公司 Self-crinkling composite fiber and producing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328382A (en) * 1999-03-15 2000-11-28 Teijin Ltd Elastic spun yarn
JP2000328370A (en) * 1999-03-15 2000-11-28 Teijin Ltd Polyester composite fiber and nonwoven fabric including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328382A (en) * 1999-03-15 2000-11-28 Teijin Ltd Elastic spun yarn
JP2000328370A (en) * 1999-03-15 2000-11-28 Teijin Ltd Polyester composite fiber and nonwoven fabric including the same

Also Published As

Publication number Publication date
JP2002030527A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
TW571008B (en) Composite fiber with excellent post-treatment processibility and its production method
JP3859672B2 (en) Composite fiber and method for producing the same
TWI413715B (en) Conjugate fiber-containing yarn
JP3953040B2 (en) Composite fiber and method for producing the same
JP6699403B2 (en) Composite polyamide fiber for false twist
JP4505960B2 (en) High stretch durability polyester composite fiber and manufacturing method
JP7476619B2 (en) Polyester composite fiber
JP2008274446A (en) Latently crimpable conjugate fiber
JP3753658B2 (en) Polytrimethylene terephthalate multifilament yarn
KR101187734B1 (en) Composite fibers of high elastic polyester and method of manufacturing the same using high speed spinning
JP3861566B2 (en) Method for producing highly stretchable polyester composite yarn
JP4111751B2 (en) False twisted yarn and manufacturing method thereof
JP3506129B2 (en) False twisted yarn and method for producing the same
JP2007247107A (en) Bulky polyester conjugate fiber
JP4710141B2 (en) Polyester composite yarn for high stretch woven and knitted fabric
JP3464385B2 (en) Polyester diversity yarn
JP7439960B2 (en) Composite fibers, multifilaments and textile products
JP4021794B2 (en) Composite fiber for textile and its manufacturing method
JP4687091B2 (en) Soft stretch yarn and fabric
JP4380519B2 (en) Method for producing soft stretch yarn
JP3992604B2 (en) Polyester blended yarn
JP2003342843A5 (en)
JP4660882B2 (en) Composite false twisted yarn and method for producing the same
JP3757710B2 (en) Latent crimped polyester fiber and production method
JP2006265758A (en) Polyamide monofilament and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees