JPS60117738A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60117738A
JPS60117738A JP22717683A JP22717683A JPS60117738A JP S60117738 A JPS60117738 A JP S60117738A JP 22717683 A JP22717683 A JP 22717683A JP 22717683 A JP22717683 A JP 22717683A JP S60117738 A JPS60117738 A JP S60117738A
Authority
JP
Japan
Prior art keywords
heat treatment
layer
ion implantation
implantation
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22717683A
Other languages
Japanese (ja)
Other versions
JPS646537B2 (en
Inventor
Shunichi Sato
俊一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP22717683A priority Critical patent/JPS60117738A/en
Publication of JPS60117738A publication Critical patent/JPS60117738A/en
Publication of JPS646537B2 publication Critical patent/JPS646537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve the breakdown voltage characteristic of p-n junction by a gettering effect by forming an ion implantation layer which is ions implanted more than the threshold implantation quantity followed by heat treatment of 300-600 deg.C after completing the all heat treatment over 600 deg.C. CONSTITUTION:An n<+> type emitter layer 4 and an n<+> type diffusion layer 5 for a ohmic contact of a collector electrode are formed and a process of heat treatment over 600 deg.C is completed in this process. Subsequently, for the whole of back surface of a wafer 1, Ar implantation over a threshold implantation quantity of Ar is performed to form an ion implantation layer 6 which is made to be amorphous. Next, holes are opened on an SiO2 film and Al is patterned followed by heat treatment with 480 deg.C in an N2 atmosphere to form an emitter electrode 7, a base electrode 8 and a collector electrode 9. The heat treatment at forming these electrodes also works concurrently as the heat treatment for causing a gettering effect in the ion implantation layer 6.

Description

【発明の詳細な説明】 「技術分野」 本発明は、ゲッタリングによる半導体装置の耐圧特性改
善の方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a method for improving breakdown voltage characteristics of a semiconductor device by gettering.

「従来技術」 Pn 接合の近傍に重合端イオン等が存在すると、その
部分に電界が集中し、全体の接合がブレークダウンする
前に局部的にブレークダウンし、耐圧が低下する原因と
なる。このため、半導体装績の動作に余シ影譬を与えな
い部分、たとえば半導体ウェハの裏面にサンドブラスト
やイオン注入によって機械的歪を与え、この歪層に重金
属イオン等を固定させて耐圧特性を改善する方法、いわ
ゆるゲッタリング技術が知られている。
"Prior Art" If polymerization end ions or the like exist in the vicinity of a Pn junction, the electric field concentrates in that part, leading to local breakdown before the breakdown of the entire junction, resulting in a reduction in breakdown voltage. For this reason, mechanical strain is applied by sandblasting or ion implantation to parts that do not adversely affect the operation of semiconductor devices, such as the backside of semiconductor wafers, and heavy metal ions, etc. are fixed in this strained layer to improve withstand voltage characteristics. A so-called gettering technique is known.

イオン注入によるゲッタリングの例をシリコントランジ
スタの場合について説明する。まず、外形シリコンウェ
ハの表面にボロ/を拡散してP形ベース層を形成する。
An example of gettering by ion implantation will be explained in the case of a silicon transistor. First, a P-type base layer is formed by diffusing boro/on the surface of a silicon wafer.

次に、フェノ・の裏面にAr(アルゴン)イオンを注入
した後、フェノ・の表面にリンを拡散して♂形エミッタ
層およびコレクタ電極のオーミックコノタクト用外形拡
赦層を形成する。Ar 注入によってフェノ・の裏面近
傍はアモルファス化し、多くの結晶欠陥が生じる。この
結晶欠陥が、引き続いて行なわれるリン拡散の熱処理に
よってウニノ・の表面側に伝播し、重金属イオン等を固
定するゲッタリングの効果を発揮する。
Next, after implanting Ar (argon) ions into the back surface of the phenol, phosphorus is diffused onto the surface of the phenol to form a male-shaped emitter layer and a shape expanding layer for the ohmic contact of the collector electrode. By implanting Ar, the vicinity of the back surface of the phenol becomes amorphous and many crystal defects are generated. These crystal defects are propagated to the surface side of the oxide film by the subsequent heat treatment for phosphorus diffusion, and exert a gettering effect that fixes heavy metal ions and the like.

このように、従来のイオン注入によるゲッタリングは、
イオン注入後の熱処理を比較的高温で行なう必要がある
とされていたため、この熱処理を不純物拡散の際の90
0〜1200℃程度の熱処理に便乗して行なっていた。
In this way, gettering by conventional ion implantation is
It was believed that it was necessary to perform heat treatment after ion implantation at a relatively high temperature, so this heat treatment was
This was done by taking advantage of the heat treatment at about 0 to 1200°C.

一方、本願の発明者等が上記従来のゲッタリングについ
て値験したところ、シリコンウニ/・の裏面にArイオ
ンを注入して1100℃程度の熱処理を施したものでは
、イオン注入による結晶欠陥がウェハの表面側にまで伝
播して、拡散による歪や表面から侵入した汚れ等との相
互作用によって、耐圧低下の原因となる新たな結晶欠陥
が形成される場合のあることがわかった。このため、従
来のゲッタリングでは、耐圧を向上させる効果と同時に
、その効果を打ち消す作用も含んでいることが推測され
た。
On the other hand, the inventors of the present application have experienced the above conventional gettering and found that when Ar ions were implanted into the back surface of the silicon urchin and heat treated at approximately 1100°C, crystal defects caused by the ion implantation were removed from the wafer. It has been found that new crystal defects that cause a decrease in breakdown voltage may be formed due to distortion caused by diffusion and interaction with dirt that has entered from the surface. For this reason, it has been speculated that conventional gettering has the effect of improving breakdown voltage as well as the effect of canceling that effect.

「発明の目的」 本発明の目的は、イオン注入によるゲッタリングの効果
を向上させ、半導体装置の耐圧特性を改善することにあ
る。
[Object of the Invention] An object of the present invention is to improve the gettering effect by ion implantation and to improve the breakdown voltage characteristics of a semiconductor device.

「実施例」 第1図は、本発明を適用したシ1リコントランジスタの
製造方法を示すものである。
Embodiment FIG. 1 shows a method of manufacturing a silicon transistor to which the present invention is applied.

tf、s形シリコンウニノ・(1)の表面から、8i(
h膜(2)をマスクとしてボロンの選択拡散を行ない、
深さ2μのP形ベース層(3)を形成した(第1回込)
参照)。拡散温度は、BBrsを不純物源とするプレデ
ポジションが950℃、ドライブインが1150℃であ
る。
tf, 8i (
Perform selective diffusion of boron using the h film (2) as a mask,
A P-type base layer (3) with a depth of 2μ was formed (first round included)
reference). The diffusion temperature is 950° C. for pre-deposition using BBrs as an impurity source, and 1150° C. for drive-in.

次に、ベース層表面およびベース層と離れだウェハ(1
)の表面にリンの選択拡散を行ない、深さ15μのn+
形エミッタ層(4)およびコレクタ電極のオーミックコ
ンタクト用J形拡赦層(5)を形成した(第1図(B)
参照)。拡散温度は、POClsを不純物源とするプレ
デポジションが950℃、ドライブインが1000℃で
ある。このとき、エミッタ押出し効果によって、ベース
幅は1μとなった。なお、この工程で6000以上の熱
処理工程は終了した。
Next, the base layer surface and the wafer (1
) to perform selective diffusion of phosphorus on the surface of the n+
A J-shaped emitter layer (4) and a J-shaped compensation layer (5) for ohmic contact of the collector electrode were formed (Fig. 1(B)).
reference). The diffusion temperature is 950° C. for pre-deposition using POCls as an impurity source, and 1000° C. for drive-in. At this time, the base width was 1 μm due to the emitter extrusion effect. It should be noted that more than 6,000 heat treatment steps were completed in this step.

続いてウェハ(1)の&面全面に、Ar イオンの臨昇
注入量(約3.5 X 10”個/d)を越えるI X
 1 o”(l!/cdのAr注入を行ない、ウェハ(
1)の裏面近傍にアモルファス化したイオン注入層(6
)を形成した(第1゛図(C)参照)。
Subsequently, I
Argon implantation was performed at 1 o" (l!/cd), and the wafer (
1) An amorphous ion-implanted layer (6
) was formed (see Figure 1(C)).

次に、SiO2膜(2)を開孔し、Atを電子ビーム蒸
着し、とのAtをパターン形成した俵、N2 雰囲気中
で480℃30分の熱処理を行ない、エミッタ電極(7
)、ベース電極(8)およびコレクタ電極(9)を形成
した(第1図(D)参照)。この電極形成時の熱処理は
、イオン注入層(6)にゲッタリング効果を発揮させる
だめの熱処理を兼ねたものである。
Next, holes were opened in the SiO2 film (2), At was deposited by electron beam, and the bale with patterned At was heat-treated at 480°C for 30 minutes in a N2 atmosphere, and the emitter electrode (7
), a base electrode (8) and a collector electrode (9) were formed (see FIG. 1(D)). This heat treatment during electrode formation also serves as a heat treatment for causing the ion-implanted layer (6) to exhibit a gettering effect.

なお、この実施例においては、ゲッタリングの効果を明
らかにするため、ベース幅1μに対し、ベー玉面積が1
8.36fJ、エミッタ面積1766−という大面積の
トランジスタを形成した。このため、良品率はかなり低
い値となっている。ウェハの厚さは280μであった。
In this example, in order to clarify the effect of gettering, the bead area is 1μ for the base width 1μ.
A transistor with a large area of 8.36 fJ and an emitter area of 1766 mm was formed. For this reason, the non-defective product rate is quite low. The wafer thickness was 280μ.

「発明の効果」 @2図は、第1図(D)に示した本発明に係るトランジ
スタと従来のトランジスタについて、コレクタ・ベース
接合のブレークダウン電圧BVCBO全比較したデータ
である。従来のトランジスタとは、第1図の製造工程に
おけるAr注大人工程エミッタ拡散直前に繰り上げたも
ので、それ以外は本発明に係るトランジスタの製造工程
と全く同じ工程で作られたものである。
"Effects of the Invention" Figure 2 shows data comparing the collector-base junction breakdown voltage BVCBO of the transistor according to the present invention shown in Figure 1 (D) and the conventional transistor. The conventional transistor is a transistor that is produced immediately before the emitter diffusion in the Ar injection step in the manufacturing process shown in FIG. 1, and other than that, it is manufactured in exactly the same process as the transistor according to the present invention.

第2図の耐圧のヒストグラムによれば、本発明に係るト
ランジスタは、従来のトランジスタと比べてBVCBO
が全体的に高いことがわかる。また、BVCBOが10
0v以上の試料数は、従来のトランジスタでは63個中
21個(33,3%)であるのに対して、本発明に係る
トランジスタでは63個中27個(429%)であり、
耐圧歩留シの向上が認めらオLる。さらに、電流−■、
圧時特性カーブトレーサ二で観察すると、本発明に係る
トランジスタでは、鋭いブレークダウン特性()A−ド
ブレークダウン)を呈した試料数が従来のトランジスタ
の場合より多かった。
According to the withstand voltage histogram in FIG. 2, the transistor according to the present invention has a BVCBO
is found to be high overall. Also, BVCBO is 10
The number of samples of 0 V or more was 21 out of 63 (33.3%) for the conventional transistor, while it was 27 out of 63 (429%) for the transistor according to the present invention.
An improvement in pressure resistance yield was observed. Furthermore, the current −■,
When observed using a voltage characteristic curve tracer 2, the number of samples exhibiting sharp breakdown characteristics (A-de breakdown) was greater in the transistor according to the present invention than in the case of conventional transistors.

このように耐圧特性が改良される理由は、イオン注入の
後で行なう熱処理の温度が従来より大幅に低い7にめ、
イオン注入によシ訪起された結晶欠二岡のウェハ表面側
への伝播が少なく、従来例の項で述べた相互作用による
新たな結晶欠陥が発生しないためであると考えられる。
The reason for this improvement in breakdown voltage characteristics is that the temperature of the heat treatment performed after ion implantation is significantly lower than that of conventional methods7.
This is thought to be because the propagation of the crystal defects caused by ion implantation to the wafer surface side is small, and no new crystal defects are generated due to the interaction described in the conventional example section.

また、イオン注入量を臨界注入41以上とすることによ
り、比較的低溝の熱処理であっても、十分にゲッタリン
グ効果が発揮されるためであると考えられる。
Further, it is believed that this is because by setting the ion implantation amount to the critical implantation level of 41 or more, the gettering effect is sufficiently exhibited even when heat treatment is performed on a relatively small groove.

なお、本発明においては、熱処理温度が低いため、アモ
ルファス化したイオン注入層が十分に再結晶化しない恐
れがある。しかし、アモルファス化する領域は半導体装
置の動作に余り影響を与えない部分であること、および
従来よシ低い温歴とは言ってもある程度の再結晶化は起
こると考えら:lするので、実用上問題は起こらない。
In the present invention, since the heat treatment temperature is low, there is a possibility that the amorphous ion-implanted layer may not be sufficiently recrystallized. However, it is believed that the region that becomes amorphous does not have much effect on the operation of the semiconductor device, and that although it has a lower temperature history than conventionally, some recrystallization will occur. No problems occur.

「その他」 ゲッタリングのだめのイオン注入する元素トシての1、
シリコンウェハに対してはアルゴン、酸素およびリンが
効果的である。しかし、その他の元素でも利用できない
ことはない。 ・ イオン注入量については、前述のように、ゲッタリング
効呆の確実さを期すため、臨界注入晋以上とする。臨界
注入量は、第3図に示すように、イオン注入によってイ
オン注入層を発生する結晶欠陥密度が飽和する注入量で
あり、イオン注入した部分が全面的にアモルファス化す
るときの注入量に相当する。なお、臨界注入量を越えた
ときに結晶欠陥密度が少し低下するのは、アモルファス
化された層の再結晶化がイオン注入による結晶欠陥の発
生より支配的になるためと考えられる。
``Others'' Elements to be implanted for gettering ions,
Argon, oxygen and phosphorous are effective for silicon wafers. However, it is not impossible to use other elements as well. - As mentioned above, the ion implantation amount should be greater than the critical implantation level to ensure gettering effectiveness. As shown in Figure 3, the critical implantation dose is the implantation dose at which the crystal defect density that generates the ion-implanted layer is saturated by ion implantation, and corresponds to the implantation dose at which the ion-implanted area becomes completely amorphous. do. The reason why the crystal defect density slightly decreases when the critical implantation dose is exceeded is considered to be that recrystallization of the amorphous layer becomes more dominant than the generation of crystal defects due to ion implantation.

イオン注入後の熱処理温度としては、実用的には300
〜600℃が適している。すなわち、600℃を越える
と、結晶欠陥が耐圧特性に力えるマイナスの効果が大き
くなる。300℃未満では、0L金属イオン等の移動が
十分に起こらないので、ゲッタリング効果が小さい。熱
処理時間は粧少なファクタではないが、あまシ短いとゲ
ッタリングが十分に起こら彦いので、少なくとも15分
間以上、通常は30分間程度もしくはそれ以上とする。
The heat treatment temperature after ion implantation is practically 300°C.
~600°C is suitable. That is, when the temperature exceeds 600° C., the negative effect that crystal defects have on the breakdown voltage characteristics increases. If the temperature is less than 300° C., sufficient movement of 0L metal ions and the like does not occur, so the gettering effect is small. The heat treatment time is not a factor in reducing heat treatment, but if it is too short, gettering will not occur sufficiently, so the heat treatment time should be at least 15 minutes or more, usually about 30 minutes or more.

イオン注入する領域は、実施例のように、実質的には半
導体ウニノ・の表面近傍に半導体装置が作り込まれてい
る場合は、ウニI・の裏面側領域にゲッタリングのだめ
のイオン注入を行なうのがよい。
As for the region to be ion-implanted, if the semiconductor device is built substantially near the surface of the semiconductor unit I, as in the example, the ion implantation for gettering is performed in the region on the back side of the semiconductor unit I. It is better.

2・−1 −・また、実施例のような場合でも、Pn接合を包囲す
る領域(特に、チップ化のだめの切断領域近傍)をイオ
ン注入領域に選ぶこともできる。さらに、エミッタ接合
に悪影響を与えない範囲で浅くエミッタ領域表面にイオ
ン注入することもできる。もちろん、これらの領域の全
面にイオン注入しなければならないと言うものではなく
、ウニノ)裏面のうちPn接合との対向領域に限ってイ
オン注入しlたり、ウェハ表面の縦横の切断領域のうち
、縦方向の切1ti[Itl域のみに沿ってイオン注入
するような方法を採ることもできる。また、エピタキシ
ャル二rj4拡散形トランジスタや三車拡敵形トランジ
スタのような場合、ウェハ表面側にエミツタ層とペース
層が形成されており、ウェハ表面側は厚いコレクタ高抵
抗層である。しかし、このコレクタ高抵抗層はトランジ
スタ動作にはほとんど関係しなかえない。
2.-1-.Furthermore, even in the case of the embodiment, the region surrounding the Pn junction (particularly the vicinity of the cutting region for chipping) can be selected as the ion implantation region. Furthermore, ions can be implanted shallowly into the surface of the emitter region within a range that does not adversely affect the emitter junction. Of course, this does not mean that ions must be implanted over the entire surface of these regions, but ions may be implanted only in the region facing the Pn junction on the back surface of the wafer, or in the vertical and horizontal cut regions on the front surface of the wafer. It is also possible to adopt a method in which ions are implanted only along the longitudinal cut region. Further, in the case of an epitaxial two-rj-four diffusion type transistor or a three-wheel extended type transistor, an emitter layer and a space layer are formed on the wafer surface side, and a thick collector high resistance layer is formed on the wafer surface side. However, this collector high resistance layer has little to do with transistor operation.

ンジスタの製造方法を示す断面図、第2図は本発明の1
実施例および従来例のBVCBOに関するヒストグラム
、第3図はイオン注入における臨界注入量を説明するグ
ラフである。
FIG. 2 is a sectional view showing a method of manufacturing a resistor.
FIG. 3 is a histogram of the BVCBO of the embodiment and the conventional example, and is a graph illustrating the critical implantation dose in ion implantation.

(1)・・・n形シリコンウニノ・、(3)・・・P形
ペース層。
(1)...N-type silicon unino, (3)...P-type paste layer.

(4)・・C形エミッタ層、(6)・・・イオン注入層
(4)...C-type emitter layer, (6)...ion implantation layer.

(7)・・エミッタ電極。(7)...Emitter electrode.

特許出願人 サンケン電気株式会社 図面の浄書(内容に変更なし) 第1図 第2図′ BVc8. (V) 第3図 /−’ − 臨¥+注入量 イオ〉ヨ主X量 手続補正書 (自発) 昭和58年12月 7日 1、倶件の表示 ’;’;j’ 2Z 2771昭和5
8年11月30日提出の特許願 2、発明の名称 半導体装置の製造方法 3 補正をする者 4 補正の対象 明細書全文および図面。
Patent applicant: Sanken Electric Co., Ltd. Engraving of drawings (no changes in content) Figure 1 Figure 2' BVc8. (V) Figure 3/-' - Io + Injection amount Io〉Yo Main X amount procedural amendment (voluntary) December 7, 1982 1, Indication of matter ';';j' 2Z 2771 1977
Patent application 2 filed on November 30, 1988. Title of invention: Method for manufacturing a semiconductor device 3. Person making the amendment 4. Full text of the specification to be amended and drawings.

5 補正の内容 明1t+書の浄書(内容に変更なし)および図面の浄書
(内容に変更なし)。
5. Description of the amendment 1t + engraving of the book (no change in content) and engraving of drawings (no change in content).

Claims (2)

【特許請求の範囲】[Claims] (1) 少なくとも一つのPn接合もしくはショットキ
ー接合が形成されている半導体基板に対して、600℃
を越える熱処理をすべて終了した後に、最終的に形成さ
れる半導体装置の動作に実質的に悪影響を与えない領域
に、臨界注入量以上のイオンを注入したイオン注入層を
形成し、しかる後に、300〜600℃の熱処理を施し
、前記イオン注入層て基づくゲッタリング作用によって
前記P%接合の耐圧特性を改善することを特徴とする半
導体装Iパ・イの製造方法。
(1) 600°C for a semiconductor substrate on which at least one Pn junction or Schottky junction is formed.
After completing all heat treatments exceeding 300 mL, an ion implantation layer with ions implanted at a critical dose or higher is formed in a region that does not substantially adversely affect the operation of the semiconductor device to be finally formed. A method for manufacturing a semiconductor device I-P, characterized in that heat treatment is performed at ~600° C. to improve breakdown voltage characteristics of the P% junction by gettering action based on the ion-implanted layer.
(2) 前記600℃以下の熱処理が電極金属の熱処理
を兼ねて行なわれる特許請求の範囲第1項記載の半導体
装置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the heat treatment at 600° C. or less is performed also as heat treatment of the electrode metal.
JP22717683A 1983-11-30 1983-11-30 Manufacture of semiconductor device Granted JPS60117738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22717683A JPS60117738A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22717683A JPS60117738A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60117738A true JPS60117738A (en) 1985-06-25
JPS646537B2 JPS646537B2 (en) 1989-02-03

Family

ID=16856672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22717683A Granted JPS60117738A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60117738A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590279A (en) * 1991-03-21 1993-04-09 Philips Gloeilampenfab:Nv Manufacture of semiconductor device
JPH07263453A (en) * 1994-03-25 1995-10-13 Toshiba Corp Semiconductor device and its manufacture
US5757063A (en) * 1994-03-25 1998-05-26 Kabushiki Kaisha Toshiba Semiconductor device having an extrinsic gettering film
JP2011253983A (en) * 2010-06-03 2011-12-15 Disco Abrasive Syst Ltd Method for adding gettering layer to silicon wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396666A (en) * 1977-02-04 1978-08-24 Hitachi Ltd Manufacture of semiconductor device with pn junction
JPS5666046A (en) * 1979-11-01 1981-06-04 Sony Corp Processing method of semiconductor substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396666A (en) * 1977-02-04 1978-08-24 Hitachi Ltd Manufacture of semiconductor device with pn junction
JPS5666046A (en) * 1979-11-01 1981-06-04 Sony Corp Processing method of semiconductor substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590279A (en) * 1991-03-21 1993-04-09 Philips Gloeilampenfab:Nv Manufacture of semiconductor device
JPH07263453A (en) * 1994-03-25 1995-10-13 Toshiba Corp Semiconductor device and its manufacture
US5698891A (en) * 1994-03-25 1997-12-16 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US5757063A (en) * 1994-03-25 1998-05-26 Kabushiki Kaisha Toshiba Semiconductor device having an extrinsic gettering film
JP2011253983A (en) * 2010-06-03 2011-12-15 Disco Abrasive Syst Ltd Method for adding gettering layer to silicon wafer

Also Published As

Publication number Publication date
JPS646537B2 (en) 1989-02-03

Similar Documents

Publication Publication Date Title
US4616404A (en) Method of making improved lateral polysilicon diode by treating plasma etched sidewalls to remove defects
JPS6063961A (en) Manufacture of semiconductor device
JP3489832B2 (en) Self-aligned CMOS process
JPS6338859B2 (en)
US4803174A (en) Bipolar transistor integrated circuit and method of manufacturing the same
JPS60117738A (en) Manufacture of semiconductor device
JP2002231968A (en) Semiconductor device and method of manufacturing the same
JPH0326535B2 (en)
JPS61285766A (en) Manufacture of semiconductor device
JP2008004704A (en) Method of manufacturing semiconductor element
JP2547690B2 (en) Method for manufacturing LDD transistor
JP3277910B2 (en) Field effect transistor and method of manufacturing the same
JPS60127755A (en) Manufacture of semiconductor device
JP2504733B2 (en) Integrated circuit and manufacturing method thereof
JPS59211277A (en) Semiconductor device
JPH0595000A (en) Manufacture of semiconductor device
JPH0770543B2 (en) Transistor manufacturing method
JPH098062A (en) Manufacture of semiconductor device
JPH0661234A (en) Production of semiconductor device
JP3095439B2 (en) Method for manufacturing semiconductor device
JPS6068611A (en) Manufacture of semiconductor device
JPS59123271A (en) Manufacture of compound semiconductor device
JPH04170022A (en) Method for forming buried layer
JPS60144967A (en) Lateral bipolar transistor and manufacture thereof
JPS61108174A (en) Manufacture of field effect transistor