JPS60111414A - Plasmic vapor-phase reaction method and manufacturing equipment thereof - Google Patents

Plasmic vapor-phase reaction method and manufacturing equipment thereof

Info

Publication number
JPS60111414A
JPS60111414A JP58219199A JP21919983A JPS60111414A JP S60111414 A JPS60111414 A JP S60111414A JP 58219199 A JP58219199 A JP 58219199A JP 21919983 A JP21919983 A JP 21919983A JP S60111414 A JPS60111414 A JP S60111414A
Authority
JP
Japan
Prior art keywords
reaction
substrate
reactive gas
chamber
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58219199A
Other languages
Japanese (ja)
Other versions
JPH0244141B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Mamoru Tashiro
田代 衛
Minoru Miyazaki
稔 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP58219199A priority Critical patent/JPS60111414A/en
Publication of JPS60111414A publication Critical patent/JPS60111414A/en
Publication of JPH0244141B2 publication Critical patent/JPH0244141B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a film of uniform thickness by a method wherein a plasma confinement space is provided in a reaction chamber using an insulator, and a pair of electric fields are provided in the space using a paralleled flat-plate electrode. CONSTITUTION:The multichamber system plasmic vapor-phase reaction device, having two reaction chambers I and III of three reaction systems formed by laminating semiconductors of P, I and N types, the first preparatory chamber and a buffer chamber II to be used for transfer, has two reaction chambers 101 and 103 and a buffer chamber 102, and isolated parts 44-47 are provided between each reaction chamber. Also, reactive gas feeding hoods 17 and 18 and exhaust hoods 17' and 18' are provided independently in such a manner that the reactive gas will be brought from the feeding system to the exhaust system in a laminar flow. The upper and the lower electrodes 51, 52, 61 and 62 are provided on the whole surface inside the hoods 17, 17' and 18, and a equifield is generated in the entire space in parallel with the substrate surface. Also, the reactive gas is laminar-flowed from the upper side hood to the lower side hood 17' through the confinement space of an external frame jig 38 so that the reactive gas will be brought in parallel with the surface of the substrate 1.

Description

【発明の詳細な説明】 本発明はプラズマ気相反応方法およびその製造装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma gas phase reaction method and an apparatus for producing the same.

本発明は反応容器内にプラズマを絶縁物により閉じ込め
る空間を設け、その中に一対の電界を平行手抜電極によ
り供給することにより、均一な膜厚の被膜を作製するこ
とを目的とする。
An object of the present invention is to provide a space in a reaction vessel in which plasma is confined by an insulator, and to supply a pair of electric fields to the space using parallel electrodes, thereby producing a film having a uniform thickness.

本発明はかかる目的のため、電界即ち電気力線は基板の
被形成面に概略平行になり、等電位面は垂直となるよう
に発生させ、プラズマ気相反応をせしめるとともに、こ
のプラズマ特に陽光柱を周辺の絶縁物例えばガラスまた
はアルミナセラミンク板で取り囲むことによりステンレ
ス等の金属反応容器から電気的にシールドをさせ、端部
(周辺部)においてもプラズマの中央部と同様の平行電
界を生ぜしめることにより均一な膜厚の被膜形成をさせ
ることを目的とする。
For this purpose, the present invention generates an electric field, that is, lines of electric force, to be approximately parallel to the surface on which the substrate is formed, and an equipotential surface to be perpendicular to the formation surface of the substrate, thereby causing a plasma gas phase reaction. By surrounding the plasma with a surrounding insulator such as glass or alumina ceramic plate, it is electrically shielded from a metal reaction vessel such as stainless steel, and a parallel electric field similar to that at the center of the plasma is generated at the edge (periphery). The purpose of this is to form a film with a uniform thickness.

従来、プラズマ気相反応(以下pcvoという)方法に
おいては、一対のみの電極を平行に配し、平(2) 行平板型電極とし、その電極間にプラズマ放電をグロー
放電法により実施することにより半導体被膜等の形成を
行っていた。かかるPCVD法においては、プラズマで
発生した陽光柱は反応容器内の全空間に広がりやすいた
め、陽光柱内に基板を配設させることなく、いずれか一
方の電極−にに密接して配設する(電界に垂直となる)
構造をさせる以外に、被膜の均一性を±5%以内のばら
つきの範囲に有せしめることができる方法がなかった。
Conventionally, in the plasma vapor phase reaction (hereinafter referred to as PCVO) method, only a pair of electrodes are arranged in parallel to form two-row plate type electrodes, and a plasma discharge is generated between the electrodes by the glow discharge method. Formation of semiconductor coatings, etc. was performed. In such a PCVD method, since the positive column generated by plasma tends to spread throughout the entire space within the reaction vessel, the substrate is not disposed within the positive column, but is placed closely to one of the electrodes. (perpendicular to the electric field)
There is no other way to make the coating uniform within ±5% of variation other than by changing the structure.

しかしかかる方式では、被形成面を電極面積以上に大き
くすることができない。このため、多量生産に不向きで
あるという欠点を有する。
However, in this method, the surface on which the electrode is formed cannot be made larger than the area of the electrode. Therefore, it has the disadvantage of being unsuitable for mass production.

他方、平行平板型電極の間にその電界が被形成面に概略
平行になるように多数の基板を互いに一定の距離(2〜
6cm)を離間して林立せしめて配設する方法が知られ
ている。
On the other hand, a large number of substrates are placed at a certain distance (2 to 2) from each other so that the electric field between the parallel plate electrodes is approximately parallel to the surface to be formed.
A method of arranging them in a forest with a distance of 6 cm) is known.

その−例は不発門人の出願になる特許願(プラズマ気相
反応装置 昭和57年9月20日出願 特願昭57−1
63728/163729/163730)である。
An example of this is a patent application filed by an unexplored student (Plasma gas phase reactor, filed on September 20, 1980, patent application No. 1, 1982).
63728/163729/163730).

即ち、基板を電位的にいずれの電極からも遊離(3) せしめて気相反応を行ういわゆるフローティングプラズ
マ気相反応方法(以下FPCVD法という)において、
多量の基板に被−膜形成を行うことができるという特長
を有する。このため従来より公知の平行平板型電極の一
方電極上に基板を配設する方法に比べて、5〜20倍の
生産性をあげることができた。しかし、かかるFPCV
D法において得られる膜厚の均一性はその一例として第
1図に示すごときものであった。
That is, in the so-called floating plasma vapor phase reaction method (hereinafter referred to as FPCVD method) in which the substrate is electrically isolated from any electrode (3) and a vapor phase reaction is carried out,
It has the advantage of being able to form coatings on a large number of substrates. Therefore, compared to the conventional method of disposing a substrate on one electrode of a parallel plate type electrode, productivity could be increased by 5 to 20 times. However, such FPCV
An example of the uniformity of film thickness obtained by method D is as shown in FIG.

第1図(A)において、そのA−A’、B−B’、c 
−c’、D−げの縦断面図を(B >、(C>、< D
 >、(E )に示す。さらに第1図(A)における基
板(1)と電極(62)、(52)との相対位置関係を
示している。
In Figure 1 (A), the A-A', B-B', c
-c', D- The longitudinal cross-sectional view of the
>, shown in (E). Furthermore, the relative positional relationship between the substrate (1) and the electrodes (62) and (52) in FIG. 1(A) is shown.

基板(1)は約5000人の厚さに非単結晶珪素半導体
を形成したものであるが、一対の電極(62)、<52
)間で(C)に示すごとく、電極近傍が厚くなり、また
( B )、< D >、(E )に示すごと(電極の
中央部が厚く、また電極端部が薄くなってしまった。こ
のため基板(1)上下側の側端部に形成される膜厚は中
央部の上下端部の厚さに比べて20〜30%も厚(4) さが薄くなってしまった。
The substrate (1) has a non-single crystal silicon semiconductor formed to a thickness of approximately 5000 nm, and a pair of electrodes (62), <52
), as shown in (C), the area near the electrode became thicker, and as shown in (B), <D>, and (E) (the central part of the electrode became thicker and the end part of the electrode became thinner). For this reason, the thickness of the film formed on the upper and lower side edges of the substrate (1) is 20 to 30% thinner than the thickness of the upper and lower edges of the central portion.

即ち、従来より公知のPCVD法に比べて、そのプラズ
マ反応に用いられる高周波の電界は被形成面に添って流
れるように層流を構成して供給され、即ち電界は被形成
面に概略平行になるように配設させているため、被形成
面のスパッタが少ないという特長を有する。
That is, compared to the conventionally known PCVD method, the high-frequency electric field used for the plasma reaction is supplied in a laminar flow along the surface to be formed, that is, the electric field is approximately parallel to the surface to be formed. Since it is arranged so that the formation surface is formed, spatter is reduced.

しかしこの不発門人のFPCVD法の発明をさらに検討
を加えた結果、周辺部(38)、<38’)の絶縁物(
石英)で囲まれている部上空間の上部および下部に1〜
3cmの巾の隙間(73)、<73’)があり、さらに
その外側に導体のステンレス容器が接地レベルで配置さ
れていることにより、ここよりプラズマが外部にもれて
しまう。このもれにより反応空間の電界、電気力線が乱
れてしまったため、かかる不均一性被膜が形成されてし
まったためであることが判明した。さらに反応性気体の
流れもこの隙間のため層流とならず、これも隙間近傍の
被形成面上での被膜厚が薄くなったことが判明した。
However, as a result of further examination of this dud's invention of the FPCVD method, we found that the insulating material (
1~ at the top and bottom of the upper space surrounded by quartz)
There is a gap (73), <73') with a width of 3 cm, and since a conductive stainless steel container is placed at ground level outside of the gap, plasma leaks to the outside from this gap. It was found that this leakage disturbed the electric field and lines of electric force in the reaction space, resulting in the formation of such a non-uniform coating. Furthermore, the flow of the reactive gas did not become a laminar flow due to the gap, and it was also found that the thickness of the coating on the surface to be formed near the gap became thinner.

このため、本発明はかかる膜厚の不均一性を防(5) ぎ、四角形の被形成面のすべての周辺部、中央部が所定
の厚さに対しその厚さのばらつきを±5%以内にするた
め、一対の電極間の外側および基板が配設された空間の
周辺を完全に絶縁物で覆い、プラズマがこの筒状空間の
外にもれることがないよう(プラズマ閉じ込め型)にし
たもので、不発門人による発明(特願昭57−1637
28等)をさらに完成させたことを特長としている。
Therefore, the present invention prevents such non-uniformity in film thickness (5), and ensures that all the peripheral and central parts of the rectangular formation surface have thickness variations within ±5% with respect to a predetermined thickness. To achieve this, the outside between the pair of electrodes and the periphery of the space where the substrate is placed are completely covered with insulators to prevent plasma from leaking outside of this cylindrical space (plasma confinement type). Invention by a dud student (patent application 1637-1987)
28 etc.) is further completed.

かくのごとくプラズマおよび反応性気体を閉じ込め、か
つ反応性気体を層流として被形成表面をなめるように供
給することにより多量生産を可能とし、かつ均一性を±
5%以内とせしめたことを特長としている。
In this way, by confining the plasma and reactive gas and supplying the reactive gas as a laminar flow so as to lick the surface to be formed, mass production is possible and uniformity can be improved.
The feature is that it is kept within 5%.

さらに本発明は、かかる反応容器内に絶縁物で内面が形
成された反応空間を有せしめる二重反応容器型として半
導体層を形成し、さらに加えてP型半導体、I型半導体
およびN型半導体と積層して接合を基板上に形成するに
際し、それぞれの反応容器を分離部を介して連結せしめ
たマルチチャンバ方式のPCVD法を第2図に示すごと
(に提案す(6) るにある。
Furthermore, the present invention forms a semiconductor layer as a double reaction vessel type in which the reaction vessel has a reaction space whose inner surface is made of an insulating material, and furthermore, a P-type semiconductor, an I-type semiconductor, and an N-type semiconductor are formed in the reaction vessel. When stacking and forming a bond on a substrate, a multi-chamber type PCVD method is proposed in which the respective reaction vessels are connected via a separation part, as shown in FIG. 2 ((6)).

本発明は水素またはハロゲン元素が添加された非単結晶
半導体層の形成により、再結合中心密度の小さなP、I
およびN型の導電型を有する半導体層を形成し、その積
層境界にてPIN接合を形成するとともに、それぞれの
半導体層に他の隣接する半導体層からの不純物が混入し
て接合特性を劣化させることなく形成するとともに、ま
たそれぞれの半導体層を形成する工程間に、大気特に酸
素に触れさせて、半導体の一部が酸化されることにより
眉間絶縁物が形成されることのないようにした連続生産
を行うためのプラスマ気相反応に関する。
In the present invention, by forming a non-single crystal semiconductor layer to which hydrogen or halogen elements are added, P and I
and N-type conductivity types, and forming a PIN junction at the lamination boundary thereof, and impurities from other adjacent semiconductor layers are mixed into each semiconductor layer, causing deterioration of the junction characteristics. Continuous production that avoids the formation of glabellar insulators due to oxidation of part of the semiconductor by exposing it to the atmosphere, especially oxygen, between the steps of forming each semiconductor layer. Concerning plasma gas phase reactions for conducting.

さらに本発明はかかる反応容器をそれぞれの反応におい
ては独立として多数連結したマルチチャンバ方式のプラ
ズマ反応方法において、一度に多数の基板を同時にその
被膜成長速度を大きくしたいわゆる多量生産方式に関す
る。
Furthermore, the present invention relates to a multi-chamber plasma reaction method in which a large number of such reaction vessels are connected independently for each reaction, and to a so-called mass production method in which a large number of substrates are simultaneously grown at a high film growth rate.

本発明は2〜10cmの一定の間隙を経て基板を互いに
裏面を密接させ、かつその2枚の基板ブロックを一定の
間隔(例えば6cm<±6+nm)で互いに(7) 離間させることにより、被膜形成面に概略平行に配置さ
れた基板の上部、下部および中央1周辺での膜厚の均一
性、また肋質の均質性を促すとともに、反応性気体の収
率の向−上を行うものである。
The present invention is capable of forming a film by bringing the back surfaces of the substrates into close contact with each other with a constant gap of 2 to 10 cm, and by separating the two substrate blocks from each other at a constant interval (for example, 6 cm < ±6 + nm) (7). It promotes uniformity of film thickness around the top, bottom, and center 1 of the substrate, which is arranged approximately parallel to the surface, and homogeneity of the ribs, and improves the yield of reactive gas. .

さらに本発明装置においては、基板の加熱を少な(とも
上方向および下方向より棒状赤外線またはハロゲンラン
プを互いに90°曲げて配向し、均熱化を図った。即ち
l0co+ X 10cmまたは電極方向に10〜50
cI11例えば20cmを有するとともに中15〜12
0cII1例えば60cmの基板(20em X 60
cmを1ハツチ20枚配設)が、その温度分布において
、100〜650℃の温度設定において±3℃以内のば
らつきとした。
Furthermore, in the apparatus of the present invention, the heating of the substrate is reduced (both from above and below) by orienting bar-shaped infrared rays or halogen lamps bent at 90 degrees to each other to achieve uniform heating, i.e., 10 co+ ~50
cI11 e.g. 20cm and medium 15-12
0cII1 For example, a 60cm substrate (20em x 60
20 pieces per hatch (cm), and the temperature distribution was set to within ±3°C at a temperature setting of 100 to 650°C.

第2図、第3図においては、反応性気体の導入手段、排
気手段を有し、これらを供給フード(39)。
In FIGS. 2 and 3, a supply hood (39) includes means for introducing a reactive gas and means for exhausting a reactive gas.

排気フード(39′)として絶縁物により設け、このの
外側を絶縁物で包む構造とした。さらにこのフード間の
反応空間を閉じ込めるため、外側周辺を絶縁物(38)
、(38’)で取り囲んだ。即ち、絶縁物ボ(8) ルダで囲んだ空間即ち閉じ込められた反応空間の筒状空
間(6)、(8)のみにプラズマ反応を生せしめる活性
気体を供給せしめることにより、チャンバ(反応容器>
<101 >、<102 )内の全空間にプラズマ化し
た反応生成物が拡散し広がることを防いだものである。
The exhaust hood (39') is made of an insulating material, and the outside of the hood is wrapped with an insulating material. Furthermore, in order to confine the reaction space between the hoods, the outer periphery is covered with insulators (38).
, (38'). That is, by supplying active gas that causes a plasma reaction only to the space surrounded by the insulating chamber (8), that is, the cylindrical space (6), (8) of the confined reaction space, the chamber (reaction vessel>
<101>, <102>) This prevents the reaction products that have turned into plasma from diffusing and spreading throughout the entire space.

さらにこの反応空間において、電気力線が一方の電極よ
り他方の電極に平行に至るようにするため、この立方体
または直方体の空間の対をなす面全体に電極を作り、電
極周辺部での電気力線が乱れることを防いだ。加えて反
応性気体が層流をなすように一方の面(ここでは上方)
より他方(ここでは下方)に周辺部でも全面の流れとし
た。さらにかかる気相反応装置により形成された不純物
のそれぞれの半導体層から他の半導体層への反応容器内
に付着した不純物の再放出による混合を排除した。その
結果、本発明方法および装置において、初めてそれぞれ
の反応容器内に形成されるフレークを少なくさせて、さ
らに複数の半導体層の積層界面での混合の厚さを200
〜300人と従来の約l/10〜115にするとともに
、基(9) 板肉、同一バッチの基板間での膜厚のばらつきを±5%
以内(例えば5000人の厚さとすると、そのばらつき
が±250人以内)とし得た。
Furthermore, in order to make the electric lines of force from one electrode parallel to the other in this reaction space, electrodes are created on the entire paired surfaces of this cubic or rectangular parallelepiped space, and the electric force around the electrodes is This prevents the lines from becoming disordered. In addition, the reactive gas flows on one side (in this case, upward) so that it forms a laminar flow.
On the other side (in this case, downward), the flow was made to flow all over the periphery. Furthermore, mixing of impurities formed by such a gas phase reactor from each semiconductor layer to another semiconductor layer due to re-release of impurities deposited in the reaction vessel is eliminated. As a result, in the method and apparatus of the present invention, the number of flakes formed in each reaction vessel can be reduced for the first time, and the thickness of the mixture at the lamination interface of a plurality of semiconductor layers can be reduced by 200 mm.
~300 people and approximately 1/10 to 115 of the conventional value, and also reduced the variation in film thickness between substrates of the same batch by ±5%
(for example, assuming a thickness of 5,000 people, the variation is within ±250 people).

以下に本発明の実施例を図面に従って説明する。Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第2図に従って本発明のプラズマ気相反応装置の実施例
を説明する。
Example 1 An example of the plasma vapor phase reactor of the present invention will be described with reference to FIG.

この図面は、PIN接合、PIF接合、NIN接合また
はPINPIN・・・PIN接合等の基板上の半導体に
、異種導電型でありながらも、形成される半導体の主成
分または化学量論比の異なる半導体層をそれぞれの半導
体層をその前工程において形成された半導体層の影響(
混入)を受けずに積層させるための多層に自動かつ連続
的に形成するための装置である。
This drawing shows semiconductors formed on semiconductors on a substrate such as PIN junction, PIF junction, NIN junction, PINPIN...PIN junction, etc., which have different conductivity types but different main components or stoichiometry The influence of the semiconductor layer formed in the previous process (
This is a device for automatically and continuously forming multiple layers to form layers without contamination (contamination).

図面においてはPIN接合を構成する複数の反応系の一
部を示している。即ち、P、IおよびN型の半導体層を
積層して形成する3つの反応系の2つ(■、■)とさら
に第1の予備室および移設用のバッファ室(II)を有
するマルチチャンバ方式の(10) プラズマ気相反応装置の装置例を示す。
In the drawing, a part of a plurality of reaction systems constituting a PIN junction is shown. In other words, it is a multi-chamber system that has two of the three reaction systems (■, ■) formed by laminating P, I, and N type semiconductor layers, a first preliminary chamber, and a buffer chamber (II) for relocation. (10) An example of a plasma gas phase reactor is shown.

図面における系■、■、■は、2つの各反応容器(10
1)、(103)およびバッファ室(102)を自し、
それぞれの反応容器間に分l1Ilt部(44)、(4
5)、< 46 )。
Systems ■, ■, and ■ in the drawings represent two reaction vessels (10
1), (103) and a buffer room (102),
Between each reaction vessel, 11 parts (44), (4
5), <46).

(47)を有している。またそれぞれ独立して、反応性
気体の供給フード<17)、(18)と排気フーード(
17’> (1B’)とを有し、反応性気体が供給系か
ら排気系に層流すべく設けている。
(47). Also independently, reactive gas supply hoods <17), (18) and exhaust hoods (
17'>(1B'), and the reactive gas is provided to flow laminarly from the supply system to the exhaust system.

この装置は入り口側には第1の予備室(100)が設け
られ、まず扉(42)より基板ホルダ(2)の2つの面
に2つの被形成面を有する2枚の基板(1)を挿着した
。さらに、このホルダ(3)を外枠冶具(外周辺の9(
38)、<38’>として示す)により互いに所定の等
距離を離間して配設した。即ち、この被形成面を有する
基板は被膜形成を行わない裏面を基板ホルダ(2)に接
し、基板2枚および基板ホルダとを一つのホルダ(3)
としてGclIl±0.5cmの間隙を有して絶縁物の
外枠冶具内に林立させた。その結果、20cm X 6
0cmの基板を20枚同時に被膜形成させることができ
た。かくして高(11) さ35cm、奥行80cm、中80cmの反応空間(6
)、< 8 )は上方、下方を絶縁物(39)、(39
つで囲まれ、また側周辺は絶縁外枠冶具(38)、<3
8’)で取り囲み、隙間(73)は5Iまたはそれ以下
とした。かくてこの外側のステンレス容器ゲートの内面
(74)は絶縁物化し、石英、アルミナ等をはりつけプ
ラズマが外にそれないようにした。即ち電気的に完全に
プラズマを絶縁物で取り囲んだ。さらにこの第1の予備
室(100)を真空ポンプ(35)にてバルブを開けて
真空引きをした。この後、予め真空引きがされている反
応容器(101”)との分離用のゲート弁(44)を開
けて外枠冶具(38)に保持された基板を移した。例え
ば、予備室(100)より第1の反応容器(101)に
移し、さらにゲート弁(44)を閉じることにより基板
を第1の反応容器(101)に移動させたものである。
This device is provided with a first preliminary chamber (100) on the entrance side, and first, two substrates (1) having two formation surfaces on two surfaces of a substrate holder (2) are inserted through a door (42). I inserted it. Furthermore, this holder (3) is attached to an outer frame jig (9 on the outer periphery).
38) and <38'>) are arranged at a predetermined equal distance from each other. That is, the back side of the substrate having this surface on which the film is not formed is in contact with the substrate holder (2), and the two substrates and the substrate holder are combined into one holder (3).
They were placed in a forest in an insulating outer frame jig with a gap of GclIl±0.5 cm. As a result, 20cm x 6
It was possible to form coatings on 20 substrates of 0 cm at the same time. Thus, the height (11) is 35 cm, depth 80 cm, and reaction space (6
), < 8) are above and below are insulators (39), (39
The side periphery is surrounded by an insulating outer frame jig (38), <3
8'), and the gap (73) was 5I or less. Thus, the inner surface (74) of this outer stainless steel container gate was made of an insulator, and quartz, alumina, etc. were pasted thereon to prevent the plasma from escaping. That is, the plasma was electrically completely surrounded by an insulator. Furthermore, this first preparatory chamber (100) was evacuated by opening a valve using a vacuum pump (35). After that, the gate valve (44) for separation from the reaction vessel (101'') which had been evacuated in advance was opened and the substrate held in the outer frame jig (38) was transferred.For example, the substrate held in the outer frame jig (38) was transferred. ), the substrate was transferred to the first reaction vessel (101), and the gate valve (44) was further closed to move the substrate to the first reaction vessel (101).

この時、第1の反応容器(101)に保持されていた基
板(1)等は、予めまたは同時にバッファ室(102)
に、またへソファ室(102)に保持されていた冶具お
よび基板(2)は第2の反応容器(103)に、また第
2の(12) 反応容器(103)に保持されていた基板は第2のバッ
ファ室(104)に、さらに図示が省略されているが第
3の反応室の基板および冶具は出口側の第2の予備室に
ゲート弁(45>、< 46 >、(47)を開けて移
動させることが可能である。この後、ゲート弁< 44
 >、< 45)、< 46 >、< 47 >を閉め
た。
At this time, the substrate (1) etc. held in the first reaction container (101) are transferred to the buffer chamber (102) in advance or at the same time.
In addition, the jig and substrate (2) held in the sofa room (102) are transferred to the second reaction container (103), and the substrate held in the second (12) reaction container (103) is transferred to the second reaction container (103). Although not shown, the substrate and jig of the third reaction chamber are placed in the second buffer chamber (104), and gate valves (45>, <46>, (47)) are placed in the second preliminary chamber on the exit side. It is possible to open and move the gate valve. After this, the gate valve < 44
>, <45), <46>, <47> were closed.

即ちゲート弁の動きは、扉(42)が大気圧で開けられ
た時は分離部のゲート弁(44)、< 45 >、(4
6)、< 47 )は閉じられ、各チャンバにおいては
プラズマ気相反応が行われている。また逆に、扉(42
)が閉じられていて予備室(100)が十分真空引きさ
れた時は、ゲート弁< 44 )、< 4 s >、<
 4 e >、< 47 >が開けられ、各チャンバの
基板、冶具は隣のチャンバに移動する機構を有し、外気
が反応室(101)、<102 )に混入しないように
している。
In other words, the movements of the gate valves are as follows: when the door (42) is opened at atmospheric pressure, the gate valves (44), <45>, (4
6) and <47) are closed, and a plasma gas phase reaction is performed in each chamber. Conversely, the door (42
) is closed and the preliminary chamber (100) is sufficiently evacuated, the gate valves <44), <4s>, <
4 e > and < 47 > are opened, and the substrate and jig in each chamber have a mechanism to move to the adjacent chamber to prevent outside air from entering the reaction chambers ( 101 ) and < 102 ).

系■における第1の反応容器(101)でP型半導体層
をPCVD法により形成する場合を以下に示す。
The case where a P-type semiconductor layer is formed by the PCVD method in the first reaction vessel (101) in system (2) will be described below.

反応系■ (反応容器(101)を含む)は10−3〜
10torr好ましくは0.01〜Itorr例えば0
.08torrとした。
Reaction system ■ (including reaction vessel (101)) is 10-3~
10 torr, preferably 0.01 to Itorr, e.g. 0
.. It was set to 08 torr.

(13) 反応性気体は珪化物気体(24)に対してはシラン(S
inHun!i n≧1特にSiH+またはSt、H,
)、フン化珪素(S+%または5iFz)等があるが、
取扱いが容易なシランを用いた。
(13) The reactive gas is silane (S) for silicide gas (24).
inHun! i n≧1, especially SiH+ or St, H,
), silicon fluoride (S+% or 5iFz), etc.
Silane was used because it is easy to handle.

本実施例の5ixC1−×(0<x<1)を形成するた
め、炭化物気体(25)としてDMS (ジメチルシラ
ン(Sin、 (CIll)2)を用いた。
In order to form 5ixC1-x (0<x<1) of this example, DMS (dimethylsilane (Sin, (CIll)2) was used as the carbide gas (25).

炭化珪素(SixC+−x O<x<1)に対しては、
P型の不純物としてボロンを前記したモノシラン中に同
時に0.5%の濃度に混入させ(24)よりシランとと
もに供給した。
For silicon carbide (SixC+-x O<x<1),
As a P-type impurity, boron was simultaneously mixed into the monosilane described above at a concentration of 0.5% and supplied together with the silane from (24).

必要に応じ、水素(Hよ)または窒素(N2)を液体窒
素より気化して、反応室を大気圧とする時、(23)よ
り供給した。これらの反応性気体はそれぞれの流量計(
33)およびバルブ(32)を経て、反応性気体の供給
フード(17)より高周波電源(14)の負電極(61
)を経て反応空間(6)に供給された。反応性気体はホ
ルダ(38)に囲まれた筒状空間(6)内に供給され、
この空間を構成する基板(1)に被膜形成を行った。さ
らに、貫電(14) 極(61)と正電極(51)間に電気エネルギ例えば1
3.56MHzの高周波エネルギ(14)を加えてプラ
ズマ反応せしめ、基板上に反応生成物を被膜形成せしめ
た。
If necessary, hydrogen (H) or nitrogen (N2) was vaporized from liquid nitrogen and supplied from (23) when the reaction chamber was brought to atmospheric pressure. These reactive gases are separated by their respective flow meters (
33) and the valve (32), the negative electrode (61) of the high frequency power source (14) is supplied from the reactive gas supply hood (17)
) was supplied to the reaction space (6). The reactive gas is supplied into a cylindrical space (6) surrounded by a holder (38),
A film was formed on the substrate (1) constituting this space. Furthermore, an electric energy of, for example, 1
High frequency energy (14) of 3.56 MHz was applied to cause a plasma reaction, and a reaction product formed a film on the substrate.

基板は100〜400℃例えば200℃に赤外線ヒータ
(11)、<11’)により加熱した。
The substrate was heated to 100-400°C, for example 200°C, by an infrared heater (11), <11').

この赤外線ヒータは、近赤外用ハロゲンランプ(発光波
長1〜3μ)ヒータまたは遠赤外用セラミックヒータ(
発光波長8〜25μ)を用い、棒状を有するため上方の
ヒータと下方のヒータとが互いに直交する方向に配置し
て、この反応容器内におけるホルダにより取り囲まれた
筒状空間を200±10℃好ましくは±5℃以内に設置
した。
This infrared heater is a near-infrared halogen lamp (emission wavelength 1 to 3μ) heater or a far-infrared ceramic heater (
Since it has a rod shape, the upper heater and the lower heater are arranged in directions orthogonal to each other, and the cylindrical space surrounded by the holder in this reaction vessel is preferably heated at 200 ± 10 °C. was installed within ±5°C.

この後、前記したが、この容器に前記した反応性気体を
導入し、さらに10〜500W例えば1oo−に高周波
エネルギ(14)を供給してプラズマ反応を起こさせた
Thereafter, as described above, the above-mentioned reactive gas was introduced into the container, and high frequency energy (14) of 10 to 500 W, for example 10-, was supplied to cause a plasma reaction.

上下の電極(61)、<51X網状のステンレス製電極
80cmX80cmX61)、<51)はフード(17
)、(17’)の内側全面にわたり配設して、等電界が
基板表面に平行(15) となって反応空間全体に起きるようにした。また反応性
気体も基板(1)の表面に平行になるように上側フード
から外枠冶具(38)の閉じ込め空間を経て下側フード
(17’)にラミナーフローとさせた。
Upper and lower electrodes (61), <51X reticulated stainless steel electrodes 80cmX80cmX61),
) and (17') so that an equal electric field is parallel to the substrate surface (15) and occurs throughout the reaction space. In addition, the reactive gas was also caused to flow in a laminar manner from the upper hood to the lower hood (17') through the confined space of the outer frame jig (38) so as to be parallel to the surface of the substrate (1).

かくしてP型半導体層はBえH,/5iH4=0.5%
Thus, the P-type semiconductor layer is BeH, /5iH4=0.5%
.

DMS / C3xH+ 40MS−) = 10%の
条件にて、この反応糸■で約100人の厚さを有する薄
膜(膜厚のばらつき95〜103人)として形成させた
。Eg=2.05eνg = 1 x 10−G〜3 
x 10−5 (ocm)−’であった。
A thin film having a thickness of approximately 100 mm (film thickness variation: 95 to 103 mm) was formed using this reaction yarn (1) under the conditions of DMS/C3xH+40MS-) = 10%. Eg=2.05eνg=1 x 10-G~3
x 10-5 (ocm)-'.

基板は導体基板(ステンレス、チタン、アルミニューム
、その他の金属)2半導体(珪素、ゲルマニューム入絶
縁体くガラス、有機薄膜)または複合基板(ガラスまた
は透光性有機樹脂上に透光性導電膜である弗素が添加さ
れた酸化スズ、ITO等の導電膜が単層またはITO上
にSnO+が形成された2層膜が形成されたもの)を用
いた。本実施例のみならず本発明のすべてにおいてこれ
らを総称して基板という。勿論この基板は可曲性であっ
てもまた固い板であってもよい。
The substrate is a conductive substrate (stainless steel, titanium, aluminum, or other metal), 2 semiconductors (silicon, germanium-containing insulator, glass, organic thin film), or a composite substrate (a transparent conductive film on glass or a transparent organic resin). A single layer of a conductive film such as tin oxide or ITO to which certain fluorine was added or a two-layer film of SnO+ formed on ITO was used. These are collectively referred to as a substrate not only in this embodiment but also in all of the present invention. Of course, this substrate may be flexible or a rigid plate.

(16) かくして1〜5分間プラズマ気相反応をさせて、P型不
純物としてホウ素が添加された炭化珪素膜を約100人
の厚さに作製した。さらにこの第1の半導体層が形成さ
れた基板をゲー) (45)を開は前記した操作順序に
従ってバッファ室(102)に移動し、ゲート(45)
を閉じた。さらに、ここで10= torr以下にタラ
イオボンプ(34)にて真空引きをした後、ゲート(4
6)を開け、真性の半導体層を約5000人の厚さに形
成させた。
(16) In this manner, a plasma vapor phase reaction was performed for 1 to 5 minutes to produce a silicon carbide film doped with boron as a P-type impurity to a thickness of about 100 mm. Further, the substrate on which the first semiconductor layer is formed is moved to the buffer chamber (102) according to the above-described operation order, and the gate (45) is opened.
closed. Furthermore, after evacuating to below 10 torr using the Talaiobon pump (34), the gate (4
6) was opened and an intrinsic semiconductor layer was formed to a thickness of approximately 5000 nm.

即ち第1図における反応系■において、半導体の反応性
気体としてモノシランまたはジシランを(28)より、
また、101′1c111−”以下のホウ素を添加する
ため、水素、シラン等により0.5〜30PPMに希釈
したBよH3を(27)より、また、キャリアガスを必
要に応じて(26)より供給した。
That is, in the reaction system (2) in FIG. 1, monosilane or disilane is used as the reactive gas of the semiconductor from (28),
In addition, in order to add boron of 101'1c111-" or less, B and H3 diluted to 0.5 to 30 PPM with hydrogen, silane, etc. are added from (27), and a carrier gas is added from (26) as necessary. supplied.

反応性気体は基板(1)の被形成面にそって上方より下
方に流れ、真空ポンプ(88)に至る。系■において出
口側よりみた縦断面図を第3図に示す。
The reactive gas flows from the top to the bottom along the surface of the substrate (1) to be formed, and reaches the vacuum pump (88). Figure 3 shows a longitudinal cross-sectional view of system (1) viewed from the outlet side.

第3図を概説する。Figure 3 is outlined.

(17) 第3図は第2図の反応系■の縦断面図を示したものであ
る。
(17) FIG. 3 shows a longitudinal cross-sectional view of the reaction system (1) in FIG. 2.

図面において、ヒータ(13)、(13’ )はハロゲ
ンランプを用いた。反応空間はヒータにより100〜4
00℃例えば250℃とした。反応性気体は例えばモノ
シランまたはジシランを分解した。
In the drawings, halogen lamps are used for the heaters (13) and (13'). The reaction space is heated to 100~4
00°C, for example, 250°C. The reactive gas decomposed, for example, monosilane or disilane.

基板(1)が基板ホルダ(2)に保持され、外枠冶具(
38)、<38’)で閉じ込め空間(8)を構成してい
る。この基板の被形成面に、概略平行に電界(90)を
一対の主の電極(62)、<52)により供給し、プラ
ズマ気相反応を行った。
The board (1) is held in the board holder (2), and the outer frame jig (
38) and <38') constitute a confined space (8). An electric field (90) was applied approximately parallel to the formation surface of this substrate by a pair of main electrodes (62) (<52) to perform a plasma vapor phase reaction.

さらに反応性気体(91)も同時に被形成面に平行にし
た。反応性気体を(26)、<27>、(2B)より供
給フード(18)、外枠冶具(38)、<38’)、排
気フード(18)を経て真空ポンプ(37)へ排気させ
た。被膜としてシランによりアモルファス珪素を作製し
た場合、5000人の厚さにSiH,、60cc/分、
被膜形成速度2.5人/秒、基板(20cm x 60
cmを20枚、延べ面積24000 cd)で圧力Q、
l torrとした。5I211゜を用いた場合、被膜
形成速度28人/秒を有し、他(18) は同様とした。すると中央部が5000人とばらつき、
縦方向の周辺部が従来方法の場合はf 3000人(ば
らつき±20%)であったのが、本発明方法では±25
0人(±5%)ときわめて均一性を向上させることがで
きた。
Furthermore, the reactive gas (91) was also made parallel to the surface to be formed. The reactive gas was exhausted from (26), <27>, and (2B) to the vacuum pump (37) via the supply hood (18), the outer frame jig (38), <38'), and the exhaust hood (18). . When amorphous silicon is made with silane as a coating, SiH, 60 cc/min, to a thickness of 5000,
Film formation speed: 2.5 persons/sec, substrate (20 cm x 60
20 cm, total area 24000 cd), pressure Q,
It was set to l torr. When 5I211° was used, the film formation rate was 28 people/sec, and the other (18) were the same. Then, the number of people in the central area varied to 5,000.
In the case of the conventional method, the vertical peripheral area was f 3000 people (variation ±20%), but with the method of the present invention, it was ±25
We were able to significantly improve the uniformity with 0 people (±5%).

かくして第1の反応室にてプラズマ気相法によりP型半
導体層を形成した上にPCVD法によりI型半導体層を
形成させてPI接合を構成させた。
Thus, in the first reaction chamber, a P-type semiconductor layer was formed by the plasma vapor phase method, and then an I-type semiconductor layer was formed by the PCVD method to form a PI junction.

またかくして系■にて約5000人の厚さに形成させた
後、基板は前記した操作に従って隣のバッファ室(10
2’)に移され、さらにその隣の反応室に移設して同様
のPCVD工程によりN型半導体層を形成させた。この
N型半導体層は、PCVD法によりフォスヒンをPH3
/5iH4=1.0%としたシランとキャリアガスの水
素をSiH◆/Hz=20%として供給して、系■と同
様にして約200人の厚さにN型の微結晶性または繊維
構造を有する多結晶の半導体層を形成させ、さらにその
上面に炭化珪素をDMS /(SiH+DMS) =o
、t として5ixC1,x(0<x<1)で示される
N型半導体層を10〜200人の厚さ例え(19) ば50人の厚さに積層して形成させたものである。
After forming the substrate to a thickness of about 5,000 in system ①, the substrate is placed in the adjacent buffer chamber (10
2'), and was further moved to an adjacent reaction chamber, where an N-type semiconductor layer was formed by the same PCVD process. This N-type semiconductor layer is made by converting phosphin to PH3 using the PCVD method.
/5iH4 = 1.0% silane and carrier gas hydrogen were supplied as SiH◆/Hz = 20% to form an N-type microcrystalline or fibrous structure to a thickness of approximately 200 mm in the same manner as system ◆. A polycrystalline semiconductor layer is formed, and silicon carbide is further deposited on the upper surface of the polycrystalline semiconductor layer with DMS/(SiH+DMS)=o
, t is 5ixC1,x (0<x<1), and is formed by stacking N-type semiconductor layers to a thickness of 10 to 200 layers, for example (19), 50 layers.

その他反応装置については系■と同様である。Other reactor equipment is the same as for system ①.

かかる工程の後、第2の予備室より外にPIN接合を構
成して出された基板上に100〜1500人の厚さのI
TOをさらにその上に反射性または昇華性金属電極例え
ばアルミニューム電極を真空蒸着法により約1μの厚さ
に作り、ガラス基板上に(ITO十SnO+)表面電極
−(PIN半導体)−(裏面電極)を構成させた。
After this process, a 100 to 1500 thick I layer is placed on the substrate that is taken out from the second preliminary chamber to form a PIN junction.
Further, a reflective or sublimable metal electrode such as an aluminum electrode is formed on top of the TO to a thickness of about 1 μm by vacuum evaporation, and the (ITO + SnO+) surface electrode - (PIN semiconductor) - (back surface electrode) is formed on the glass substrate. ) was configured.

その光電変換装置としての特性は7〜9%平均8%を1
.Ocm X 10cmの基板でAMI (100mW
 / ctA )の条件下にて真性効率特性として有し
、集積化してハイブリッド型にした20cm X 60
cmのガラス基板においても、4.5%を実効効率で得
ることができた。
Its characteristics as a photoelectric conversion device are 7 to 9%, average 8% to 1
.. AMI (100mW) with a board of Ocm x 10cm
/ctA) as an intrinsic efficiency characteristic under the conditions of 20 cm x 60
An effective efficiency of 4.5% could be obtained even with a glass substrate of cm.

この効率の向上は、大きい面積の基板の周辺部での膜厚
が従来の5000±3000人よりINとしての最適の
膜厚の5000±250人とすることができたこと、さ
らに同様に従来はPまたはN型半導体層では膜厚がばら
つきすぎて十分な開放電圧がでなかったことに比べて、
本発明方法はきわめて均一な(20) 膜厚にさせることができたことによって、その結果、1
つの素子で開放電圧は0.85〜0.9V (0,87
±0.02V )であったが、短絡電流は18±2mA
/c11と大きく、またFFも0.60〜0.70と大
きく、かつそのばらつきもパネル内、バッチ内で小さく
、工業的に本発明方法はきわめて有効であることが判明
した。
This improvement in efficiency is due to the fact that the film thickness at the periphery of a large area substrate can be reduced from the conventional 5000±3000 to 5000±250, which is the optimal film thickness for IN. Compared to the P- or N-type semiconductor layer, the film thickness varied too much and sufficient open circuit voltage could not be produced.
The method of the present invention can produce an extremely uniform (20) film thickness, resulting in a
The open circuit voltage for one element is 0.85 to 0.9V (0,87
±0.02V), but the short circuit current was 18±2mA.
/c11, and the FF was large, ranging from 0.60 to 0.70, and the variation thereof was small within panels and batches, proving that the method of the present invention is industrially very effective.

第4図は第3図における第2の反応系(1)で非単結晶
珪素を0.5μの膜厚に形成した場合の分布を示す。
FIG. 4 shows the distribution when non-single crystal silicon is formed to a thickness of 0.5 μm using the second reaction system (1) in FIG.

第4図より明らかなように、基板(1)、電極(62)
、<52>、を絶縁物により閉じ込めた空間(39)。
As is clear from Fig. 4, the substrate (1), the electrode (62)
, <52>, is confined by an insulator (39).

(39’> (3B>、(3B’)に配し、第4図(A
)のA −A’、B −B’、c −c’、D −D’
のそれぞれの断面での厚さの分布を(B )、(C)#
(D )、(E)に示す。このすべての断面図において
、第1図に比べてきわめて均一性を有し、実用上十分±
5%以内のばらつきになっていることが判明した。
(39'>(3B>,(3B'), Fig. 4 (A
) of A-A', B-B', c-c', D-D'
The thickness distribution in each cross section of (B) and (C) #
Shown in (D) and (E). All of these cross-sectional views have extremely uniformity compared to Figure 1, and have sufficient ± for practical purposes.
It was found that the variation was within 5%.

また第4図(A)において電気力線(72)、等電位面
(87)を電界(90)に対応して示している。
Further, in FIG. 4(A), electric lines of force (72) and equipotential surfaces (87) are shown corresponding to the electric field (90).

(21) そしてこの電界(90)および反応性気体の流れ(91
)は第2図、第3図に対応して被形成面に平行に形成さ
せていることがわかる。
(21) And this electric field (90) and the flow of reactive gas (91
) is shown to be formed parallel to the surface to be formed, corresponding to FIGS. 2 and 3.

形成させる半導体の種類に関しては、Siのみならず他
は■族のGe、5ixCl−X (0< x < 1 
>、 5ixGe 1−X(0<x<1>、5ixSn
 I−X (0<x< 1)単層または多層であっても
、またこれら以外にGaAs 、 GaA IAs +
BP、CdS等の化合物半導体であってもよいことはい
うまでもない。
Regarding the types of semiconductors to be formed, not only Si but also Ge of group II, 5ixCl-X (0< x < 1
>, 5ixGe 1-X (0<x<1>, 5ixSn
I-X (0<x<1) Even if it is a single layer or a multilayer, in addition to these, GaAs, GaA IAs +
It goes without saying that a compound semiconductor such as BP or CdS may also be used.

本発明は3つの反応容器を用いてマルチチャンバ方式で
のPCVD法を示した。しかしこれを1つの反応容器と
し、そこでPCVD法により窒化珪素をシラン(SiH
4または5i2H()とアンモニア(NH,)とのpc
vn反応により形成させることは有効である。
The present invention demonstrated a multi-chamber PCVD method using three reaction vessels. However, this was used as a single reaction vessel, and silicon nitride was converted into silane (SiH) using the PCVD method.
pc of 4 or 5i2H () and ammonia (NH,)
Formation by vn reaction is effective.

また酸化珪素をシランをN、0とのPCVD反応により
方法により形成することも有効である。
It is also effective to form silicon oxide by a PCVD reaction of silane with N,0.

本発明で形成された非単結晶半導体被膜は、絶(22) 縁ゲイL型電界効果半導体装置におけるN(ソース)I
(チャネル形成領域)N(ドレイン)接合またはPIF
接合に対しても有効である。さらに、PINダイオード
であってエネルギハンド11がW−N−W (WIDE
−NALL(V−WIDE)または5ixC1−×−5
i −5ixC+−x (0< x< 1)構造のPI
N接合型の可視光レーザ、発光素子または光電変換装置
を作ってもよい。特に先入射光側のエネルギバンド中を
太き(したヘテロ接合構造を有するいわゆるW(Pまた
はN型)−N(l型)く引DE To NALLO葬)
と各反応室にて導電型のみではなく生成物を異ならせて
それぞれに独立して作製して積層させることが可能にな
り、工業的にきわめて重要なものであると信する。
The non-single crystal semiconductor film formed according to the present invention is an insulating (22) N (source) I in an edge-gay L-type field effect semiconductor device.
(Channel formation region) N (drain) junction or PIF
It is also effective for joining. Furthermore, the energy hand 11 is a PIN diode and the energy hand 11 is W-N-W (WIDE
-NALL (V-WIDE) or 5ixC1-x-5
i −5ixC+−x (0<x< 1) structure PI
An N-junction visible light laser, light-emitting element, or photoelectric conversion device may be made. In particular, the energy band on the previously incident light side is widened (so-called W (P or N type)-N (L type) with a thick heterojunction structure).
We believe that this technology is extremely important industrially, as it makes it possible to create and stack products independently in each reaction chamber, with different conductivity types as well as different products.

本発明において、分離部は単にゲイト弁のみではなく、
2つのゲート弁と1つのバッファ室とを系2として設け
てP型半導体の不純物のI型半導体層中への混入をさら
に防ぎ、特性を向上せしめることは有効であった。
In the present invention, the separation part is not just a gate valve;
It was effective to provide two gate valves and one buffer chamber as system 2 to further prevent impurities of the P-type semiconductor from entering the I-type semiconductor layer and to improve the characteristics.

この本発明のプラズマCVD装置を他の構造のマ(23
) ルチチャンバ方式に応用できることはいうまでもない。
This plasma CVD apparatus of the present invention can be used with other structures (23
) Needless to say, it can be applied to the multi-chamber method.

電界は上下方向に一対として示した。しかしこの上下の
電界に直交してイ也の一対の電界を設けてもよい。
The electric fields are shown as a pair in the vertical direction. However, a pair of electric fields may be provided perpendicularly to the upper and lower electric fields.

また本発明の実施例は第2図に示すマルチチャンバ方式
であり、そのすべての反応容器にてPCVD法を供給し
た。しかし必要に応じ、この一部をプラズマを用いない
光CVD法、LT CVD法(HOMOCVD法ともい
う)を採用して複合被膜を形成してもよい。
Further, the embodiment of the present invention was of a multi-chamber type as shown in FIG. 2, and the PCVD method was supplied to all the reaction vessels. However, if necessary, a composite film may be formed by employing a photo-CVD method or LT CVD method (also referred to as HOMOCVD method) that does not use plasma.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法で得られた基板上の膜厚の不均一性
を示す。 第2図、第3図は本発明を実施するためのプラズマ気相
反応用被膜製造装置の概略を示す。 第4図は本発明方法によって得られた基板の膜厚の均一
性を示す。 特許出願人 株式会社半導体エネルギー研究所 代表者 山 崎 舜 平 (24) )〜ど−X m−1 (E) ポl■ −50 Φノ ー/ 〜1(F−) 東4■
FIG. 1 shows the non-uniformity of film thickness on a substrate obtained by a conventional method. FIGS. 2 and 3 schematically show a plasma gas phase coating manufacturing apparatus for carrying out the present invention. FIG. 4 shows the uniformity of the film thickness of the substrate obtained by the method of the present invention. Patent Applicant Semiconductor Energy Laboratory Co., Ltd. Representative Shunpei Yamazaki (24) ) ~ Do-X m-1 (E) Pol■ -50 ΦNo/ ~1 (F-) East4■

Claims (1)

【特許請求の範囲】 1、一対の平行平板型電極による電界に概略平行に複数
の基板を配設して形成させるプラズマ気相反応において
、前記電極の外側および前記一対の電極間の外周辺を絶
縁物でシールドするとともに、前記基板の被形成表面に
そって反応性気体を供給して、前記基板表面上に導体、
半導体または絶縁体の1膜を形成することを特徴とする
プラズマ気相反応方法。 2、一対の平行平板型電極による電界に概略平行に複数
の基板を配設し、前記一対の電極の外側および前記一対
の電極間の外周辺を絶縁物で包むことによって実質的に
絶縁物で閉じられた空間を設け、該空間の一方の側より
他方の側に反応性気体を複数の基板表面にそって供給さ
れるべき反応性気体の供給手段と排気手段とを有するこ
とを特徴とするプラズマ気(1) 相反応製造装置。
[Claims] 1. In a plasma gas phase reaction formed by arranging a plurality of substrates approximately parallel to an electric field generated by a pair of parallel plate electrodes, the outside of the electrodes and the outer periphery between the pair of electrodes are While shielding with an insulator, a reactive gas is supplied along the surface of the substrate to form a conductor,
A plasma vapor phase reaction method characterized by forming a single film of a semiconductor or an insulator. 2. By arranging a plurality of substrates approximately parallel to the electric field generated by a pair of parallel plate electrodes, and wrapping the outside of the pair of electrodes and the outer periphery between the pair of electrodes with an insulating material, substantially no insulating material can be formed. A closed space is provided, and reactive gas supply means and exhaust means are provided from one side of the space to the other side to supply the reactive gas along the surfaces of the plurality of substrates. Plasma gas (1) Phase reaction production equipment.
JP58219199A 1983-11-22 1983-11-22 Plasmic vapor-phase reaction method and manufacturing equipment thereof Granted JPS60111414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219199A JPS60111414A (en) 1983-11-22 1983-11-22 Plasmic vapor-phase reaction method and manufacturing equipment thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219199A JPS60111414A (en) 1983-11-22 1983-11-22 Plasmic vapor-phase reaction method and manufacturing equipment thereof

Publications (2)

Publication Number Publication Date
JPS60111414A true JPS60111414A (en) 1985-06-17
JPH0244141B2 JPH0244141B2 (en) 1990-10-02

Family

ID=16731754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219199A Granted JPS60111414A (en) 1983-11-22 1983-11-22 Plasmic vapor-phase reaction method and manufacturing equipment thereof

Country Status (1)

Country Link
JP (1) JPS60111414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298171A (en) * 1988-05-24 1989-12-01 Semiconductor Energy Lab Co Ltd Thin film formation
JPH0261069A (en) * 1988-08-26 1990-03-01 Semiconductor Energy Lab Co Ltd Formation of coating film
TWI470106B (en) * 2011-03-29 2015-01-21 Pinecone En Inc Multichamber thin-film deposition device and gas-treating module thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896729A (en) * 1981-12-03 1983-06-08 Seiko Epson Corp Glow discharge device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896729A (en) * 1981-12-03 1983-06-08 Seiko Epson Corp Glow discharge device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298171A (en) * 1988-05-24 1989-12-01 Semiconductor Energy Lab Co Ltd Thin film formation
JPH0261069A (en) * 1988-08-26 1990-03-01 Semiconductor Energy Lab Co Ltd Formation of coating film
TWI470106B (en) * 2011-03-29 2015-01-21 Pinecone En Inc Multichamber thin-film deposition device and gas-treating module thereof

Also Published As

Publication number Publication date
JPH0244141B2 (en) 1990-10-02

Similar Documents

Publication Publication Date Title
US6946404B2 (en) Method for passivating a semiconductor substrate
US7919398B2 (en) Microcrystalline silicon deposition for thin film solar applications
JPS5931076A (en) Uniformly heating device for substrate
JPS6043819A (en) Method for vapor-phase reaction
US6470823B2 (en) Apparatus and method for forming a deposited film by a means of plasma CVD
JPS5895550A (en) Device for forming non-single crystal semiconductor layer
JPS60111414A (en) Plasmic vapor-phase reaction method and manufacturing equipment thereof
US20060219170A1 (en) Pore cathode for the mass production of photovoltaic devices having increased conversion efficiency
JPS60111415A (en) Plasmic vapor-phase reaction equipment
JPH03183125A (en) Method for plasma vapor-phase reaction
JPH08195348A (en) Semiconductor device manufacturing equipment
JPH0458173B2 (en)
JP2639616B2 (en) Semiconductor film formation method
JPH0436448B2 (en)
JP2923748B2 (en) Coating method
JPH0463537B2 (en)
JPH06184755A (en) Method and device for forming deposition film
JPH0436449B2 (en)
JPH0522375B2 (en)
JPH0522376B2 (en)
JPH03209719A (en) Manufacture of vapor-phase reaction film
JPH07263728A (en) Manufacture of thin film solar cell
JP2639637B2 (en) Gas phase reaction film preparation method
JP2575397B2 (en) Method for manufacturing photoelectric conversion element
JPH0344148B2 (en)