JPS60111415A - Plasmic vapor-phase reaction equipment - Google Patents

Plasmic vapor-phase reaction equipment

Info

Publication number
JPS60111415A
JPS60111415A JP58219200A JP21920083A JPS60111415A JP S60111415 A JPS60111415 A JP S60111415A JP 58219200 A JP58219200 A JP 58219200A JP 21920083 A JP21920083 A JP 21920083A JP S60111415 A JPS60111415 A JP S60111415A
Authority
JP
Japan
Prior art keywords
substrate
reaction
film
plasma
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58219200A
Other languages
Japanese (ja)
Other versions
JPH0586645B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Mamoru Tashiro
田代 衛
Minoru Miyazaki
稔 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP58219200A priority Critical patent/JPS60111415A/en
Publication of JPS60111415A publication Critical patent/JPS60111415A/en
Publication of JPH0586645B2 publication Critical patent/JPH0586645B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To form a film of uniform thickness by a method wherein a plasma confinement space is provided in a reactive chamber using an insulator, and a pair of electric fields are supplied into the plasma confirnement space using a paralleled flat-plate electrode. CONSTITUTION:A substrate 1 is supported by a substrate holder 2 in the reaction chamber 102 of a meltichamber system plasmic vapor-phase reaction equipment, and a confinement chamber 8 is constituted by external frme jigs 38 and 38'. On the surface where said substrate will be formed, an electric field is supplied by a pair of main electrodes 52 and 62 in parallel ith the substrate surface, and a plasmic vapor-phase reaction is performed. Besides, reactive gas 91 is also brought in the state which in parallel with the surface where the substrate will be formed, and the reactive gas is supplied from 26-28, passes through a supply nozzle 18, a reaction space 8 and an exhaust nozzle 18, and exhausted to a vacuum pump 37. When amorphous silicon is formed into a film using silane, the irregularity in film thickness of the substrate is very small, and the uniformity of film thickness can be improved.

Description

【発明の詳細な説明】 本発明はプラズマ気相反応製造装置に関する。[Detailed description of the invention] The present invention relates to a plasma gas phase reaction manufacturing apparatus.

本発明は反応容器内に反応空間を設け、その中で反応容
器の前側および後側を開閉手段例えば扉とし、この扉に
加熱手段を設けたプラズマ気相反応装置に関する。
The present invention relates to a plasma vapor phase reaction apparatus in which a reaction space is provided in a reaction vessel, and opening/closing means, such as doors, are provided on the front and rear sides of the reaction vessel, and heating means is provided on the door.

本発明は互いに離間して一定の間隔で配設した基板の表
面に平行に輻射熱が供給されるような加熱手段としての
ランプヒータを設け、ランプのメンテナンスを容易にし
たことを目的としている。
An object of the present invention is to provide lamp heaters as heating means that supply radiant heat parallel to the surfaces of substrates spaced apart from each other at regular intervals, thereby facilitating maintenance of the lamp.

本発明は反応容器内にプラズマを絶縁物により閉じ込め
る空間を設け、その中に一対の電界を平行平板電極によ
り供給することにより、均一な膜厚の被膜を作製するこ
とを目的とする。
An object of the present invention is to provide a space in a reaction vessel in which plasma is confined by an insulator, and to supply a pair of electric fields to the space using parallel plate electrodes, thereby producing a film having a uniform thickness.

本発明は被形成面に均一に被膜を形成するため電界即ち
電気力線は基板の被形成面に概略平行になり、等電位面
は垂直となるように発生させ、プラズマ気相反応をせし
めるとともに、このプラズマ特に陽光柱を周辺の絶縁物
例えばガラスまたはアルミナセラミック板で取り囲むこ
とに半すステ(2) ンレス等の金属反応容器から電気的にシールドをさせ、
端部(周辺部)においてもプラズマの中央部と同様の平
行電界を生ぜしめることにより均一な膜厚の被膜形成を
させることを目的とする。
In order to uniformly form a film on the surface to be formed, the present invention generates an electric field, that is, lines of electric force, approximately parallel to the surface of the substrate to be formed, and an equipotential surface perpendicular to the surface, thereby causing a plasma gas phase reaction. This plasma, especially the positive column, is surrounded by a surrounding insulator such as a glass or alumina ceramic plate to electrically shield it from a metal reaction vessel such as stainless steel.
The purpose is to form a film with a uniform thickness by generating a parallel electric field similar to that at the center of the plasma at the edges (periphery).

従来、プラズマ気相反応(以下PCVDという)方法に
おいては、一対の電極を平行に配し、平行平板型電極と
し、その電極間にプラズマ放電をグロー放電法により実
施することにより半導体被膜等の形成を行っていた。さ
らにこの基板の加熱はその基板の裏面にこの基板に垂直
に輻射熱が加わるように設けられていた。このため、ヒ
ータ1つでその基板と同じ面積の基板1枚しか加熱出来
なかった。またかかるPCVD法においては、プラズマ
で発生した陽光柱は、反応容器内の全空間に広がりやす
いため、陽光柱内に基板を配設させることなくいずれか
一方の電極上に密接して配設する(電界に垂直となる)
構造をさせる以外に、被膜の均一性を±5%以内のばら
つきの範囲に有せしめることができる方法がなかった。
Conventionally, in the plasma vapor phase reaction (hereinafter referred to as PCVD) method, a pair of electrodes are arranged in parallel to form a parallel plate type electrode, and a plasma discharge is generated between the electrodes using a glow discharge method to form a semiconductor film, etc. was going on. Further, heating of this substrate was provided so that radiant heat was applied to the back surface of the substrate perpendicularly to the substrate. For this reason, only one substrate having the same area as the substrate could be heated with one heater. In addition, in this PCVD method, since the positive column generated by plasma tends to spread throughout the entire space inside the reaction vessel, the substrate is not disposed within the positive column but is placed closely on one of the electrodes. (perpendicular to the electric field)
There is no other way to make the coating uniform within ±5% of variation other than by changing the structure.

しかしかかる方式では、被形成面を電極面積属(3) 上に大きくすることができない。このため、多量生産に
不向きであるという欠点を有する。
However, in this method, the surface on which the electrode is formed cannot be made larger than the electrode area (3). Therefore, it has the disadvantage of being unsuitable for mass production.

他方、平行平板型電極の間にその電界が被形成面に概略
平行になるように多数の基板を互いに一定の距離(2〜
6 cm>を離間して林立せしめて配設する方法が知ら
れている。
On the other hand, a large number of substrates are placed at a certain distance (2 to 2) from each other so that the electric field between the parallel plate electrodes is approximately parallel to the surface to be formed.
A method of arranging them in a forest with a distance of 6 cm is known.

その−例は不発門人の出願になる特許層(プラズマ気相
反応装置 昭和57年9月20日出願 特願昭57−1
63728/163729/163730)である。
An example of this is the patent layer filed by an undiscovered student (Plasma gas phase reactor, filed on September 20, 1980, patent application No. 1983)
63728/163729/163730).

即ち、基板を電位的にいずれの電極からも遊離せしめて
気相反応を行ういわゆるフローティングプラズマ気相反
応方法(以下PPCVD法という)において、多量の基
板に被膜形成を行うことができるという特長を有する。
That is, in the so-called floating plasma vapor phase reaction method (hereinafter referred to as PPCVD method) in which a vapor phase reaction is performed by separating the substrate electrically from any electrode, it has the advantage that a film can be formed on a large number of substrates. .

このため従来より公知の平行平板型電極の一方電極上に
基板を配設する方法に比べて、5〜20倍の生産性をあ
げることができた。しかし、かかるPPCVD法におい
て得られる膜厚の均一性はその一例として第1図に示す
ごときものであった。
Therefore, compared to the conventional method of disposing a substrate on one electrode of a parallel plate type electrode, productivity could be increased by 5 to 20 times. However, the uniformity of the film thickness obtained by such PPCVD method was as shown in FIG. 1 as an example.

第11ffl (A) ニ#イア、ソノ人−1,B −
B’、(4) c −c’、D−I)’の縦断面図を(B >、(c 
)、< D )、(E )に示す。さらに第1図(A)
における基板(1)と電極(82)、<52)およびヒ
ータ(13)、(13’)との相対位置関係を示してい
る。基板(1)は約5000人の厚さに非単結晶珪素半
導体を形成したものであるが、一対の電極(62)、<
52)間で(C)に示すごとく、電極近傍が厚くなり、
また( B )、(D >、(E )に示すごとく電極
の中央部が厚く、また電極端部が薄くなってしまった。
11thffl (A) Ni#ia, Sono-1, B-
B', (4) c-c', D-I)'
), <D), and (E). Furthermore, Figure 1 (A)
The relative positional relationship between the substrate (1), the electrode (82), <52), and the heaters (13), (13') in FIG. The substrate (1) is made of a non-single crystal silicon semiconductor with a thickness of approximately 5,000 mm, and a pair of electrodes (62), <
52) As shown in (C), the area near the electrode becomes thicker,
Furthermore, as shown in (B), (D>, and (E)), the central part of the electrode was thick, and the electrode end part was thin.

このため基板(1)上下側の側端部に形成される膜厚は
中央部の上下端部の厚さに比べて20〜30%も厚さが
薄くなってしまった。
For this reason, the thickness of the film formed on the upper and lower side edges of the substrate (1) is 20 to 30% thinner than the thickness of the upper and lower edges of the central portion.

不発門人のPPCVD法の発明をさらに検討を加えた結
果、周辺部(38)、<38’)の絶縁物(石英)で囲
まれている部上空間の上部および下部に1〜3cmの巾
の隙間(73)、(73’>があり、さらにその外側に
導体のステンレス容器が接地レベルで配置されているこ
とにより、ここよりプラズマが外部にもれてしまう。こ
のもれにより反応空間の電界、電気力線が乱れてしまっ
たため、かかる不均一性被膜(5) が形成されてしまったためであることが判明した。
As a result of further investigation of the invention of the PPCVD method by a dud student, we found that a 1-3 cm wide area was formed at the top and bottom of the space above the part surrounded by the insulating material (quartz) in the peripheral part (38), <38'). Because there are gaps (73) and (73'>, and a conductive stainless steel container is placed at ground level outside of these gaps, plasma leaks to the outside from here. This leakage causes the electric field in the reaction space to It was found that this was due to the formation of such a non-uniform film (5) due to the disturbance of the electric lines of force.

また、ヒータ(13)、<13’)のメンテナンスが不
便であり、特に上側のランプヒータ(13)の取替は作
業者の体を仰向けにして行わなければならない。
In addition, maintenance of the heater (13), <13') is inconvenient, and in particular, when replacing the upper lamp heater (13), the operator must lie on his or her back.

このため反応空間を均一に加熱しつつもランプの保守が
容易なPPCVD法がめられていた。本発明はかかる目
的を満たすと同時に、反応空間の隙間(73)をヒータ
の絶縁カバーで実質的に除去してしまう構造を有せしめ
たものである。
For this reason, the PPCVD method, which uniformly heats the reaction space and allows easy maintenance of the lamp, has been sought. The present invention satisfies these objects and at the same time has a structure in which the gap (73) in the reaction space is substantially eliminated by the insulating cover of the heater.

かくのごとくプラズマおよび反応性気体を閉じ込め、か
つ反応性気体を層流として被形成表面をなめるように供
給することにより多量生産を可能とし、かつ均一性を±
5%以内とせしめたことを特長としている。
In this way, by confining the plasma and reactive gas and supplying the reactive gas as a laminar flow so as to lick the surface to be formed, mass production is possible and uniformity can be improved.
The feature is that it is kept within 5%.

さらに本発明は、かかる反応容器内に絶縁物で内面が形
成された反応空間を有せしめる二重反応容器型として半
導体層を形成し、さらに加えてP型半導体、夏型半導体
およびN型半導体と積層して接合を基板上に形成するに
際し、それぞれの反応容器を分離部を介して連結せしめ
たマルチチャ(6) ンバ方式のPCVD法を第2図に示すごとくに提案する
にある。
Furthermore, the present invention forms a semiconductor layer as a double reaction vessel type in which the reaction vessel has a reaction space whose inner surface is made of an insulating material, and furthermore, a P-type semiconductor, a summer-type semiconductor, and an N-type semiconductor are formed in the reaction vessel. We propose a multi-chamber type PCVD method in which reaction vessels are connected via separation parts when laminating and forming a bond on a substrate, as shown in FIG. 2.

本発明は水素またはハロゲン元素が添加された非単結晶
半導体層の形成により、再結合中心密度の小さなP、l
およびN型の導電型を有する半導体層を形成し、その積
層境界にてPIN接合を形成するとともに、それぞれの
半導体層に他の隣接する半導体層からの不純物が混入し
て接合特性を劣化させることを防ぎ、またそれぞれの半
導体層を形成する工程間に、大気特に酸素に触れさせて
、半導体の一部が酸化されることにより眉間絶縁物が形
成されることのないようにした連続生産を行うためのプ
ラズマ気相反応に関する。
In the present invention, by forming a non-single-crystal semiconductor layer to which hydrogen or halogen elements are added, P and l
and N-type conductivity types, and forming a PIN junction at the lamination boundary thereof, and impurities from other adjacent semiconductor layers are mixed into each semiconductor layer, causing deterioration of the junction characteristics. Continuous production is performed to prevent the formation of glabellar insulators due to oxidation of part of the semiconductor by exposing it to the atmosphere, especially oxygen, between the steps of forming each semiconductor layer. Concerning plasma gas phase reactions.

さらに本発明は、かかる反応容器をそれぞれの反応にお
いては独立として多数連結したマルチチャンバ方式のプ
ラズマ反応方法において、一度に多数の基板を同時にそ
の被膜成長速度を大きくしたいわゆる多量生産方式に関
する。
Furthermore, the present invention relates to a multi-chamber plasma reaction method in which a large number of such reaction vessels are connected independently for each reaction, and to a so-called mass production method in which a large number of substrates are simultaneously grown at a high film growth rate.

本発明は2〜10cmの一定の間隙を経て基板を互いに
裏面をVB接させ、かつその2枚の基板ブロン(7) りを一定の間隔(例えば60IIl〈±6++++a)
で互いに離間させることにより、被膜形成面に概略平行
に配置された基板の上部、下部および中央1周辺での膜
厚の均一性、また膜質の均質性を促すとともに、反応性
気体の収率の向上を行うものである。
In the present invention, the back surfaces of the substrates are brought into VB contact with each other through a constant gap of 2 to 10 cm, and the two substrates are placed at a constant distance (for example, 60IIl<±6++++a).
By separating each other from each other, the film thickness is uniform at the top, bottom, and around the center 1 of the substrate, which is arranged approximately parallel to the film formation surface, and the film quality is homogeneous. It is meant to improve.

即ち10cm X 10cmまたは電極方向にlθ〜5
0C11例えば20canを有するとともに、中15〜
120 cta例えば60cIIlの基板(20cm 
X 60cmを1バッチ20枚配設)が、その収率にお
いて従来方法の3〜5%より20〜25%にまで向上さ
せることができた。
i.e. 10cm x 10cm or lθ~5 in the electrode direction
0C11 For example, it has 20 can and middle 15~
120 cta e.g. 60cIIl substrate (20cm
20 x 60cm sheets per batch), the yield was improved to 20-25% from 3-5% in the conventional method.

第2図、第3図においては、反応性気体の導入手段、排
気手段を有し、これらを供給ノズル、排気ノズルを設け
、この絶縁フードよりも内側に相対させて一対の電極(
61)、<51事〉または(62)、< 521 >お
よび反応性気体の供給ノズル(17>、(18)および
排気ノズル(17’) (1B’)を配設した。即ち、
電極の外側をフードの絶縁物で包む構造とした。さらに
このフード間の反応空間を閉じ込めるため、外側周辺を
h′?3縁物(3B>、<38′)で取り囲んだ。つま
り絶縁物ホルダで囲んだ空間即ち閉じ込められた反(8
) 応空間の筒状空間(6)、< 8 )のみにプラズマ反
応を生せしめる活性気体を供給せしめることにより、チ
ャンバ(反応容器><101 >、(102)内の全空
間にプラズマ化した反応生成物が拡散し広がることを防
いだものである。また第3図に第2図の断面を示す図面
を示すが、反応容器の前(図面左側)、後(図面右側)
に開閉扉を設け、この扉の内面にハロゲンランプ等によ
る加熱手段(13)、<13’)を設けた。かくすると
、ランプが故障しても取替が容易であり、保!に際し反
応容器(103)内面の汚染を防ぐことができた。
In FIGS. 2 and 3, a reactive gas introducing means and an exhaust means are provided, and a supply nozzle and an exhaust nozzle are provided for these, and a pair of electrodes (
61), <51> or (62), <521>, and reactive gas supply nozzles (17>, (18) and exhaust nozzles (17') (1B') were provided. That is,
The structure is such that the outside of the electrode is wrapped in an insulating hood. Furthermore, in order to confine the reaction space between the hoods, the outer periphery is h'? Surrounded by 3 edges (3B>, <38'). In other words, the space surrounded by the insulator holder, that is, the confined space (8
) By supplying the active gas that causes a plasma reaction only to the cylindrical space (6), <8) of the reaction space, the reaction that has turned into plasma is generated in the entire space inside the chamber (reaction vessel><101>, (102)). This prevents the product from diffusing and spreading.Also, Figure 3 shows a cross-sectional view of Figure 2, showing the front (left side of the drawing) and rear (right side of the drawing) of the reaction vessel.
An opening/closing door was provided, and heating means (13), <13') using a halogen lamp or the like was provided on the inner surface of this door. This way, even if the lamp breaks down, it will be easy to replace and it will be safe! During this process, contamination of the inner surface of the reaction vessel (103) could be prevented.

以下に本発明の実施例を図面に従って説明する。Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第2図、第3図に従って本発明のプラズマ気相反応装置
の実施例を説明する。
Example 1 An example of the plasma vapor phase reactor of the present invention will be described with reference to FIGS. 2 and 3.

この図面は、PIN接合、PIP接合、NIN接合また
はPINPIN・・・PIN接合等の基板上の半導体に
、異種導電型でありながらも、形成される半導体の主成
分または化学量論比の異なる半導体層をそれぞれの半導
体層をその前工程において形成された(9) 半導体層の影響(混入)を受けずに積層させるための多
層に自動かつ連続的に形成するための装置である。
This drawing shows semiconductors formed on semiconductors on a substrate such as a PIN junction, PIP junction, NIN junction, or PINPIN... This is an apparatus for automatically and continuously forming multiple layers in order to laminate each semiconductor layer without being influenced (contaminated) by the (9) semiconductor layer formed in the previous process.

図面においてはPIN接合を構成する複数の反応系の一
部を示している。即ち、P、IおよびN型の半導体層を
積層して形成する3つの反応系の2つ(■、■)とさら
に第1の予備室および移設用のバッファ室(n)を有す
るマルチチャンバ方式のプラズマ気相反応装置の装置例
を示す。
In the drawing, a part of a plurality of reaction systems constituting a PIN junction is shown. In other words, it is a multi-chamber system having two of the three reaction systems (■, ■) formed by stacking P, I, and N type semiconductor layers, a first preliminary chamber, and a buffer chamber (n) for relocation. An example of a plasma gas phase reactor is shown below.

図面における系■、L■は、2つの各反応容器(101
)、<103 )およびパンツ1室(102)を有し、
それぞれの反応容器間に分離部(44)、(45)、(
46)、(47)を有している。またそれぞれ独立して
、反応性気体の供給ノズル(17)、(1B )と排気
ノズル(17’) (18つとを有し、反応性気体が供
給系から排気系に層流すべく設けている。
Systems ■ and L■ in the drawing represent two reaction vessels (101
), <103 ) and one pants compartment (102),
Separation parts (44), (45), (
46) and (47). In addition, each of the reactive gas supply nozzles (17), (1B) and exhaust nozzles (17') (18) are provided, each of which is provided so that the reactive gas flows laminarly from the supply system to the exhaust system.

この装置は入り口側には第1の予備室(100)が設け
られ、まず扉(42)より基板ホルダ(2)の2つの面
に2つの被形成面を有する2枚の基板(1)を挿着した
。さらにこのホルダ(3)を外(10) 枠冶具(外周辺のみ(38)、<38’)として示す)
により互いに所定の等距離を離間して配設した。即ちこ
の被形成面を有する基板は被膜形成を行わない裏面を基
板ホルダ(2)に接し、基板2枚および基板ホルダとを
一つのホルダ(3)として6cm±0.5cmの間隙を
有して絶縁物の外枠冶具内に林立させた。その結果、2
0cm X 60cmの基板を20枚同時に被膜形成さ
せることができた。かくして高さ35C1l1%奥行8
0cm 、中80cmの反応空間(6)、(,8)は上
方、下方を絶縁物(39)、(39’)で囲まれ、また
側周辺は絶縁外枠冶具(38)、< 38′)で取り囲
まれ、隙間(73)は10mmまたはそれ以下とした。
This device is provided with a first preliminary chamber (100) on the entrance side, and first, two substrates (1) having two formation surfaces on two surfaces of a substrate holder (2) are inserted through a door (42). I inserted it. Furthermore, this holder (3) is shown as the outside (10) frame jig (only the outside periphery (38), <38')
They were arranged at a predetermined equal distance from each other. That is, the back side of the substrate having this surface on which the film is not formed is in contact with the substrate holder (2), and the two substrates and the substrate holder are treated as one holder (3) with a gap of 6 cm ± 0.5 cm. They were placed in a forest inside an insulating outer frame jig. As a result, 2
It was possible to form coatings on 20 substrates measuring 0 cm x 60 cm at the same time. Thus height 35C1l1% depth 8
The reaction spaces (6), (, 8) of 0 cm and 80 cm inside are surrounded by insulators (39), (39') on the upper and lower sides, and an insulating outer frame jig (38), (<38') around the sides. The gap (73) was 10 mm or less.

またこの隙間(第3図)の遠外側はこの外側のランプヒ
ータ(13)、(13’)の絶縁物フード(39)、<
39’)と保護用石英カバー(10)、<10’)でさ
らに絶縁されているため、プラズマがまったく外にもれ
ない構造にすることができた。即ち電気的に完全にプラ
ズマを絶縁物で取り囲んだ。さらにランプの石英カバー
(10)。
Also, the far outside of this gap (Fig. 3) is the insulation hood (39) of the outside lamp heater (13), (13').
39') and the protective quartz cover (10) <10'), we were able to create a structure in which no plasma leaked out. That is, the plasma was electrically completely surrounded by an insulator. Also a quartz cover for the lamp (10).

(10’)とフード(39)、<39’)の隙間の収率
としてその隙間が2〜5a+mであり、深さが10倍以
上あり、(11) 反応性気体の平均自由行径(5〜10111111)よ
り十分長いため等制約に絶縁させることができた。
The yield of the gap between (10') and the hood (39), <39') is 2 to 5 a + m, the depth is more than 10 times, and (11) the mean free running diameter of the reactive gas (5 to 10111111), it was possible to insulate it with equal constraints.

第1の予備室(100) *真空ポンプ(35)にてバ
ルブを開けて真空引きをした。この後、予め真空引きが
されている反応容器(101)との分離用のゲート弁(
44)を開けて外枠冶具(38)に保持された基板を移
した。例えば、予備室(100)より第1の反応容器(
101)に移し、さらにゲート弁(44)を閉じること
により基板を第1の反応容器(101) に移動させた
ものである。この時、第1の反応容器(101)に保持
されていた基板(1)等は予めまたは同時にバッファ室
(102)に、またバッファ室(102)に保持されて
いた冶具および基板(2)は第2の反応容器(103)
に、また第2の反応容器(103)に保持されていた基
板は第2のバッファ室(104’)に、さらに図示が省
略されているが第3の反応室の基板および冶具は出口側
の第2の予備室にゲート弁(45)、< 46 >、<
 47 ’)を開けて移動させることが可能である。こ
の後ゲート弁(44>、(45>、< 46 >、< 
47 )を閉めた。
First preliminary chamber (100) *The valve was opened using the vacuum pump (35) to create a vacuum. After this, a gate valve (
44) was opened and the substrate held in the outer frame jig (38) was transferred. For example, the first reaction vessel (
101), and then the gate valve (44) was closed to move the substrate to the first reaction vessel (101). At this time, the substrate (1) etc. held in the first reaction vessel (101) are placed in the buffer chamber (102) in advance or at the same time, and the jig and substrate (2) held in the buffer chamber (102) are Second reaction vessel (103)
In addition, the substrate held in the second reaction vessel (103) is transferred to the second buffer chamber (104'), and although not shown, the substrate and jig in the third reaction chamber are transferred to the outlet side. Gate valve (45), <46>, <
47') can be opened and moved. After this, gate valve (44>, (45>, <46>, <
47) was closed.

(12) 即ちゲート弁の動きは、扉(42)が大気圧で開けられ
た時は分離部のゲート弁(44>、< 45 >、(4
6)、(47)は閉じられ、各チャンバにおいてはプラ
ズマ気相反応が行われている。また逆に、扉(42)が
閉じられていて予備室(100)が十分真空引きされた
時は、ゲート弁(44>、(45)、(46)、(47
)が開けられ、各チャンバの基板、冶具は隣のチャンバ
に移動する機構を有し、外気が反応室(101)、<1
02 )に混入しないようにしている。
(12) That is, the movement of the gate valves is as follows: when the door (42) is opened at atmospheric pressure, the gate valves (44>, <45>, (4) of the separation section
6) and (47) are closed, and a plasma gas phase reaction is performed in each chamber. Conversely, when the door (42) is closed and the preliminary chamber (100) is sufficiently evacuated, the gate valves (44>, (45), (46), (47)
) is opened, the substrate and jig in each chamber have a mechanism to move to the adjacent chamber, and outside air is brought into the reaction chamber (101), <1
02) to avoid contamination.

系■における第1の反応容器(101’)でP型半導体
層をpcvo法により形成する場合を以下に示す。
The case where a P-type semiconductor layer is formed by the PCVO method in the first reaction vessel (101') in system (2) will be described below.

反応系1 (反応容器(101)を含む)は10−3〜
10torr好ましくは0.01〜1torr例えばQ
、Q8torrとした。
Reaction system 1 (including reaction vessel (101)) is 10-3~
10 torr, preferably 0.01 to 1 torr, e.g. Q
, Q8torr.

反応性気体は珪化物気体(24)に対してはシラン(S
inHz*+t n≧1特にsin+またはSt、%)
、フッ化珪素(S i %またはSiF、)等があるが
、取扱いが容易なシランを用いた。
The reactive gas is silane (S) for silicide gas (24).
inHz*+t n≧1 especially sin+ or St, %)
, silicon fluoride (S i % or SiF), etc., but silane, which is easy to handle, was used.

本実施例の5ixC+メ(Q<x<1)を形成するため
、炭化物気体(25)としてDNS (ジメチルシラ(
13) ン(SiHL(CH,)、 )を用いた。
In order to form 5ixC+me (Q<x<1) in this example, DNS (dimethyl silica) was used as carbide gas (25).
13) SiHL(CH,) was used.

炭化珪素(SixC+−x O<x<1)に対しては、
P型の不純物としてポロンを前記したモノシラン中に同
時社0.5%の濃度に混入させ(24)よりシランとと
もに供給した。
For silicon carbide (SixC+-x O<x<1),
As a P-type impurity, poron was mixed into the monosilane described above at a concentration of 0.5% and supplied together with the silane from Simultaneous Co., Ltd. (24).

必要に応じ、水素(HL)または窒素(N2)を液体窒
素より気化して、反応室を大気圧とする時、(23)よ
り供給した。これらの反応性気体はそれぞれの流量計(
33)およびバルブ(32)を経て、反応性気体の供給
ノズル(17)より高周波電源(14)の負電極(61
)を経て反応空間(6)に供給された。反応性気体はホ
ルダ(3日)に囲まれた筒状空間(6)内に供給され、
この空間を構成する基板(1)に被膜形成を行った。さ
らに、負電極(61)と正電極(51)間に電気エネル
ギ例えば13.56MHzの高周波エネルギ(14)を
加えてプラズマ反応せしめ、基板上に反応生成物を被膜
形成せしめた。
If necessary, hydrogen (HL) or nitrogen (N2) was vaporized from liquid nitrogen and supplied from (23) when the reaction chamber was brought to atmospheric pressure. These reactive gases are separated by their respective flow meters (
33) and the valve (32), the negative electrode (61) of the high frequency power source (14) is supplied from the reactive gas supply nozzle (17).
) was supplied to the reaction space (6). The reactive gas is supplied into a cylindrical space (6) surrounded by a holder (3 days),
A film was formed on the substrate (1) constituting this space. Further, electric energy, such as high frequency energy (14) of 13.56 MHz, was applied between the negative electrode (61) and the positive electrode (51) to cause a plasma reaction, and a reaction product was formed on the substrate.

基板は100〜400℃例えば200℃に第3図に示す
反応容器(103)の容器の前後に配設された赤(14
) 外線ヒータと同じ手段により加熱した。
The substrate is heated to 100 to 400°C, for example, 200°C, in red (14) disposed before and after the reaction vessel (103) shown in FIG.
) Heated by the same means as the external wire heater.

この赤外線ヒータは、近赤外用ハロゲンランプ(発光波
長1〜3μ)ヒータまたは遠赤外用セラミックヒータ(
発光波長8〜25μ)を用い、棒状を有するため前方の
ヒータと後方のヒータとが互いに直交する方向に配置し
て、この反応容器内におけるホルダにより取り囲まれた
筒状空間を200±10℃好ましくは±5℃以内に設置
した。
This infrared heater is a near-infrared halogen lamp (emission wavelength 1 to 3μ) heater or a far-infrared ceramic heater (
The cylindrical space surrounded by the holder in this reaction vessel is preferably heated to 200±10°C by using a light emitting wavelength of 8 to 25μ), and because it has a rod shape, the front heater and rear heater are arranged in directions orthogonal to each other. was installed within ±5°C.

この後、前記したが、この容器に前記した反応性気体を
導入し、さらに10〜50011例えば100−に高周
波エネルギ(14)を供給してプラズマ反応を起こさせ
た。
Thereafter, as described above, the above-mentioned reactive gas was introduced into this container, and high frequency energy (14) was further supplied to 10-50011, for example 100-, to cause a plasma reaction.

上下の電極(61)、< 51 )<網状のステンレス
製電極80cm X 80cm)はフード(39)、<
39’)の内側全面にわたり配設して、等電界が基板表
面に平行となって反応空間全体に起きるようにした。ま
た反応性気体も基板(1)の表面に平行になるように上
側フードから外枠冶具(38)の閉じ込め空間を経て下
側フード(39’)にラミナーフローとさせた。
The upper and lower electrodes (61), < 51) < reticulated stainless steel electrodes 80 cm x 80 cm) are connected to the hood (39), <
39') so that an equal electric field was generated in the entire reaction space parallel to the substrate surface. In addition, the reactive gas was also caused to flow in a laminar manner from the upper hood to the lower hood (39') through the confined space of the outer frame jig (38) so as to be parallel to the surface of the substrate (1).

かくしてP型半導体層はBLH,/SiH,〜0.5%
Thus, the P-type semiconductor layer is BLH, /SiH, ~0.5%
.

(15) DMS / (S+H,、+DMS) = 10%の条
件にて、この反応系Iで約100人の厚さを有する薄膜
(膜厚のばらつき95〜103人)として群成させた。
(15) Under the condition of DMS/(S+H,,+DMS)=10%, this reaction system I was clustered as a thin film having a thickness of about 100 (film thickness variation: 95 to 103).

f!g=2.05eVa = I X 10−’ 〜3
 X 10 ”+ (ocm)−’であった。
f! g=2.05eVa=IX10-' ~3
X10''+ (ocm)-'.

基板は導体基板(ステンレス、チタン、アルミニューム
、その他の金属)、半導体(珪素、ゲルマニューム)、
絶縁体(ガラス、有機薄膜)または複合基板(ガラスま
たは透光性有機樹脂上に透光性導電膜である弗素が添加
された酸化スズ、ITO等の導電膜が単層またはITO
上にSnO*が形成された2層膜が形成されたもの)を
用いた。本実施例のみならず本発明のすべてにおいてこ
れらを総称して基板という。勿論この基板は可曲性であ
ってもまた固い板であってもよい。
Substrates include conductor substrates (stainless steel, titanium, aluminum, and other metals), semiconductors (silicon, germanium),
An insulator (glass, organic thin film) or a composite substrate (a single layer of a conductive film such as tin oxide, ITO, etc. with fluorine added as a transparent conductive film on glass or a transparent organic resin)
A two-layer film on which SnO* was formed was used. These are collectively referred to as a substrate not only in this embodiment but also in all of the present invention. Of course, this substrate may be flexible or a rigid plate.

かくして1〜5分間プラズマ気相反応をさせて、P型不
純物としてホウ素が添加された炭化珪素膜を約100人
の厚さに作製した。さらにこの第1の半導体層が形成さ
れた基板をゲート(45)を開は前記した操作順序に従
ってバッファ室(102)に移動し、ゲート(45)を
閉じた。さらに、ここで(16) 10−’ torr以下にタライオボンプ(34)にて
真空引きをした後、ゲート(46)を開け、真性の半導
体層を約5000人の厚さに形成させた。
In this way, a plasma vapor phase reaction was carried out for 1 to 5 minutes, and a silicon carbide film doped with boron as a P-type impurity was produced to a thickness of about 100 mm. Further, the substrate on which the first semiconductor layer was formed was moved to the buffer chamber (102) according to the above-described operation sequence after opening the gate (45), and closing the gate (45). Further, after evacuating to below (16) 10-' torr using a Talio pump (34), the gate (46) was opened and an intrinsic semiconductor layer was formed to a thickness of about 5000 nm.

即ち第1図における反応系■において、半導体の反応性
気体としてモノシランまたはジシランを(28)より、
また、10円cm−El以下のホウ素を添加するため、
水素、シラン等により0.5〜30PPMに希釈したB
、H,を(27)より、また、キャリアガスを必要に応
じて(26)・より供給した。
That is, in the reaction system (2) in FIG. 1, monosilane or disilane is used as the reactive gas of the semiconductor from (28),
In addition, in order to add less than 10 yen cm-El of boron,
B diluted to 0.5-30 PPM with hydrogen, silane, etc.
, H, were supplied from (27), and a carrier gas was supplied from (26) as required.

反応性気体は基板(1)の被形成面にそって上方より下
方に流れ、真空ポンプ(88)に至る。系■において出
口側よりみた縦断面図を第3図に示す。
The reactive gas flows from the top to the bottom along the surface of the substrate (1) to be formed, and reaches the vacuum pump (88). Figure 3 shows a longitudinal cross-sectional view of system (1) viewed from the outlet side.

第3図を概説する。Figure 3 is outlined.

第3図は第2図の反応系■の縦断面図を示したものであ
る。
FIG. 3 shows a longitudinal sectional view of the reaction system (1) in FIG. 2.

図面において、ランプヒータ(13)、<13’)は棒
状のハロゲンランプを用いた。反応空間はヒータにより
100〜400℃例えば250ヤとした。
In the drawings, a rod-shaped halogen lamp was used as the lamp heater (13), <13'. The temperature of the reaction space was set at 100 to 400° C., for example, 250° C., using a heater.

この空間は石英またはセラミックフード(39)。This space is a quartz or ceramic hood (39).

(17) (39’>と石英の外枠冶具(3B>、(3B’)とに
より外部を絶縁化させている。さらに隙間(73)、<
73’)もその外側ヒータ(13’)の石英カバー(1
0’>により絶縁させ、プラズマが完全に反応空間(8
)内に閉じ込められるようにした。またヒータ(13)
、<13’)は開閉可能な扉(12>、<12’)の内
面に挿着されており、保守の際に扉を開けて行うのみで
可能となった。空間の均熱性を促すため、下側に輻射の
ハロゲンヒータ(11)を少し加え、反応空間を所定の
温度±5℃とした。
(17) The outside is insulated by (39'> and quartz outer frame jigs (3B>, (3B'). Furthermore, the gap (73), <
73') also has a quartz cover (1) of its outer heater (13').
0'>, the plasma is completely isolated from the reaction space (8
) so that it can be trapped inside. Also heater (13)
, <13') are inserted into the inner surface of the openable/closable door (12>, <12'), making it possible to perform maintenance simply by opening the door. In order to promote uniformity of temperature in the space, a small amount of a radiant halogen heater (11) was added to the lower side, and the reaction space was kept at a predetermined temperature of ±5°C.

基板(1)が基板ホルダ(2)に保持され、外枠冶具(
3B>、<38’)で閉じ込め空間(8)を構成してい
る。この基板の被形成面に、概略平行に電界(90)を
一対の主の電極(62)、(52)により供給し、プラ
ズマ気相反応を行った。
The board (1) is held in the board holder (2), and the outer frame jig (
3B>, <38') constitute a confined space (8). An electric field (90) was applied approximately parallel to the formation surface of this substrate by a pair of main electrodes (62), (52) to perform a plasma vapor phase reaction.

さらに反応性気体(91)も同時に被形成面に平行にし
た。反応性気体を(26)、<27)、<28)より供
給ノズル(1B)、反応空間(8)6排気ノズル(18
)を経て真空ポンプ(37)へ排気させた。被膜として
シランによりアモルファス珪素を作製した場合、(18
) 5000人の厚さに別Hす 60cc /分、被膜形成
速度2.5人/秒、基板(20clllX 60c+n
を20枚、延べ面積24000−)で圧力Q、l to
rrとした。5iLHt を用いた場合、被膜形成速度
28人/秒を有し、他は同様とした。
Furthermore, the reactive gas (91) was also made parallel to the surface to be formed. Reactive gas is supplied from (26), <27), <28) through the supply nozzle (1B), the reaction space (8), the exhaust nozzle (18)
) and was evacuated to a vacuum pump (37). When amorphous silicon is made with silane as a coating, (18
) 5,000 thicknesses 60cc/min, film formation rate 2.5mm/sec, substrate (20cllx 60c+n
20 sheets, total area 24000-), pressure Q, l to
It was set as rr. When using 5iLHt, the film formation rate was 28 persons/second, and other conditions were the same.

すると中央部が5000人とばらつき、縦方向の周辺部
が従来方法の場合は±3000人(ばらつき±20%)
であったのが、本発明装置では±250人(±5%)と
きわめて均一性を向上させることができた。
Then, the center part varies by 5,000 people, and the vertical peripheral part by the conventional method has a variation of ±3,000 people (variation ±20%).
However, the device of the present invention was able to significantly improve the uniformity to ±250 people (±5%).

かくして第1の反応室にてプラズマ気相法によりP型半
導体層を形成した上にPCVD法によりI型半導体層を
形成させてPI接合を構成させた。
Thus, in the first reaction chamber, a P-type semiconductor layer was formed by the plasma vapor phase method, and then an I-type semiconductor layer was formed by the PCVD method to form a PI junction.

またかくして系■にて約5000人の厚さに形成させた
後、基板は前記した操作に従って隣のバッファ室(10
2)に移され、さらにその隣の反応室に移設して同様の
pcvo工程によりN型半導体層を形成させた。このN
型半導体層は、PCVD法によりフォスヒンをP HJ
 / S s % = 1−0%としたシランとキャリ
アガスの水素をS iH4/ HL= 20%として供
給して、系Iと同様にして約200人の厚さにN型の微
結晶性または繊維構造を有する多結晶の半導体層(19
) を形成させ、さらにその上面に炭化珪素をDMS/(S
 r H/l+ DMS ) −0,1としてSixC
1−x (0<x< 1)で示されるN型半導体層を1
0〜200人の厚さ例えば50人の厚さに積層して形成
させたものである。
After forming the substrate to a thickness of about 5,000 in system ①, the substrate is placed in the adjacent buffer chamber (10
2), and was further moved to an adjacent reaction chamber, where an N-type semiconductor layer was formed by the same PCVO process. This N
The type semiconductor layer is made by converting phosphin into P HJ by PCVD method.
The N-type microcrystalline or Polycrystalline semiconductor layer with fiber structure (19
) is formed, and silicon carbide is further deposited on the top surface by DMS/(S
r H/l+ DMS) -0,1 as SixC
1-x (0<x<1)
The layers are laminated to a thickness of 0 to 200 people, for example, 50 people.

その他反応装置については系1と同様である。Other reactor equipment is the same as System 1.

かかる工程の後、第2の予備室より外にPIN接合を構
成して出された基板上に100〜1500人の厚さのI
TOをさらにその上に反射性または昇華性金属電極例え
ばアルミニューム電極を真空蒸着法により約1μの厚さ
に作り、ガラス基板上に(ITO+SnO++)表面電
極−(PIN半導体)−(裏面電極)を構成させた。
After this process, a 100 to 1500 thick I layer is placed on the substrate that is taken out from the second preliminary chamber to form a PIN junction.
Further, a reflective or sublimable metal electrode such as an aluminum electrode is formed on top of the TO to a thickness of about 1 μm by vacuum evaporation, and a (ITO+SnO++) surface electrode - (PIN semiconductor) - (back surface electrode) is formed on the glass substrate. I configured it.

その光電変換装置としての特性は7〜9%平均8%を1
0cm X 10cmの基板でAMI (100a+W
 /cj)の条件下にて真性効率特性として有し、集積
化してハイブリッド型にした20cn X 60cmの
ガラス基板においても、4.5%を実効効率で得ること
ができた。
Its characteristics as a photoelectric conversion device are 7 to 9%, average 8% to 1
AMI (100a+W) with a board of 0cm x 10cm
/cj) as an intrinsic efficiency characteristic, and even in a 20 cm x 60 cm glass substrate integrated into a hybrid type, an effective efficiency of 4.5% could be obtained.

この効率の向上は、大きい面積の基板の周辺部での膜厚
が従来の5000±3000人より1層としての最適の
膜厚の5000±250人とすることができたこ(20
) と、さらに同様に従来はPまたはN型半導体層では膜厚
がばらつきすぎて十分な開放電圧がでなかったことに比
べて、本発明方法はきわめて均一な膜厚にさせることが
できたことによって、その結果、1つの素子で開放電圧
は0.85〜0.9V (0,87±0.02V )で
あったが、短絡電流は18±2mA/ctAと大きく、
またPFも0.60〜0.70と大きく、かつそのばら
つきもパネル内、バッチ内で小さく、工業的に本発明方
法はきわめて有効であることが判明した。
This improvement in efficiency is due to the fact that the film thickness at the periphery of a large-area substrate can be reduced from the conventional 5000±3000 to 5000±250, which is the optimal film thickness for one layer (20
), and similarly, compared to conventional P- or N-type semiconductor layers where the film thickness varied too much and sufficient open-circuit voltage could not be produced, the method of the present invention was able to make the film thickness extremely uniform. As a result, the open voltage for one element was 0.85 to 0.9V (0.87±0.02V), but the short circuit current was as large as 18±2mA/ctA.
In addition, the PF was as large as 0.60 to 0.70, and its variation was small within panels and batches, proving that the method of the present invention is industrially very effective.

第4図は第3図における第2の反応系(III)で非単
結晶珪素を0.5μの膜厚に形成した場合の分布を示す
FIG. 4 shows the distribution when non-single crystal silicon is formed to a thickness of 0.5 μm using the second reaction system (III) in FIG.

第4図より明らかなように、基板(1)、電極(62)
t(52)、を絶縁物(39>、<39’) (38)
、<38’)により閉じ込めた空間(8)に配し、第4
図(A)のA−A″、B−B’5C−C″、D−D’の
それぞれの断面での厚さの分布を(B >、< c )
#(D )e(E )に示す。このすべての断面図にお
いて、第1図に比べてきわめて均一性を有し、実用上十
分±5%以内のばら(21) つきになっていることが判明した。
As is clear from Fig. 4, the substrate (1), the electrode (62)
t(52), is an insulator (39>, <39') (38)
, <38'), and the fourth
The thickness distribution at each cross section of A-A'', B-B'5C-C'', and D-D' in Figure (A) is (B >, < c)
Shown in #(D)e(E). It has been found that all of these cross-sectional views have extremely uniformity compared to FIG. 1, with variation (21) within ±5%, which is sufficient for practical use.

また第4図(A)において電気力線(72人等電位面(
87)を電界(90)に対応して示している。
Also, in Figure 4 (A), electric lines of force (72 equipotential surfaces (
87) is shown corresponding to the electric field (90).

そしてこの電界(90)および反応性気体の流れ(91
)は第2図、第3図に対応して被形成面に平行に形成さ
せていることがわかる。
This electric field (90) and the reactive gas flow (91)
) is shown to be formed parallel to the surface to be formed, corresponding to FIGS. 2 and 3.

形成させる半導体の種類に関しては、Stのみならず他
は■族のGe、5ixClx (0< x < 1 >
、5ixGe 1x(Q<x<l)、5ixSn 1−
x(0<x<1>単層または多層であっても、またこれ
ら以外にGaAs、GaAlAs+BP、CdS等の化
合物半導体であってもよいことはいうまでもない。
Regarding the types of semiconductors to be formed, in addition to St, others include Ge of group II, 5ixClx (0< x < 1 >
, 5ixGe 1x (Q<x<l), 5ixSn 1-
It goes without saying that x(0<x<1>) may be a single layer or a multilayer, and in addition to these, a compound semiconductor such as GaAs, GaAlAs+BP, or CdS may be used.

本発明は3つの反応容器を用いてマルチチャンバ方式で
のPCVD法を示した。しかしこれを1つの反応容器と
し、そこでpcvo法により窒化珪素をシラン(SiH
+または5itH()とアンモニア(NHj)とのPC
VD反応により形成させることは有効である。
The present invention demonstrated a multi-chamber PCVD method using three reaction vessels. However, this was used as a single reaction vessel, where silicon nitride was mixed with silane (SiH) using the PCVO method.
+ or PC with 5itH () and ammonia (NHj)
Formation by VD reaction is effective.

また酸化珪素をシランをN□oとのPCVD反応により
形成させることも有効である。
It is also effective to form silicon oxide by a PCVD reaction of silane with N□o.

また酸化スズを5nClチとril!素とのPCVD反
応によ(22) リ、ITOをInCl、 、5nCIf と酸素とのプ
ラズマ気相方法により形成することも有効である。
Also, add 5nCl of tin oxide! It is also effective to form ITO by a plasma vapor phase method using InCl, , 5nCIf and oxygen by PCVD reaction with element (22).

本発明で形成された非単結晶半導体被膜は、絶縁ディト
型電界効果半導体装置におけるN(ソース)I(チャネ
ル形成領域)N(ドレイン)接合またはPIF接合に対
しても有効である。さらに、PINダイオードであって
エネルギバンド中がW−N −W (WIDE−NAL
LOW−WIDE)または5ixCI−X−3量−5i
xC1−x (0<x<1)構造のPIN接合型の可視
光レーザ、発光素子または光電変換装置を作ってもよい
。特に先入射光側のエネルギバンド中を大きくしたヘテ
ロ接合構造を有するいわゆるW(PまたはN型)−N(
夏型)(WIDETONALLOW)と各反応室にて導
電型のみではなく生成物を異ならせてそれぞれに独立し
て作製して積層させることが可能になり、工業的にきわ
めて重要なものであると信する。
The non-single crystal semiconductor film formed according to the present invention is also effective for N (source), I (channel forming region), N (drain) junctions or PIF junctions in insulated field effect semiconductor devices. Furthermore, it is a PIN diode and the energy band is W-N-W (WIDE-NAL).
LOW-WIDE) or 5ixCI-X-3 amount-5i
A PIN junction type visible light laser, light emitting element, or photoelectric conversion device having an xC1-x (0<x<1) structure may be manufactured. In particular, the so-called W (P or N type)-N (
We believe that this is an extremely important technology from an industrial perspective, as it has become possible to independently manufacture and stack products of different conductivity types in each reaction chamber (WIDETONALLOW). do.

本発明において、分離部は単にゲイト弁のみではなく、
2つのゲート弁と1つのバッファ室とを系2として設け
てP型半導体の不純物の夏型半導(23) 体層中への混入をさらに防ぎ、特性を向上せしめること
は有効であった。
In the present invention, the separation part is not just a gate valve;
It was effective to provide two gate valves and one buffer chamber as system 2 to further prevent impurities of the P-type semiconductor from entering the summer semiconductor (23) body layer and to improve the characteristics.

この本発明のプラズマCVD装置を他の構造のマルチチ
ャンバ方式に応用モきることはいうまでもない。
It goes without saying that the plasma CVD apparatus of the present invention can be applied to multi-chamber systems with other structures.

電界は上下方向に一対として示した。しかしこの上下の
電界に直交して他の一対の電界を設け”ζもよい。
The electric fields are shown as a pair in the vertical direction. However, it is also possible to provide another pair of electric fields orthogonal to the upper and lower electric fields.

また本発明の実施例は第2図に示すマルチチャンバ方式
であり、そのすべての反応容器にてPCVD法を供給し
た。しかし必要に応じ、この一部をプラズマを用いない
光CVD法、LT CVD法(HOMOCVD法ともい
う)を採用して複合被膜を形成してもよい。
Further, the embodiment of the present invention was of a multi-chamber type as shown in FIG. 2, and the PCVD method was supplied to all the reaction vessels. However, if necessary, a composite film may be formed by employing a photo-CVD method or LT CVD method (also referred to as HOMOCVD method) that does not use plasma.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の方法で得られた基板上の膜厚の不均一性
を示す。 第2図、第3図は本発明を実施するためのプラズマ気相
反応用被膜製造装置の概略を示す。 第4図は本発明方法によって得られた基板の膜(24) 厚の均一性を示す。 特許出願人 (25)
FIG. 1 shows the non-uniformity of film thickness on a substrate obtained by a conventional method. FIGS. 2 and 3 schematically show a plasma gas phase coating manufacturing apparatus for carrying out the present invention. FIG. 4 shows the uniformity of the thickness of the film (24) on the substrate obtained by the method of the present invention. Patent applicant (25)

Claims (1)

【特許請求の範囲】 1、反応容器内に複数の基板を一定の間隔を有して配設
せしめ、前記反応容器の前方および後方に開閉手段を設
け、該手段に配設された加熱手段により前記基板の加熱
を実施したことを特徴とするプラズマ気相反応装置。 2、特許請求の範囲第1項において、基板の配設された
反応空間は絶縁物により取り囲まれて設けられることを
特徴とするプラズマ気相反応装置。 3、特許請求の範囲第1項において、輻射熱が基板の被
形成面に平行に供給されるよう加熱手段であるランプヒ
ータを配設したことを特徴とするプラズマ気相反応製造
装置。 4、特許請求の範囲第2項において、一対の加熱面のラ
ンプヒータは互いに直交して配設したことを特徴とする
プラズマ気相反応装置。 (1)
[Claims] 1. A plurality of substrates are arranged at regular intervals in a reaction container, opening/closing means are provided in front and rear of the reaction container, and heating means provided in the means A plasma vapor phase reaction apparatus characterized in that the substrate is heated. 2. A plasma vapor phase reactor according to claim 1, wherein the reaction space in which the substrate is disposed is surrounded by an insulator. 3. A plasma vapor phase reaction production apparatus according to claim 1, characterized in that a lamp heater serving as a heating means is provided so that radiant heat is supplied parallel to the surface on which the substrate is formed. 4. A plasma vapor phase reactor according to claim 2, characterized in that the lamp heaters of the pair of heating surfaces are disposed orthogonal to each other. (1)
JP58219200A 1983-11-22 1983-11-22 Plasmic vapor-phase reaction equipment Granted JPS60111415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219200A JPS60111415A (en) 1983-11-22 1983-11-22 Plasmic vapor-phase reaction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219200A JPS60111415A (en) 1983-11-22 1983-11-22 Plasmic vapor-phase reaction equipment

Publications (2)

Publication Number Publication Date
JPS60111415A true JPS60111415A (en) 1985-06-17
JPH0586645B2 JPH0586645B2 (en) 1993-12-13

Family

ID=16731770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219200A Granted JPS60111415A (en) 1983-11-22 1983-11-22 Plasmic vapor-phase reaction equipment

Country Status (1)

Country Link
JP (1) JPS60111415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246111A (en) * 1989-03-18 1990-10-01 Semiconductor Energy Lab Co Ltd Plasma treatment device
US6720576B1 (en) 1992-09-11 2004-04-13 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method and photoelectric conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710458U (en) * 1971-03-09 1972-10-07
JPS5456366A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Plasma film forming apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710458U (en) * 1971-03-09 1972-10-07
JPS5456366A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Plasma film forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246111A (en) * 1989-03-18 1990-10-01 Semiconductor Energy Lab Co Ltd Plasma treatment device
US6720576B1 (en) 1992-09-11 2004-04-13 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method and photoelectric conversion device
US7095090B2 (en) 1992-09-11 2006-08-22 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device

Also Published As

Publication number Publication date
JPH0586645B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
US6755151B2 (en) Hot-filament chemical vapor deposition chamber and process with multiple gas inlets
US6946404B2 (en) Method for passivating a semiconductor substrate
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
JPH0817244B2 (en) Substrate heating apparatus and photovoltaic device manufacturing apparatus using the substrate heating apparatus
JPS6043819A (en) Method for vapor-phase reaction
GB2043042A (en) Production of semiconductor bodies made of amorphous silicon
US6470823B2 (en) Apparatus and method for forming a deposited film by a means of plasma CVD
JPS60111415A (en) Plasmic vapor-phase reaction equipment
JPH0244141B2 (en)
JPS60138909A (en) Manufacturing equipment of vapor phase reaction film and manufacture thereof
JP2923748B2 (en) Coating method
JPH03183125A (en) Method for plasma vapor-phase reaction
JPH0436448B2 (en)
JPH0458173B2 (en)
JPH0463537B2 (en)
JP3062470B2 (en) Coating method
JPH0236058B2 (en)
JPS60114573A (en) Manufacture of silicon nitride film
JPH0522376B2 (en)
JPH03209719A (en) Manufacture of vapor-phase reaction film
JP2639637B2 (en) Gas phase reaction film preparation method
JPH0344148B2 (en)
JPS63940B2 (en)
JPH07263728A (en) Manufacture of thin film solar cell
JPH0522375B2 (en)