JP2923748B2 - Coating method - Google Patents

Coating method

Info

Publication number
JP2923748B2
JP2923748B2 JP8032876A JP3287696A JP2923748B2 JP 2923748 B2 JP2923748 B2 JP 2923748B2 JP 8032876 A JP8032876 A JP 8032876A JP 3287696 A JP3287696 A JP 3287696A JP 2923748 B2 JP2923748 B2 JP 2923748B2
Authority
JP
Japan
Prior art keywords
reaction
film
substrate
chamber
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8032876A
Other languages
Japanese (ja)
Other versions
JPH08274036A (en
Inventor
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP8032876A priority Critical patent/JP2923748B2/en
Publication of JPH08274036A publication Critical patent/JPH08274036A/en
Application granted granted Critical
Publication of JP2923748B2 publication Critical patent/JP2923748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の利用分野】本発明は良質な被膜を形成する方法
に関するものである。 【0002】 【従来の技術】従来、CVD 装置例えばPCVD装置
においては、反応系の圧力が0.05〜10torrと
高い圧力のため、その排気系等はVPのみが用いられ、
それ以上の真空度を発生させるTP等を設けることが全
く不可能とされていた。 【0003】 【従来の技術の問題点】しかし上記技術におけるPCV
D装置において、排気系がVPのみであり、しかもこの
VPが不連続の回転運動をするため、空気と接触してい
る大気圧の排気系からの大気(特に酸素)が逆流し、さ
らにこの大気の一部が油中に混入し、ここから再気化す
ることにより反応容器内に逆流してしまうことが判明し
た。さらにこのため、この逆流により酸素が形成する被
膜内に混入し、例えば珪素膜を作製する場合その被膜内
に酸素が3×1019〜2×1020cm−3の濃度に
混入してしまった。このため、かかる被膜に水素または
弗素が添加されて、珪素半導体であるべきものが低級酸
化珪素といってもよいようなものになってしまった。 【0004】 【発明が解決しようとする課題】本発明は、従来の技術
において良質な被膜形成を行おうとする際問題であっ
た、反応炉への排気系からの大気の逆流を防止すること
を、目的とする。 【0005】 【課題を解決するための手段】本発明の気相反応被膜作
製方法は、減圧状態に保持された反応系に置かれた基板
上に被膜を互いに積層させる方法において、前記被膜を
形成させるための反応室に、前記被膜形成中はゲート弁
により各反応室から独立させることができる構造のもの
であって、しかも反応ガス導入手段と、真空または減圧
にするための不連続回転方式の真空ポンプ及び連続排気
方式のターボ分子ポンプとを備えているものを使用し、
かつ反応室には基板移設用のバッファ室が接続されてお
り、また前記バッファ室は反応ガス導入手段と真空また
は減圧にするための不連続回転方式の真空ポンプ及び連
続排気方式のターボ分子ポンプとを備えているものであ
り、前記反応室を出た基板をバッファ室を介して他の反
応室に移動させることにより前記非単結晶半導体層の各
々の層を独立の反応室で形成させることにある。また反
応容器内で気相反応法により反応性気体を反応せしめて
非酸素系被膜を形成するに際し、反応性気体中の水、酸
化物を0.1ppm以下とし、被膜形成中における反応
容器から排気を連続排気方式のターボ分子ポンプにより
実施し、酸素または炭素が5×1018cm−3以下の
濃度である非酸素系被膜を基板上に形成することも可能
である。さらに相異なる反応室内で気相反応法により反
応性気体を反応せしめて第1層、第2層、第3層からな
る非酸素系被膜を作製する方法において、第2層を珪素
の半導体被膜に形成するに際し、減圧状態に保持された
反応室に、水、酸化物を0.1ppm以下にした反応性
気体を導入し、前記第2層の形成中の反応室はゲート弁
により他の反応室から独立させ、被膜形成中における該
反応室からの反応性気体や反応生成物を連続排気方式の
ターボ分子ポンプを用いて排出することもできる。 【0006】本発明は非酸素系被膜の作製において、そ
の排気系よりの大気の逆流を防ぐため、油回転方式のロ
ータリーポンプ、メカニカルブースターポンプ等の不連
続回転方式の真空ポンプ(以下単に真空ポンプまたはV
Pという)のみを用いるのではなく、連続排気方式のタ
ーボ分子ポンプ(以下単にターボ分子ポンプまたはTP
という)を反応容器と真空ポンプとの間に介在させて、
排気系からの大気の逆流を防止している。 【0007】このことにより、非酸化物被膜例えば非単
結晶珪素を、反応性気体であるシラン(Si
2n+2n≧1)を用いて形成するに際し、その被膜中
の酸素の量を5×1018cm3以下好ましくは1×
1018cm−3以下にしようとするものである。本発
明はかかる排気系をTPを反応室とVPとの間に反応中
の圧力調整用のバルブを経て介在させることにより、反
応室内は0.05〜10torrの間の圧力範囲でプラ
ズマ気相反応(PCVDという、光CVD (Phot
o CVDという)またはこれらを併用した方法(以下
単にCVD法として総称する))を用いて被膜形成を行
い、かつ圧力調整バルブ下は1×10−2torr以下
(一般には10−4〜10−6torr)の圧力として
保持し、TPを作用させるため、反応系はこの排気系よ
りも高い圧力(1×10−2torr以上即ち0.05
〜10torr)で保持して被膜形成を行うことを目的
としている。さらに本発明はかかるプラズマCVD装置
を反応室を複数ケ連結し、それぞれの反応室にてP型非
単結晶半導体、I型非単結晶半導体およびN型非単結晶
半導体を基板上に積層して、PIN接合を構成する半導
体装置の作製方法に関する。 【0008】本発明は、図1にその装置の概要を示す。
即ち、反応性気体を導入するドーピング系(50)反応
容器(51)排気系(52)を有する。反応容器は内側
に絶縁物で内面が形成された反応空間を有する二重反応
容器型として半導体層を形成し、さらに加えてP型半導
体(図面では系A),I型半導体(図面では系C)およ
びN型半導体と積層して接合を基板上に形成するに際
し、それぞれの反応容器を分離部(図面では系B)を介
して連結せしめたマルチチャンバ方式のPCVD法を図
1に示すごとくに提案するにある。 【0009】本発明は水素またはハロゲン元素が添加さ
れた非単結晶半導体層の形成により、再結合中心密度の
小さなP,IおよびN型の導電型を有する半導体層を形
成し、その積層境界にてPIN接合を形成するととも
に、それぞれの半導体層に他の隣接する半導体層からの
不純物が混入して接合特性を劣化させることを防ぎ、ま
たそれぞれの半導体層を形成する工程間に、大気特に酸
素に触れさせて、半導体の一部が酸化されることにより
層間絶縁物が形成されることのないようにした連続生産
を行うためのプラズマ気相反応に関する。 【0010】さらに本発明は、かかる反応容器をそれぞ
れの反応においては独立として多数連結したマルチチャ
ンバ方式のプラズマ反応方法において、一度に多数の基
板を同時にその被膜成長速度を大きくしたいわゆる多量
生産方式に関する。本発明は10cm×10cmまたは
電極方向に10〜50cm例えば40cmを有するとと
もに、巾15〜120cm例えば60cmの基板(40
cm×60cmまたは20cm×60cmを1バッチ2
0枚配設)を用いた。 【0011】図1、図2においては、反応性気体の導入
手段、排気手段を有し、これらを供給ノズル、排気ノズ
ルを設け、この絶縁フードよりも内側に相対させて一対
の電極(61),(61’)または(62),(6
2’)および反応性気体の供給ノズル(17),(1
8)および排気ノズル(17’),(18’)を配設し
た。即ち、電極の外側をフードの絶縁物で包む構造(3
9),(39’)とした。さらにこのフード間の反応空
間を閉じ込めるため、外側周辺を絶縁物(38),(3
8’)で取り囲んだ。 【0012】また、図2に図1の断面を示す図面を示す
が、反応容器の前(図面左側)後(図面右側)に開閉扉
を設け、この扉の内面にハロゲンランプ等による加熱手
段(13),(13’)を設けた。以下に本発明の実施
例を図面に従って説明する。 【0013】 【実施例】 〔実施例1〕 図1、図2に従って本発明のプラズマ気相反応装置の実
施例を説明する。 この図面は、PIN接合、PIP接
合、NIN接合またはPINPIN・・・PIN接合等
の基板上の半導体に、異種導電型でありながらも、形成
される半導体の主成分または化学量論比の異なる半導体
層をそれぞれの半導体層をその前工程において形成され
た半導体層の影響(混入)を受けずに積層させるための
多層に自動かつ連続的に形成するための装置である。 【0014】図面においてはPIN接合を構成する複数
の反応系の一部を示している。即ち、P,IおよびN型
の半導体層を積層して形成する3つの反応系の2つ
(A、C)とさらに第1の予備室および移設用のバッフ
ァ室(B)を有するマルチチャンバ方式のプラズマ気相
反応装置の装置例を示す。図面における系A、B、C
は、2つの各反応容器(101 ),(103)および
バッファ室(102)を有し、それぞれの反応容器間に
ゲート弁(44),(45),(46),(47)を有
している。またそれぞれ独立して、反応性気体の供給ノ
ズル(17),(18)と排気ノズル(17’),(1
8’)とを有し、反応性気体が供給系から排気系に層流
になるべく設けている。 【0015】この装置は入り口側には第1の予備室(1
00)が設けられ、まず扉(42)より基板ホルダ
(2)の2つの面に2つの被形成面を有する2枚の基板
(1)を挿着した。さらにこのホルダ(3)を外枠冶具
(外周辺のみ(38),(38’)として示す)により
互いに所定の等距離を離間して配設した。即ちこの被形
成面を有する基板は被膜形成を行わない裏面を基板ホル
ダ(2)に接し、基板2枚および基板ホルダとを一つの
ホルダ(3)として6cm±0.5cmの間隙を有して
絶縁物の外枠冶具内に林立させた。その結果、40cm
×60cmの基板を20枚同時に被膜形成させることが
できた。かくして高さ55cm、奥行80cm、巾80
cmの反応空間(6),(8)は上方、下方を絶縁物
(39),(39’)で囲まれ、また側周辺は絶縁外枠
冶具(38),(38’)で取り囲んだ。 【0016】第1の予備室(100)を圧力調整バルブ
(71)を全開とし、TP(86)を経て真空ポンプ
(35)により真空引きをした。この後、圧力調整バル
ブ(72)を全開とし、TPにより3×10−8tor
r以下にまで予め真空引きがされている反応容器(10
1)との分離用のゲート弁(44)を開けて、外枠冶具
(38)に保持された基板を移した。例えば、予備室
(100)より第1の反応容器(101)に移し、さら
にゲート弁(44)を閉じることにより基板を第1の反
応容器(101)に移動させたものである。この時、第
1の反応容器(101)に保持されていた基板(1)等
は、予めまたは同時にバッファ室(102)に、またバ
ッファ室(102)に保持されていた冶具および基板
(2)は第2の反応容器(103)に、また第2の反応
容器(103)に保持されていた基板は第2のバッファ
室(104)に、さらに図示が省略されているが、第3
の反応室の基板および冶具は出口側の第2の予備室にゲ
ート弁(45),(46),(47)を開けて移動させ
ることが可能である。この後ゲート弁(44),(4
5),(46),(47)を閉めた。 【0017】即ちゲート弁の動きは、扉(42)が大気
圧で開けられた時は分離部のゲート弁(44),(4
5),(46),(47)は閉じられ、各チャンバにお
いてはプラズマ気相反応が行われている。また逆に、扉
(42)が閉じられていて予備室(100)が十分真空
引きされた時は、ゲート弁(44),(45),(4
6),(47)が開けられ、各チャンバの基板、冶具は
隣のチャンバに移動する機構を有し、外気が反応室(1
01),(102)に混入しないようにしている。 【0018】以下系Aにおける第1の反応容器(10
1)でP型半導体層をPCVD法により形成する場合を
以下に示す。反応系A(反応容器(101)を含む)は
0.01〜10torr好ましくは0.01〜1tor
r例えば0.08torrとした。即ち、圧力調整バル
ブ(72)を閉として、反応容器(101)内の圧力は
0.05〜1torrであり、またこのバルブ下は1×
10−2torr以下一般には1×10−4〜1×10
−7torrとなり、この真空度をTP(87)を回転
させて成就させている。またこの連続排気方式のTPを
動作させているため、PCVD反応により発生する粉末
状生成物を反応容器(101)から排出できると共に、
VP(36)のポリマ化した油の逆拡散、また油中に含
浸した排気用の大気特に酸素を逆流させることを初めて
防ぐことができた。 【0019】反応性気体は系Aのドーピング系(50)
より供給した。即ち珪化物気体(24)としては精製さ
れてさらにステンレスボンベに充填されたシラン(Si
2n+2n>1)特にSiHまたはSi
フッ化珪素(SiFまたはSiF)を用いた。ここ
では、取扱いが容易な超高純度シラン(純度99.99
%、但し水、酸素化物は0.1PPM以下)を用いた。
本実施例のSi1−x(0<X<1)を形成する
ため、炭化物気体(25)としてDMS (ジメチルシ
ラン(SiH(CH純度99.99%)を用い
た。炭化珪素(Si1−x0<x<1)に対して
は、P型の不純物としてボロンを前記したモノシラン中
に同時に0.5%の濃度に混入させ(24)よりシラン
とともに供給した。 【0020】必要に応じ、水素(純度7N以上)または
窒素 (純度7N以上)を反応室を大気圧とする時(2
3)より供給した。これらの反応性気体はそれぞれの流
量計(33)およびバルブ(32)を経、反応性気体の
供給ノズル(17)より高周波電源(14)の負電極
(61)を経て反応空間(6)に供給された。反応性気
体はホルダ(38)に囲まれた筒状空間(6)内に供給
され、この空間を構成する基板(1)に被膜形成を行っ
た。さらに負電極(61)と正電極(51)間に電気エ
ネルギ例えば13.56MHzの高周波エネルギ(1
4)を加えてプラズマ反応せしめ、基板上に反応生成物
を被膜形成せしめた。基板は100〜400℃例えば2
00℃に図2に示す反応容器(103)の容器の前後に
配設された赤外線ヒータと同じ手段により加熱した。 【0021】この赤外線ヒータは、近赤外用ハロゲンラ
ンプ(発光波長1〜3μ)ヒータまたは遠赤外用セラミ
ックヒータ(発光波長8〜25μ)を用い、この反応容
器内におけるホルダにより取り囲まれた筒状空間を20
0±10℃好ましくは±5℃以内に設置した。この後、
前記したが、この容器に前記した反応性気体を導入し、
さらに10〜500W例えば100Wに高周波エネルギ
(14)を供給してプラズマ反応を起こさせた。かくし
てP型半導体層はB/SiH=0.5%,DM
S/(SiH+DMS)=10%の条件にて、この反
応系Aで平均膜厚30〜300Å例えば約100Åの厚
さを有する薄膜として形成させた。Eg=2.05e
V)、σ=1×10−6〜3×10−5(Ωcm)−1
であった。 【0022】基板は導体基板(ステンレス、チタン、ア
ルミニューム、その他の金属),半導体(珪素、ゲルマ
ニューム),絶縁体(ガラス、有機薄膜)または複合基
板(ガラスまたは透光性有機樹脂上に透光性導電膜であ
る弗素が添加された酸化スズ、ITO等の導電膜が単層
またはITO上にSnOが形成された2層膜が形成さ
れたもの)を用いた。本実施例のみならず本発明のすべ
てにおいてこれらを総称して基板という。勿論この基板
は可曲性であってもまた固い板であってもよい。 【0023】かくして1〜5分間プラズマ気相反応をさ
せて、P型不純物としてホウ素が添加された炭化珪素膜
を約100Åの厚さに作製した。さらにこの第1の半導
体層が形成された基板をゲート(45)を開け前記した
操作順序に従ってバッファ室(102)に移動し、ゲー
ト(45)を閉じた。このバッファ室(102)は予め
10−8torr以下にクライオポンプ(88)にて真
空引きがされている。バッファ室(102)は、CVD
反応を行わないから、ターボ分子ポンプでなく、クライ
オポンプを使用できる。 【0024】またこの基板は系Cに同様にTP(89)
により、1×10−7torr以下に保持された反応容
器にゲート(46)の開閉を経て移設された。即ち図1
における反応系Cにおいて、半導体の反応性気体として
超高純度モノシランまたはジシランを(水または酸化珪
素、酸化物気体の濃度は0.1PPM以下)(28)よ
り、また、1017cm−3以下のホウ素を添加するた
め、水素、シラン等によって0.5〜30PPMに希釈
したBを(27)より、またキャリアガスを必要
に応じて(26)より供給した。反応性気体は基板
(1)の被形成面にそって上方より下方に流れ、TP
(89)に至る。系Cにおいて出口側よりみた縦断面図
を図2に示す。 【0025】図2を概説する。図2は図1の反応系Cの
縦断面図を示したものである。図面において、ランプヒ
ータ(13),(13’)は棒状のハロゲンランプを用
いた。反応空間はヒータにより100〜400℃例えば
250℃とした。基板(1)が基板ホルダ(2)に保持
され、外枠冶具(38),(38’)で閉じ込め空間
(8)を構成している。図2に示す反応室(103)に
おいてI層を5000Åの厚さに以下の条件、SiH
60cc/分、被膜形成速度2.5Å/秒、基板(2
0cm×60cmを20枚、延べ面積24000c
)、圧力0.1torrで形成した。反応ガスとし
てSiを用いた場合、被膜形成速度28Å/秒で
あった。 【0026】かくして第1の反応室にてプラズマ気相法
によりP型半導体層を形成した上にPCVD法によりI
型半導体層を形成させて円接合を構成させた。つぎに系
Cにて約5000Åの厚さに形成させた後基板を前記し
た操作に従って、隣のバッファ室(104)に移し、さ
らにその隣の反応室に移設して同様のPCVD工程によ
りN型半導体層を形成させた。このN型半導体層は、P
CVD法によりフォスヒンをPH/SiH=1.0
%としたシランとキャリアガスの水素をSiH/H
=20%として供給して、系Aと同様にして約200Å
の厚さにN型の微結晶性または繊維構造を有する多結晶
の半導体層を形成させて、さらにその上面に、炭化珪素
をDMS/(SiH+DMS)=0.1としてSi
1−x(0<x<1)で示されるN型半導体層を10
〜200Åの厚さ例えば50Åの厚さに積層して形成さ
せたものである。その他反応装置については系Aと同様
である。 【0027】かかる工程の後、第2の予備室より外にP
IN接合を構成して出された基板上に100〜1500
Åの厚さのITOをさらにその上に反射性または昇華性
金属電極例えばアルミニューム電極を真空蒸着法により
約1μの厚さに作り、ガラス基板上に(ITO+SnO
)表面電極−(PIN半導体)−(裏面電極)を構成
させた。その光電変換装置としての特性は7〜9%平均
8%を10cm×10cmの基板でAMI(100mW
/cm)の条件下にて真性効率特性として有し、集積
化してハイブリッド型にした40cm×60cmのガラ
ス基板においても、5.5%を実効効率で得ることがで
きた。その結果、1つの素子で開放電圧は0.85〜
0.9V(0.87±0.02V)であったが、短絡電
流は18±2mA/cmと大きく、またFFも0.6
0〜0.70と大きく、かつそのばらつきもパネル内、
バッチ内で小さく、工業的に本発明方法はきわめて有効
であることが判明した。 【0028】図3は本発明および従来方法により作られ
たPIN型光電変換装置における半導体内の酸素および
炭素の不純物の濃度分布を示す。図面はアルミニューム
裏面電極(94),N型半導体(93),I型半導体
(92),P型半導体(91),基板上の酸化スズ透光
性導電膜(90)をそれぞれ示す。従来方法の排気系を
回転ポンプまたはメカニカルブースターポンプのみによ
る排気方法においては、連続排気方式のTPを用いない
ため、炭素は曲線(95),酸素は曲線(96)に示さ
れる高い濃度の不純物を含有していた。特に酸素は、5
×1019〜2×1020cm−3をI型半導体(9
2)において有していた。図面は5×1019cm−3
の酸素を含んだ場合である。加えて図面は1×10
20cm−3 の炭素を有する場合である。 【0029】他方、本発明に示すごとき排気系において
は炭素濃度は曲線(98)で示される如く1×1017
〜5×1018cm−3を有し、一般には1×1018
cm−3以下しか含まれない。加えて酸素濃度も曲線
(97)で示されるごとく5×1018cm−3以下好
ましくは1×1018cm−3以下であり、図3では2
×1018cm−3の場合を示している。図3におい
て、裏面電極(94)のアルミニュームには3〜6×1
20cm−3の酸素を有している。このため、この酸
素がSIMS(二次イオン分析法)(カメカ社3F型を
使用)の測定において、バックグラウンドの酸素とな
り、N型半導体(93)中の酸素は1018〜1020
cm−3となってしまったものと考えられる。 【0030】さらにP型半導体中の酸素、DMS中に含
まれる水の成分があるため不純物があり、この出発材料
をシランを精製して0.1PPM以下の酸素または酸化
物とすることによりさらに酸素濃度を下げることの可能
性が推定できる。形成させる半導体の種類に関しては、
Siのみならず他は4族のGe,Si1−x(0<
x<1,Si Ge1−x (0<x<1)Si
Sn1−x(0<x<1)単層または多層であっても、
またこれら以外にGaAs,GaAlAs,BP,Cd
S等の化合物半導体等の非酸素化物であってもよいこと
はいうまでもない。 【0031】本発明は3つの反応容器を用いてマルチチ
ャンバ方式でのPCVD法を示した。しかしこれを1つ
の反応容器とし、そこでPCVD法により窒化珪素をシ
ラン(SiHまたはSi)とアンモニア(NH
)とのPCVD反応により形成させることは有効であ
る。本発明で形成された非単結晶半導体被膜は、絶縁ゲ
イト型電界効果半導体装置におけるN(ソース)I(チ
ャネル形成領域)N(ドレイン)接合またはPIP接合
に対しても有効である。さらに、PINダイオードであ
ってエネルギバンド巾がW−N−W(WIDE−NAL
LOW−WIDE)またはSi1−x−Si−Si
1−x(0<x<1)構造のPIN接合型の可視光
レーザ、発光素子または光電変換装置を作ってもよい。
特に光入射光側のエネルギバンド巾を大きくしたヘテロ
接合構造を有するいわゆるW(PまたはN型)−N(I
型)(WIDE TO NALLOW)と各反応室にて
導電型のみではなく生成物を異ならせてそれぞれに独立
して作製して積層させることが可能になり、工業的にき
わめて重要なものであると信ずる。 【0032】本発明において、分離部は単にゲイト弁の
みではなく、2つのゲート弁と1つのバッファ室とを系
Bとして設けてP型半導体の不純物のI型半導体層中へ
の混入をさらに防ぎ、特性を向上せしめることは有効で
あった。この本発明のプラズマCVD装置を他の構造の
シングルチャンバまたはマルチチャンバ方式に応用でき
ることはいうまでもない。また本発明の実施例は図1に
示すマルチチャンバ方式であり、そのすべての反応容器
にてPCVD法を供給した。しかし必要に応じ、この一
部または全部をプラズマを用いない光CVD法、LT
CVD法(HOMO CVD法ともいう)、減圧CVD
法を採用して複合被膜を形成してもよい。 【0033】 【発明の効果】本発明は、相異なる反応室でプラズマ気
相反応法により反応性気体を反応せしめて、第1層、第
2層、第3層からなり少なくとも1層が珪素を含む半導
体被膜を作製する方法において、前記少なくとも1層を
形成するに際し、減圧状態に保持された反応室に、水、
酸化物を0.1ppm以下にした反応性気体を導入し、
前記第2層の形成中の反応室はゲート弁により他の反応
室から独立させ、被膜形成中における該反応室からの反
応性気体や反応生成物を連続排気方式のターボ分子ポン
プを用いて排出するために、前記ターボ分子ポンプと反
応容器との間に設けたバルブの調整により、反応容器内
の圧力を0.01〜10torrとすることにより、従
来の技術において良質な被膜形成を行おうとする際問題
であった、反応炉への排気系からの大気の逆流を防止し
て、良質な被膜の作製が可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a high quality film. 2. Description of the Related Art Conventionally, in a CVD apparatus such as a PCVD apparatus, since the pressure of a reaction system is as high as 0.05 to 10 torr, only VP is used for an exhaust system and the like.
It has been completely impossible to provide a TP or the like for generating a higher degree of vacuum. [0003] However, PCV in the above technique
In the D apparatus, the exhaust system is only a VP, and furthermore, since this VP makes a discontinuous rotational movement, the atmosphere (particularly oxygen) from the exhaust system at atmospheric pressure in contact with air flows backward, It was found that a part of the oil was mixed into the oil, from which it was re-evaporated, and then flowed back into the reaction vessel. Further, for this reason, oxygen is mixed into the film formed by the backflow, and for example, when a silicon film is formed, oxygen is mixed into the film at a concentration of 3 × 10 19 to 2 × 10 20 cm −3 . . For this reason, hydrogen or fluorine is added to such a film, so that what should be a silicon semiconductor can be called lower silicon oxide. An object of the present invention is to prevent the backflow of air from an exhaust system to a reaction furnace, which is a problem in forming a high quality film in the prior art. , Aim. According to the present invention, there is provided a method for producing a vapor-phase reaction film, comprising: forming a film on a substrate placed in a reaction system kept under reduced pressure; During the film formation, the reaction chamber has a structure that can be made independent from each reaction chamber by a gate valve. Use the one equipped with a vacuum pump and a turbo-molecular pump of a continuous exhaust system,
A buffer chamber for transferring a substrate is connected to the reaction chamber, and the buffer chamber is provided with a reaction gas introduction unit and a discontinuous rotation type vacuum pump and a continuous evacuation type turbo molecular pump for reducing the pressure or vacuum. Wherein each substrate of the non-single-crystal semiconductor layer is formed in an independent reaction chamber by moving the substrate exiting the reaction chamber to another reaction chamber via a buffer chamber. is there. Further, in forming a non-oxygen-based film by reacting a reactive gas by a gas phase reaction method in a reaction vessel, water and oxides in the reactive gas are reduced to 0.1 ppm or less and exhausted from the reaction vessel during the formation of the film. Is carried out by a turbo-molecular pump of a continuous evacuation method, and a non-oxygen-based film having a concentration of 5 × 10 18 cm −3 or less of oxygen or carbon can be formed on the substrate. Further, in a method of producing a non-oxygen-based coating composed of a first layer, a second layer, and a third layer by reacting a reactive gas by a gas phase reaction method in different reaction chambers, the second layer is formed into a silicon semiconductor coating. During the formation, a reactive gas in which water and oxides are reduced to 0.1 ppm or less is introduced into a reaction chamber kept under reduced pressure, and the reaction chamber during the formation of the second layer is connected to another reaction chamber by a gate valve. And a reaction gas or a reaction product from the reaction chamber during film formation can be discharged using a turbo-molecular pump of a continuous exhaust system. According to the present invention, a discontinuous rotary vacuum pump (hereinafter simply referred to as a vacuum pump) such as an oil rotary rotary pump or a mechanical booster pump is used to prevent the backflow of the atmosphere from the exhaust system in the production of a non-oxygen coating film. Or V
P), instead of using only a turbo-molecular pump of a continuous exhaust system (hereinafter simply referred to as a turbo-molecular pump or TP).
Between the reaction vessel and the vacuum pump,
This prevents backflow of the atmosphere from the exhaust system. As a result, a non-oxide film, for example, non-single-crystal silicon is converted to silane (Si n H) as a reactive gas.
2n + 2 n ≧ 1) in forming with the amount of oxygen in the in the coating 5 × 10 18 cm - 3 or less preferably 1 ×
It is intended to reduce the density to 10 18 cm −3 or less. According to the present invention, the TP is interposed between the reaction chamber and the VP through a valve for controlling the pressure during the reaction, so that the reaction chamber has a plasma gas phase reaction in a pressure range of 0.05 to 10 torr. (Photo-CVD (PCVD)
o CVD) or a combination thereof (hereinafter simply referred to as a CVD method) to form a film, and 1 × 10 −2 torr or less (generally 10 −4 to 10 −) below the pressure regulating valve. The reaction system is maintained at a pressure of 6 torr and the TP is applied, so that the reaction system has a higher pressure (1 × 10 -2 torr or more, that is, 0.05) than the exhaust system.
-10 torr) to form a film. Further, the present invention connects such a plasma CVD apparatus to a plurality of reaction chambers, and stacks a P-type non-single-crystal semiconductor, an I-type non-single-crystal semiconductor, and an N-type non-single-crystal semiconductor on a substrate in each reaction chamber. And a method of manufacturing a semiconductor device forming a PIN junction. FIG. 1 shows the outline of the apparatus of the present invention.
That is, it has a doping system (50) for introducing a reactive gas, a reaction vessel (51), and an exhaust system (52). The reaction vessel has a semiconductor layer formed as a double reaction vessel type having a reaction space in which an inner surface is formed by an insulator, and additionally has a P-type semiconductor (system A in the drawing) and an I-type semiconductor (system C in the drawing). 1) and an N-type semiconductor to form a junction on the substrate, a multi-chamber PCVD method in which the respective reaction vessels are connected via a separation unit (system B in the drawing) as shown in FIG. There is to suggest. According to the present invention, a non-single-crystal semiconductor layer to which hydrogen or a halogen element is added is used to form a semiconductor layer having a P, I and N-type conductivity type having a low recombination center density, To form a PIN junction, to prevent each semiconductor layer from being mixed with impurities from another adjacent semiconductor layer to thereby degrade the junction characteristics. And to a plasma gas phase reaction for performing continuous production without forming an interlayer insulator by oxidizing a part of a semiconductor. Further, the present invention relates to a so-called mass production system in which a multi-chamber plasma reaction method in which a large number of such reaction vessels are independently connected in each reaction, the film growth rate of a large number of substrates at once is increased at the same time. . The present invention has a substrate (40 cm) having a size of 10 cm × 10 cm or 10 to 50 cm, for example, 40 cm in the electrode direction, and a width of 15 to 120 cm, for example, 60 cm.
cm × 60cm or 20cm × 60cm 1 batch 2
0). In FIGS. 1 and 2, a reactive gas introducing means and an exhausting means are provided, which are provided with a supply nozzle and an exhaust nozzle. , (61 ′) or (62), (6
2 ′) and reactive gas supply nozzles (17), (1)
8) and exhaust nozzles (17 ′) and (18 ′). That is, a structure in which the outside of the electrode is wrapped with a hood insulator (3)
9), (39 '). Further, in order to confine the reaction space between the hoods, the outer periphery is insulated (38), (3)
8 '). FIG. 2 is a drawing showing a cross section of FIG. 1. An opening / closing door is provided before (left side in the drawing) and after (right side in the drawing) the reaction vessel, and a heating means such as a halogen lamp is provided on the inner surface of the door. 13) and (13 ′). Hereinafter, embodiments of the present invention will be described with reference to the drawings. [Embodiment 1] An embodiment of a plasma vapor reactor according to the present invention will be described with reference to FIGS. 1 and 2. This drawing shows a semiconductor on a substrate such as a PIN junction, a PIP junction, a NIN junction or a PINPIN ... PIN junction, which is of a different conductivity type but has a different main component or a different stoichiometric ratio of the formed semiconductor. This is an apparatus for automatically and continuously forming layers into a multilayer for laminating each semiconductor layer without being affected (mixed) by a semiconductor layer formed in a previous step. In the drawings, some of a plurality of reaction systems constituting a PIN junction are shown. That is, a multi-chamber system having two (A, C) of three reaction systems formed by laminating P, I, and N type semiconductor layers, and further having a first spare chamber and a buffer chamber (B) for transfer. 1 shows an example of a plasma gas phase reaction apparatus. Systems A, B, C in the drawing
Has two reaction vessels (101) and (103) and a buffer chamber (102), and has gate valves (44), (45), (46) and (47) between the respective reaction vessels. ing. Also, independently, the reactive gas supply nozzles (17) and (18) and the exhaust nozzles (17 ') and (1)
8 ′), and the reactive gas is provided so as to form a laminar flow from the supply system to the exhaust system. This apparatus has a first spare room (1) at the entrance side.
00), first, two substrates (1) each having two surfaces to be formed were attached to two surfaces of the substrate holder (2) from the door (42). Further, the holder (3) was disposed at a predetermined equal distance from each other by an outer frame jig (only the outer periphery is shown as (38) and (38 ')). That is, the substrate having the surface on which the film is to be formed is in contact with the substrate holder (2) on the back surface on which no film is formed, and has a gap of 6 cm ± 0.5 cm using the two substrates and the substrate holder as one holder (3). Standing in the outer frame jig of the insulator. As a result, 40cm
A film could be simultaneously formed on 20 × 60 cm substrates. Thus, height 55cm, depth 80cm, width 80
The reaction spaces (6) and (8) of cm were surrounded on upper and lower sides by insulators (39) and (39 '), and the periphery was surrounded by insulating outer frame jigs (38) and (38'). The first preparatory chamber (100) was fully opened with the pressure regulating valve (71) and evacuated by the vacuum pump (35) through the TP (86). Thereafter, the pressure regulating valve (72) is fully opened, and 3 × 10 −8 torr by TP.
r reaction vessel (10
The gate valve (44) for separation from 1) was opened, and the substrate held by the outer frame jig (38) was transferred. For example, the substrate is moved from the preliminary chamber (100) to the first reaction vessel (101), and the substrate is moved to the first reaction vessel (101) by closing the gate valve (44). At this time, the substrate (1) and the like held in the first reaction vessel (101) are previously or simultaneously placed in the buffer chamber (102), and the jig and the substrate (2) held in the buffer chamber (102). Is stored in the second reaction vessel (103), and the substrate held in the second reaction vessel (103) is stored in the second buffer chamber (104).
The substrate and the jig in the reaction chamber can be moved to the second preparatory chamber on the outlet side by opening the gate valves (45), (46), and (47). Thereafter, the gate valves (44), (4
5), (46) and (47) were closed. That is, when the door (42) is opened at atmospheric pressure, the gate valves (44), (4)
5), (46), and (47) are closed, and a plasma gas phase reaction is performed in each chamber. Conversely, when the door (42) is closed and the preliminary chamber (100) is sufficiently evacuated, the gate valves (44), (45), (4)
6) and (47) are opened, and the substrate and the jig in each chamber have a mechanism for moving to the next chamber.
01) and (102). The first reaction vessel (10
The case where the P-type semiconductor layer is formed by the PCVD method in 1) will be described below. The reaction system A (including the reaction vessel (101)) is 0.01 to 10 torr, preferably 0.01 to 1 torr.
r, for example, 0.08 torr. That is, the pressure regulating valve (72) is closed, the pressure in the reaction vessel (101) is 0.05 to 1 torr, and the pressure below the valve is 1 ×.
10 −2 torr or less, generally 1 × 10 −4 to 1 × 10
-7 torr, and this degree of vacuum is achieved by rotating the TP (87). Further, since the continuous exhaust TP is operated, the powdery product generated by the PCVD reaction can be discharged from the reaction vessel (101), and
For the first time, it was possible to prevent the reverse diffusion of the polymerized oil of VP (36) and the backflow of the exhaust air impregnated in the oil, particularly oxygen. The reactive gas is a doping system of system A (50).
Supplied more. That is, silane (Si) purified as a silicide gas (24) and further filled in a stainless steel cylinder is used.
n H 2n + 2 n> 1 ) in particular SiH 4 or Si 2 H 6,
Silicon fluoride (SiF 2 or SiF 4 ) was used. Here, ultra-high-purity silane (purity 99.99) which is easy to handle
%, But water and oxygenates are 0.1 PPM or less).
To form the present embodiment Si x C 1-x (0 <X <1), it was used as a carbide gas (25) DMS (dimethyl silane (SiH 2 (CH 3) 2 99.99% purity). for silicon carbide (Si x C 1-x 0 <x <1), was fed together with silanes than is mixed simultaneously a concentration of 0.5% in monosilane said boron as impurities in the P-type (24) If necessary, hydrogen (purity of 7 N or more) or nitrogen (purity of 7 N or more) is added to the reaction chamber at atmospheric pressure (2
3). These reactive gases pass through respective flow meters (33) and valves (32), and from the reactive gas supply nozzle (17) to the reaction space (6) via the negative electrode (61) of the high frequency power supply (14). Supplied. The reactive gas was supplied into the cylindrical space (6) surrounded by the holder (38), and a film was formed on the substrate (1) constituting this space. Further, electric energy, for example, 13.56 MHz high-frequency energy (1) is applied between the negative electrode (61) and the positive electrode (51).
4) was added to cause a plasma reaction to form a film of the reaction product on the substrate. The substrate is at 100 to 400 ° C, for example, 2
It was heated to 00 ° C. by the same means as the infrared heaters arranged before and after the reaction vessel (103) shown in FIG. This infrared heater uses a near-infrared halogen lamp (emission wavelength: 1 to 3 μm) heater or a far-infrared ceramic heater (emission wavelength: 8 to 25 μ), and a cylindrical space surrounded by a holder in the reaction vessel. 20
The temperature was set at 0 ± 10 ° C., preferably within ± 5 ° C. After this,
As described above, the reactive gas described above is introduced into this container,
Further, high-frequency energy (14) was supplied to 10 to 500 W, for example, 100 W to cause a plasma reaction. Thus, the P-type semiconductor layer is B 2 H 6 / SiH 4 = 0.5%, DM
Under the condition of S / (SiH 4 + DMS) = 10%, this reaction system A was formed as a thin film having an average film thickness of 30 to 300 {for example, about 100}. Eg = 2.05e
V), σ = 1 × 10 −6 to 3 × 10 −5 (Ωcm) −1
Met. The substrate may be a conductor substrate (stainless steel, titanium, aluminum, other metals), a semiconductor (silicon, germanium), an insulator (glass, organic thin film), or a composite substrate (glass or translucent organic resin). A single conductive film of tin oxide to which fluorine is added, ITO, or the like, which is a conductive conductive film, or a two-layer film in which SnO 2 is formed on ITO is used. These are collectively referred to as a substrate in the present invention as well as in all of the present invention. Of course, this substrate may be flexible or a hard plate. Thus, a plasma gas phase reaction was performed for 1 to 5 minutes to form a silicon carbide film to which boron as a P-type impurity was added to a thickness of about 100 °. Further, the substrate on which the first semiconductor layer was formed was opened to the gate (45), moved to the buffer chamber (102) according to the operation sequence described above, and the gate (45) was closed. The buffer chamber (102) is previously evacuated to 10-8 torr or less by a cryopump (88). Buffer chamber (102) is CVD
Since no reaction is performed, a cryopump can be used instead of a turbo molecular pump. This substrate is the same as the system C in the TP (89)
As a result, the gate was moved to a reaction vessel maintained at 1 × 10 −7 torr or less through opening and closing of a gate (46). That is, FIG.
In the reaction system C, ultra-high-purity monosilane or disilane is used as the semiconductor reactive gas (water or silicon oxide, the concentration of the oxide gas is 0.1 PPM or less) (28), and 10 17 cm −3 or less. In order to add boron, B 2 H 6 diluted to 0.5 to 30 PPM with hydrogen, silane, or the like was supplied from (27), and a carrier gas was supplied from (26) as needed. The reactive gas flows downward from above along the surface on which the substrate (1) is formed, and TP
(89). FIG. 2 shows a longitudinal sectional view of the system C as viewed from the outlet side. FIG. 2 is outlined. FIG. 2 is a longitudinal sectional view of the reaction system C of FIG. In the drawing, a rod-shaped halogen lamp was used for the lamp heaters (13) and (13 '). The reaction space was heated to 100 to 400 ° C, for example, 250 ° C by a heater. The substrate (1) is held by the substrate holder (2), and the confined space (8) is constituted by the outer frame jigs (38) and (38 '). Following conditions I layer to a thickness of 5000Å in the reaction chamber shown in FIG. 2 (103), SiH 4
60 cc / min, film formation rate 2.5Å / sec, substrate (2
20 pieces of 0cm x 60cm, total area 24000c
m 2 ) at a pressure of 0.1 torr. When Si 2 H 6 was used as the reaction gas, the film formation rate was 28 ° / sec. Thus, a P-type semiconductor layer is formed in the first reaction chamber by the plasma vapor phase method, and then the P-type semiconductor layer is formed by the PCVD method.
A circular junction was formed by forming a mold semiconductor layer. Next, after being formed to a thickness of about 5000 ° by the system C, the substrate is transferred to an adjacent buffer chamber (104) according to the above-described operation, and further transferred to an adjacent reaction chamber, and subjected to a similar PCVD process to obtain an N-type substrate. A semiconductor layer was formed. This N-type semiconductor layer is composed of P
Phosphine was converted to PH 3 / SiH 4 = 1.0 by the CVD method.
% Of silane and hydrogen of carrier gas as SiH 4 / H 2
= 20% and supplied as about 200
A polycrystalline semiconductor layer having an N-type microcrystalline or fibrous structure is formed at a thickness of, and silicon carbide is set to DMS / (SiH 4 + DMS) = 0.1 and Si x
The N-type semiconductor layer represented by C 1-x (0 <x <1)
It is formed by laminating to a thickness of about 200 mm, for example, a thickness of 50 mm. Other reactors are the same as in system A. After such a step, P
100-1500 on the substrate which is formed by forming the IN junction
An ITO having a thickness of Å is further formed thereon with a reflective or sublimable metal electrode such as an aluminum electrode to a thickness of about 1 μm by a vacuum evaporation method, and (ITO + SnO) is formed on a glass substrate.
2 ) A front electrode- (PIN semiconductor)-(back electrode) was formed. The characteristics of the photoelectric conversion device are as follows: 7 to 9%, 8% on average, AMI (100 mW
/ Cm 2 ), and 5.5% could be obtained with an effective efficiency even on a 40 cm × 60 cm glass substrate integrated and hybridized. As a result, the open circuit voltage of one element is 0.85 to
Although 0.9 V (0.87 ± 0.02 V), the short circuit current was as large as 18 ± 2 mA / cm 2 and the FF was 0.6
0 to 0.70, and the variation is within the panel,
Small in batches, the process of the invention has been found to be very effective industrially. FIG. 3 shows the concentration distribution of oxygen and carbon impurities in the semiconductor in the PIN photoelectric conversion device manufactured by the present invention and the conventional method. The drawing shows an aluminum back electrode (94), an N-type semiconductor (93), an I-type semiconductor (92), a P-type semiconductor (91), and a tin oxide translucent conductive film (90) on a substrate, respectively. In the conventional exhaust method using only a rotary pump or a mechanical booster pump, the continuous exhaust system TP is not used, so that carbon has a high concentration of impurities shown by a curve (95) and oxygen has a high concentration shown by a curve (96). Contained. Especially oxygen is 5
× 10 19 to 2 × 10 20 cm −3 is an I-type semiconductor (9
It had in 2). The drawing is 5 × 10 19 cm −3
Of oxygen. In addition , the drawing is 1 × 10
This is the case with 20 cm -3 carbon . On the other hand, in the exhaust system as shown in the present invention, the carbon concentration is 1 × 10 17 as shown by the curve (98).
Has ~5 × 10 18 cm -3, is generally 1 × 10 18
cm -3 or less. In addition, the oxygen concentration is 5 × 10 18 cm −3 or less, preferably 1 × 10 18 cm −3 or less, as shown by the curve (97).
The case of × 10 18 cm −3 is shown. In FIG. 3, the aluminum of the back electrode (94) has 3 to 6 × 1
It has 0 20 cm −3 of oxygen. For this reason, this oxygen becomes background oxygen in the measurement by SIMS (secondary ion analysis method) (using 3F type of Kameka), and oxygen in the N-type semiconductor (93) is 10 18 to 10 20.
It is considered that the value became cm −3 . Further, there are impurities due to the presence of oxygen contained in the P-type semiconductor and water contained in the DMS, and this starting material is further purified by purifying silane into oxygen or oxide of 0.1 PPM or less to further increase oxygen. The possibility of lowering the concentration can be estimated. Regarding the type of semiconductor to be formed,
Not only Si other Group 4 of Ge, Si x C 1-x (0 <
x <1, Si x Ge 1 -x (0 <x <1) Si x
Sn 1-x (0 <x <1) Even if it is a single layer or a multilayer,
Besides these, GaAs, GaAlAs, BP, Cd
Needless to say, it may be a non-oxygenated compound such as a compound semiconductor such as S. The present invention has shown the PCVD method in a multi-chamber system using three reaction vessels. However, this was used as one reaction vessel, and silicon nitride was converted to silane (SiH 4 or Si 2 H 6 ) and ammonia (NH 2 ) by the PCVD method.
It is effective to form by PCVD reaction with 3 ). The non-single-crystal semiconductor film formed in the present invention is also effective for an N (source) I (channel forming region) N (drain) junction or a PIP junction in an insulated gate field effect semiconductor device. Furthermore, it is a PIN diode having an energy bandwidth of WNW (WIDE-NAL).
LOW-WIDE) or Si x C 1-x -Si- Si
A visible light laser, a light emitting element, or a photoelectric conversion device of a PIN junction type having a structure of x C 1-x (0 <x <1) may be manufactured.
In particular, a so-called W (P or N type) -N (I) having a heterojunction structure having an increased energy band width on the light incident light side.
(WIDE TO NALLOW) and in each reaction chamber, not only the conductivity type but also the products can be made different from each other and made independently and laminated, which is extremely important industrially. believe. In the present invention, the separation portion is not limited to a gate valve, but is provided with two gate valves and one buffer chamber as a system B to further prevent impurities of the P-type semiconductor from being mixed into the I-type semiconductor layer. It was effective to improve the characteristics. It goes without saying that the plasma CVD apparatus of the present invention can be applied to a single-chamber or multi-chamber system having another structure. In the embodiment of the present invention, the multi-chamber system shown in FIG. 1 was used, and the PCVD method was supplied to all the reaction vessels. However, if necessary, part or all of this can be performed by a photo CVD method using no plasma, LT
CVD method (also called HOMO CVD method), low pressure CVD
The composite coating may be formed by employing a method. According to the present invention, a reactive gas is reacted by a plasma gas phase reaction method in different reaction chambers to form a first layer, a second layer and a third layer, at least one of which is made of silicon. In the method for producing a semiconductor film containing, at the time of forming the at least one layer, water,
Introduce a reactive gas containing less than 0.1 ppm of oxide,
The reaction chamber during the formation of the second layer is separated from the other reaction chambers by a gate valve, and the reactive gas and reaction products from the reaction chamber during the formation of the film are discharged using a turbo-molecular pump of a continuous exhaust system. In order to achieve good film formation in the prior art, the pressure in the reaction vessel is adjusted to 0.01 to 10 torr by adjusting a valve provided between the turbo molecular pump and the reaction vessel. It is possible to prevent the backflow of the atmosphere from the exhaust system to the reaction furnace, which is an important problem, and to produce a high-quality coating.

【図面の簡単な説明】 【図1】本発明を実施するためのプラズマ気相反応用被
膜製造装置の概略を示す。 【図2】本発明を実施するためのプラズマ気相反応用被
膜製造装置の概略を示す。 【図3】本発明および従来方法によって作られた半導体
装置中の不純物の分布を示す。 【符号の説明】 (50) 反応性気体を導入するドーピング系 (51) 反応容器 (52) 排気系 (61)(61’)(62)(62”) 電極 (17)(18) 反応性気体の供給ノズル (17’)(18’) 反応性気体の排気ノズル (14)(15) 高周波エネルギー源 (38)(38’)(39)(39’) 絶縁物 (13)(13’) ハロゲンランプ等の加熱手段 (101)(103) 反応容器 (102)(104) バッファ室容器 (44)(45)(46)(47) ゲート弁 (100) 予備室 (42) 予備室扉 (5) 予備室空間 (2) 基板ホルダー (1) 基板 (6) 第1の反応室の反応空間 (8) 第2の反応室の反応空間 (7)(9) バッファ室空間 (71)(72)(73)(74) 圧力調整バルブ (86)(87)(88)(89) ターボ分子ポンプ (34)(35)(36)(37) 真空ポンプ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an outline of an apparatus for producing a coating for a plasma vapor phase reaction for carrying out the present invention. FIG. 2 shows an outline of an apparatus for producing a film for a plasma gas phase reaction for carrying out the present invention. FIG. 3 shows the distribution of impurities in a semiconductor device manufactured according to the present invention and a conventional method. [Description of Signs] (50) Doping System (51) for Introducing Reactive Gas (51) Reaction Vessel (52) Exhaust System (61) (61 ′) (62) (62 ″) Electrode (17) (18) Reactive Gas Supply nozzles (17 ') (18') Reactive gas exhaust nozzles (14) (15) High frequency energy source (38) (38 ') (39) (39') Insulator (13) (13 ') Halogen Heating means such as lamps (101) (103) Reaction vessels (102) (104) Buffer chamber vessels (44) (45) (46) (47) Gate valve (100) Spare chamber (42) Spare chamber door (5) Preliminary chamber space (2) Substrate holder (1) Substrate (6) Reaction space of first reaction chamber (8) Reaction space of second reaction chamber (7) (9) Buffer chamber space (71) (72) ( 73) (74) Pressure adjusting valve (86) (87) (88) (89) ) Turbo molecular pump (34) (35) (36) (37) Vacuum pump

Claims (1)

(57)【特許請求の範囲】 1.高周波プラズマCVD法を用いて半導体装置のI型
層を形成する被膜作製方法において、 反応室を、該反応室と不連続回転方式の真空ポンプとの
間に連続排気方式のターボ分子ポンプがある排気系を用
いて減圧する工程と、 前記反応室に反応性気体を導入する工程と、 前記反応室と前記ターボ分子ポンプとの間に設けられた
圧力調節バルブによって前記反応室を0.01〜10t
orrの圧力とし、酸素及び炭素がそれぞれSIMS
(二次イオン分析法)による測定で5×1018cm
−3以下の濃度である珪素を含むI型の半導体被膜を被
形成面上に形成する工程とを有することを特徴とする被
膜作製方法。
(57) [Claims] In a method for forming a film for forming an I-type layer of a semiconductor device by using a high-frequency plasma CVD method, there is provided an exhaust pump having a continuous exhaust turbo molecular pump between a reaction chamber and a discontinuous rotary vacuum pump. Depressurizing using a system, introducing a reactive gas into the reaction chamber, and adjusting the pressure of the reaction chamber to 0.01 to 10 t by a pressure control valve provided between the reaction chamber and the turbo molecular pump.
a pressure of orr, oxygen and carbon, respectively SIMS
5 × 10 18 cm as measured by (secondary ion analysis)
Forming an I-type semiconductor film containing silicon having a concentration of -3 or less on the surface on which the film is to be formed.
JP8032876A 1996-01-26 1996-01-26 Coating method Expired - Lifetime JP2923748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8032876A JP2923748B2 (en) 1996-01-26 1996-01-26 Coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8032876A JP2923748B2 (en) 1996-01-26 1996-01-26 Coating method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6336903A Division JP2639637B2 (en) 1994-12-27 1994-12-27 Gas phase reaction film preparation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10050061A Division JP3062470B2 (en) 1998-02-16 1998-02-16 Coating method

Publications (2)

Publication Number Publication Date
JPH08274036A JPH08274036A (en) 1996-10-18
JP2923748B2 true JP2923748B2 (en) 1999-07-26

Family

ID=12371089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8032876A Expired - Lifetime JP2923748B2 (en) 1996-01-26 1996-01-26 Coating method

Country Status (1)

Country Link
JP (1) JP2923748B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957126B2 (en) * 2000-09-07 2007-08-15 株式会社神戸製鋼所 Deposition equipment
US6916374B2 (en) * 2002-10-08 2005-07-12 Micron Technology, Inc. Atomic layer deposition methods and atomic layer deposition tools
JP2015137415A (en) * 2014-01-24 2015-07-30 エヌシーディ・カンパニー・リミテッドNcd Co.,Ltd. Large-area atomic layer deposition apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153740A (en) * 1978-05-25 1979-12-04 Ulvac Corp Continuous vacuum treatment apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153740A (en) * 1978-05-25 1979-12-04 Ulvac Corp Continuous vacuum treatment apparatus

Also Published As

Publication number Publication date
JPH08274036A (en) 1996-10-18

Similar Documents

Publication Publication Date Title
US4636401A (en) Apparatus for chemical vapor deposition and method of film deposition using such deposition
US20080023070A1 (en) Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells
JPS6043819A (en) Method for vapor-phase reaction
US20100178435A1 (en) Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells
JP2923748B2 (en) Coating method
JPS60138909A (en) Manufacturing equipment of vapor phase reaction film and manufacture thereof
JP2639637B2 (en) Gas phase reaction film preparation method
JP3062470B2 (en) Coating method
JP2717239B2 (en) Coating method
JP2717236B2 (en) Gas phase reaction film preparation method
JP3022369B2 (en) Gas phase reaction apparatus and operation method thereof
JP2717240B2 (en) Film forming equipment
JP2717235B2 (en) Gas phase reaction processing method
JP2639637C (en)
JPH061765B2 (en) Vapor-phase reactive coating method
JPH0831423B2 (en) Vapor-phase reactive coating method
JPH07307297A (en) Method of chemical vapor deposition
JPH03183125A (en) Method for plasma vapor-phase reaction
CN112955413B (en) Method for producing coated glass substrates
JPH0244141B2 (en)
JPH0586645B2 (en)
JPH0821550B2 (en) Gas phase reactor
JP3416546B2 (en) Method and apparatus for forming deposited film
JPH0463537B2 (en)
JPH0612836B2 (en) Method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term