JP2717239B2 - Coating method - Google Patents

Coating method

Info

Publication number
JP2717239B2
JP2717239B2 JP6147197A JP14719794A JP2717239B2 JP 2717239 B2 JP2717239 B2 JP 2717239B2 JP 6147197 A JP6147197 A JP 6147197A JP 14719794 A JP14719794 A JP 14719794A JP 2717239 B2 JP2717239 B2 JP 2717239B2
Authority
JP
Japan
Prior art keywords
reaction
substrate
film
valve
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6147197A
Other languages
Japanese (ja)
Other versions
JPH0750270A (en
Inventor
舜平 山崎
衛 田代
稔 宮崎
Original Assignee
株式会社 半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 半導体エネルギー研究所 filed Critical 株式会社 半導体エネルギー研究所
Priority to JP6147197A priority Critical patent/JP2717239B2/en
Publication of JPH0750270A publication Critical patent/JPH0750270A/en
Application granted granted Critical
Publication of JP2717239B2 publication Critical patent/JP2717239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は気相反応被膜作製装置お
よび作製方法に関する。 【0002】 【従来の技術】従来、CVD 装置例えばPCVD装置において
は、反応系の圧力が0.01〜10torrと高い圧力のため、そ
の排気系等はRPのみが用いられ、それ以上の真空度を発
生させるTP等を設けることが全く不可能とされていた。
しかし本発明人はかかるPCVD装置において、排気系がRP
のみではこのRPが不連続の回転運動をするため、空気と
接触している大気圧の排気系からの大気(特に酸素)が
逆流し、さらにこの大気の一部が油中に混入し、ここか
ら再気化することにより反応容器内に逆流してしまうこ
とを見いだし た。さらにこのため、この逆流により酸
素が形成する被膜内に混入し、例えば珪素膜を作製する
場合その被膜内に酸素が3×1019〜2.5 ×1020cm-3の濃
度に混入してしまった。このため、かかる被膜に水素ま
たは弗素が添加されて、珪素半導体であるべきものが低
級酸化珪素といってもよいようなものになってしまっ
た。 本発明はかかる欠点を防ぐことを目的としてい
る。 【0003】 【課題を解決するための手段】本発明は反応性気体を用
いて被膜作製を行うに際し、非酸化物の被膜を作製する
に関して、排気系においてタ−ボ分子ポンプを用いて気
相反応(以下CVD という)を行なわしめることにより、
被膜中の酸素の混入量を5×1018cm-3以下の濃度とさせ
る気相反応装置およびその装置を用いて被膜を作製する
方法に関する。 【0004】本発明は非酸素または非酸化物系被膜の作
製において、その排気系よりの大気の逆流を防ぐため、
油回転方式のロ−タリ−ポンプ、メカニカルブ−スタ−
ポンプ等の不連続回転方式の荒引用真空ポンプ(以下単
にロ−タリ−ポンプまたはRPという)のみを用いるので
はなく、連続排気方式の複合分子ポンプまたはタ−ボ分
子ポンプ(以下単にタ−ボ分子ポンプまたはTPという)
を反応容器と真空ポンプとの間に介在させて、排気系か
らの大気の逆流を防止したことを特徴とする。 【0005】本発明の非酸化物被膜例えば非単結晶珪素
を、反応性気体であるシラン(SinH2n+2 n>1)を用
いて形成するに際し、その被膜中の酸素の量を5×1018
cm-3以下好ましくは1×1018cm-3以下とするため、排気
系からの大気の逆流を防ぐことを目的としている。本発
明はかかる排気系をTPを反応室とVPとの間に反応中の圧
力調整用のバルブを経て介在させることにより、反応室
内は0.05〜10torrの間の圧力範囲でプラズマ気相反応
(PCVDという)、光CVD (Photo CVD という)またはこ
れらを併用した方法(以下単にCVD 法として総称する)
を用いて被膜形成を行い、圧力調整パルブ(コントロ−
ルバルブまたはバタフライバルブともいう)により制御
したものである。このためRPからの油成分の逆流および
RPが回転時に油に混入した大気の逆流を防ぐことにより
高品質の非酸化物被膜形成を行うことを目的としてい
る。 【0006】さらに本発明は気相反応を行う前に反応容
器を真空引きをする際はTPと反応容器との間を大口径の
配管で連結でき、さらにTPを反応容器に連結させること
ができる。このため、反応容器内を3×10-8torrまたは
それ以下の圧力(3×10-8〜1×10-10torr )にするこ
とが同じTPを用いて行い得るのである。即ち、本発明装
置により反応容器内を10-8torr以下とする真空排気とCV
D 法での被膜形成に必要な0.01〜10torrの圧力とを同一
のTPを用いて制御が酸素の逆流を防ぐに加えて可能にな
った。 【0007】さらに本発明はかかるプラズマCVD 装置を
反応室を複数ケ連結し、形成被膜を半導体とし、かつそ
れぞれの反応室にてP型非単結晶半導体、I型非単結晶
半導体およびN型非単結晶半導体を基板上に積層して、
PIN 接合を構成する半導体装置の作製装置および方法に
関する。 【0008】さらに本発明はかかる欠点を防ぐためにTP
を設けるに加えて圧力調整バルブをTPとRPとの間に設け
たものである。即ちもし圧力調整バルブを反応容器とTP
との間に設けるとこのバルブの内径は1〜2インチが一
般である。そのためこのバルブを全開としても、このバ
ルブ部でのコンダクタンスが低く、反応容器内をバック
グラウンドレベル (3×10-8torr以下)にせんとして
も、時間が長時間かかってしまう。またこのバルブを5
〜10インチと大口径とすると、圧力調整を十分な精度で
行うことができないという欠点を有する。 【0009】本発明はこれらの欠点を除去するため、0.
01〜10torrでも真空引きが可能な複合分子ポンプをTPと
して用い、加えて圧力調整バルブをTPとRPとの間に設
け、圧力制御をTP内と反応容器の双方に対して行わんと
したものである。以下に本発明の気相反応装置をプラズ
マCVD 装置によりPIN 接合を設ける場合を記して示す。 【0010】 【実施例】本発明は、その装置の概要を図1に示す。即
ち、反応性気体を導入するド−ピング系(50)、反応容器
(51)、排気系(52)を有する。反応容器は内側に絶縁物で
内面が形成された反応空間を有する二重反応容器型とし
て半導体層を形成し、さらに加えてP型半導体(図面で
は系I)、I型半導体(図面では系III )およびN型半
導体と積層して接合を基板上に形成するに際し、それぞ
れの反応容器を分離部(図面では系II)を介して連結せ
しめたマルチチャンバ方式のCVD 装置特にPCVD装置を図
1に示すごとくに提案するにある。 【0011】本発明は水素またはハロゲン元素が添加さ
れた非単結晶半導体層の形成により、再結合中心密度の
小さなP,IおよびN型の導電型を有する半導体層を形成
し、その積層境界にてPIN 接合を形成するとともに、そ
れぞれの半導体層に他の隣接する半導体層からの不純物
が混入して接合特性を劣化させることを防ぎ、またそれ
ぞれの半導体層を形成する工程間に、大気特に酸素に触
れさせて、半導体の一部が酸化されることにより層間絶
縁物が形成されることのないようにした連続生産を行う
ためのプラズマ気相反応に関する。 【0012】さらに本発明は、かかる反応容器をそれぞ
れの反応においては独立として多数連結したマルチチャ
ンバ方式のプラズマ反応方法において、一度に多数の基
板を同時にその被膜成長速度を大きくしたいわゆる多量
生産方式に関する。本発明は電極方向にその距離10〜50
cm例えば20cmを有するとともに、巾15〜120 cm例えば30
cmの基板(15cm×30cmを1バッチ10枚配設)を用いた。
図1において、反応性気体の導入手段(50)、排気手段
(52)を有し、これらを供給ノズル、排気ノズルを設け、
この絶縁フ−ドよりも内側に相対させて一対の電極(6
1),(51)または(62),(52)および反応性気体の供給ノズル
(17),(18) および排気ノズル(17'),(18') を配設した。
即ち、電極の外側をフ−ドの絶縁物で包む構造(38),(3
9')とした。さらにこのフ−ド間の反応空間を閉じ込め
るため、外側周辺を絶縁物(38),(38')取り囲んだ。 【0013】また、図示を省略したが、反応容器の前後
に開閉扉を設け、この扉の内面にハロゲンランプ等によ
る基板の加熱手段を設けた。この図面は、PIN 接合、PI
P 接合、NIN 接合またはPINPIN・・・PIN 接合等を基板
上の半導体に、異種導電型また異種材料でありながら
も、形成される半導体の主成分または化学量論比の異な
る半導体層をそれぞれの半導体層がその前工程において
形成された半導体層の影響(混入)を受けずに積層させ
るための多層に自動かつ連続的に形成するための装置で
ある。図面においてはPIN 接合を構成する複数の反応系
の一部を示している。即ち、P,IおよびN型の半導体
層を積層して形成する3つの反応系の2つ(I、II)と
さらに第1の予備室および移設用のバッファ室(II)を
有するマルチチャンバ方式のプラズマ気相反応装置の装
置例を示す。 【0014】図面における系I、II、III は、2つの各
反応容器(101),(103) およびバッファ室(102) を有し、
それぞれの反応容器間に分離部(44),(45),(46),(47)を
有している。この装置は入り口側には第1の予備室(10
0) が設けられ、まず扉(42)より基板ホルダ(2) の2つ
の面に2つの被形成面を有する2枚の基板(1) を挿着し
た。さらにこのホルダ(3) を外枠冶具(外周辺のみ(3
8),(38')として示す)により互いに所定の等距離を離間
して配設した。即ちこの被形成面を有する基板は被膜形
成を行わない裏面を基板ホルダ(2) に接し、基板2枚お
よび基板ホルダとを一つのホルダ(3) として6cm±0.5c
m の間隙を有して絶縁物の外枠冶具内に林立させた。そ
の結果、15cm×30cmの基板を10枚同時に被膜形成させる
ことができた。かくして高さ55cm、奥行40cm、巾40cmの
反応空間(6),(8) は上方、下方を絶縁物(39),(39')で囲
まれ、また側周辺は絶縁外枠冶具(38),(38')で電気的に
絶縁物で閉じ込め囲んだ。 【0015】第1の予備室(100) をTP(86)を経、ストッ
プバルブ(71)を経てRP(35)により真空引きをした。この
TPは大阪真空製複合分子ポンプTG550 を用いた。この複
合分子ポンプは定速度は400rps(毎秒の回転数)であ
り、N2,SiH4 は500 リットル/s の排気速度を有する。
さらに0.01〜10torrでの排気も可能でり、 10torrでも10
リットル/sec の排気が可能である。特に一般に気相反
応に用いる0.1 〜1torrにおいては、 450 リットル/sec
〜440 リットル/sec の排気が可能である。本発明は
かかるTPの回転数を可変とした。そのため反応容器が大
気圧であっても、TPの回転数を100 〜200rpsと定量値よ
り下げ、連続回転とさせた。そしてTPが破損しないよう
にした。そのため反応容器が大気圧においてRPをバルブ
(71)を開としてTPにより真空引きを駆動しながら真空引
きができた。その結果、RPからの油成分の逆流をTPが防
ぎ、 基板表面が油成分で汚染されることがないという特
長を有する。 【0016】この後、圧力調整バルブ(72)およびゲ−ト
バルブ(85)はその内径がTPの内径(VG150即ちJISB2290真
空ランジを使用)と同じとせしめ、このゲ−トバルブ(8
5)を全開とし、TP(同様にTG550 使用)により3×10-8
torr以下にまで予め真空引きがされている反応容器(10
1) との分離用のゲ─ト弁(44)(開口35cm×30cm)を開
けて、外枠冶具(38)に保持された基板を移した。例え
ば、予備室(100) より第1の反応容器(101) に移し、さ
らにゲ─ト弁(44)を閉じることにより基板を第1の反応
容器(101) に移動させたものである。 【0017】この時、第1の反応容器(101) に保持され
ていた基板(1) 等は、予めまたは同時にバッファ室(10
2) に、またバッファ室(102) に保持されていた冶具お
よび基板(2) は第2の反応容器(103) に、また第2の反
応容器(103) に保持されていた基板は第2のバッファ室
(104) に、さらに図示が省略されているが、第3の反応
室の基板および冶具は出口側の第2の予備室にゲ─ト弁
(45),(46),(47)を開けて移動させる。この後ゲ─ト弁(4
4),(45),(46),(47)を閉めた。 【0018】系Iにおける第1の反応容器(101) でP型
半導体層をPCVD法により形成する場合を以下に示す。
反応系I(反応容器(101) を含む)は0.01〜10torr好ま
しくは0.01〜1torr 例えば0.1 torrとした。即ち、圧力
調整バルブ(72)を閉として、反応容器およびTP(87),(10
1)内の圧力は0.01〜10torrのうち特に0.05〜1torrであ
り、この真空度をTP(87)下の圧力調整バルブ(72)の開閉
を制御して、かつTPの回転数を100rpsとして成就させて
いる。このTPの回転数を下げたのは、このTPの圧縮比を
定数の107 〜108 から102 〜103 に下げることにより圧
力調整バルブの圧力制御を容易に行わしめた。本発明は
この連続排気方式のTPを動作させているため、RP(36)の
ポリマ化した油の逆拡散、また油中に含浸した排気用の
大気特に酸素を逆流させることを初めて防ぐことができ
た。 【0019】反応性気体は系Iのド−ピング系(50)より
供給した。即ち珪化物気体(24)としては精製されてさら
にステンレスボンベに充填されたシラン(SinH2n+2
≧1特にSiH4またはSi2H6 )フッ化珪素(SiF4またはSi
F2)を用いた。ここでは、取扱いが容易な超高純度シラ
ン(純度99.99 %、但し水、酸素化物は0.1PPM以下)を
用いた。 【0020】本実施例のSixC1-x (0<x<1)を形成
するため、炭化物気体(25)として予めSi─C 結合を有す
るメチルシラン(56)即ちMMS (H Si(CH3)3)またはDMS
(ジメチルシラン (SiH2(CH3)2純度 99.99%)を用い
た。炭化珪素(Six C1-x 0<x<1)に対しては、P
型の不純物としてボロンを前記したモノシラン中に0.5
%の濃度に混入させたボンベ(24)よりシランとともに供
給した。 【0021】必要に応じ、水素(純度7N以上)または窒
素 (純度7N以上)を反応室を大気圧とする時(23)より
供給した。これらの反応性気体はそれぞれの流量計(33)
およびバルブ(32)を経、反応性気体の供給ノズル(17)よ
り高周波電源(14)の負電極(61)を経て反応空間(6) に供
給された。 反応性気体はホルダ(38)に囲まれた筒状空
間(6) 内に供給され、この空間を構成する基板(1) に被
膜形成を行った。さらに負電極(61)と正電極(51)間に電
気エネルギ例えば13.56MHzの高周波エネルギ(14)を加え
てプラズマ反応せしめ、基板上に反応生成物を被膜形成
せしめた。基板は100〜400℃例えば 200℃に図2に示す
反応容器(103) の容器の前後に配設された赤外線ヒ─タ
と同じ手段により加熱した。この赤外線ヒ─タは、近赤
外用ハロゲンランプ(定発光波長1〜3μm)ヒ─タま
たは遠赤外用セラミックヒ─タ(発光波長8〜25μm)
を用い、この反応容器内におけるホルダにより取り囲ま
れた筒状空間を210 ±10℃好ましくは±5℃以内に設置
した。 【0022】この後、前記したが、この容器に前記した
反応性気体を導入し、さらに5〜100W例えば20Wに高周
波エネルギ(14)を供給してプラズマ反応を起こさせた。
かくしてP型半導体層はB2H6/SiH4=0.5 %, MS/(Si
H4+ MS)=20%の条件にて、この反応系Iで平均膜厚30
〜300 Å例えば約200 Åの厚さを有する薄膜として形成
させた。Eg=2.15eVσ=1×10-6〜3×10-5(Ωcm)-1
であった。基板は導体基板(ステンレス、チタン、アル
ミニュ─ム、その他の金属)、半導体(珪素、ゲルマニ
ュ─ム)、絶縁体(ガラス、有機薄膜)または複合基板
(ガラスまたは透光性有機樹脂上に透光性導電膜である
弗素が添加された酸化スズ、ITO 等の導電膜が単層また
はITO 上にSnO2が形成された2層膜が形成されたもの)
を用いた。本実施例は複合基板を用いた。 【0023】かくして1〜5分間プラズマ気相反応をさ
せて、P型不純物としてホウ素が添加された炭化珪素膜
を約200 Åの厚さに作製した。さらにこの第1の半導体
層が形成された基板をゲ−ト(45)を開け前記した操作順
序に従ってバッファ室(102)に移動し、ゲ−ト(45)を閉
じた。このバッファ室(102) は予め10-8torr以下例えば
4×10-10torr にクライオポンプ(88)にて真空引きがさ
れている。 【0024】またこの基板は系III に同様にTP(89)によ
り、3×10-8torr以下に保持された反応容器にゲ−ト(4
6)の開閉を経て移設された。即ち図1における反応系II
I において、半導体の反応性気体として超高純度モノシ
ランまたはジシランを(水または酸化珪素、酸化物気体
の濃度は0.1PPM以下)(28)より、また、1017cm-3以下の
ホウ素を添加するため、水素、シラン等によって0.5 〜
30PPM に希釈したB2H6を(27)より、またキャリアガスを
必要に応じて(26)より供給した。反応性気体は反応容器
で反応の後、ゲイトバルブ(84)を経てTP(89)にさらにコ
ントロ−ルバルブ(74)、RP(34)に至る。7000Åの厚さに
SiH4 60cc/分、被膜形成速度2.5 Å/秒、基板(20cm
×60cmを20枚、延べ面積24000 cm2 )で圧力0.1 torrと
した。Si2H6 を用いた場合、被膜形成速度28Å/秒を有
していた。 【0025】かくして第1の反応室にてプラズマ気相法
によりP型半導体層を形成した上にPCVD法によりI型半
導体層を形成させてPI接合を構成させた。また系III に
て約7000Åの厚さに形成させた後、基板は前記した操作
に従って、隣のバッファ室(102) に移され、さらにその
隣の反応室に移設して同様のPCVD工程によりN型半導体
層を形成させた。 【0026】このN型半導体層は、PCVD法によりフォス
ヒンをPH3 /SiH4=1.0 %としたシランとキャリアガス
の水素をSiH4/H2=20%として供給して、系Iと同様に
して約500 Åの厚さにN型の微結晶性または繊維構造を
有する多結晶の半導体層を形成させ、さらにその上面に
炭化珪素をMS/(SiH4+ MS)=0.2 としてSix C1-x(0
<x<1)で示されるN型半導体層を10〜200 Åの厚さ
例えば50Åの厚さに積層して形成させたものである。そ
の他反応装置については系Iと同様である。かかる工程
の後、第2の予備室より外にPIN 接合を構成して出され
た基板上に100 〜1500Åの厚さのITO をさらにその上に
反射性または昇華性金属電極例えばアルミニュ─ム電極
を真空蒸着法により約1μの厚さに作り、ガラス基板上
に(ITO+SnO2)表面電極─(PIN 半導体)─(裏面電
極)を構成させた。その光電変換装置としての特性は8
〜10%平均8.5 %を10cm×10cmの基板でAM1 (100mW /
cm2 )の条件下にて真性効率特性として有し、集積化し
てハイブリッド型にした40cm×60cmのガラス基板のNEDO
パネルにおいても、5.7 %を実効効率で得ることができ
た。 【0027】その結果、1つの素子で開放電圧は0.85〜
0.9V(0.87±0.02V )であったが、短絡電流は18±2 mA
/cm2 と大きく、またFFも0.60〜0.70と大きく、かつそ
のばらつきもパネル内、バッチ内で小さく、工業的に本
発明方法はきわめて有効であることが判明した。 【0028】図2は本発明および従来方法により作られ
たPIN 型光電変換装置における半導体内の酸素および炭
素の不純物の濃度分布をSIMS(Cameca 3Fを使用)にて
測定した結果を示す。 【0029】図面はアルミニュ−ム─ITO ─裏面電極(9
4)、N型半導体(93)、I型半導体(92)、P型半導体(9
1)、基板上の酸化スズ透光性導電膜(90)をそれぞれ示
す。従来方法の排気系をRPポンプのみによる排気方法に
おいては、連続排気方式のTPを用いないため炭素は曲線
(95)、酸素は曲線(96)に示される高い濃度の不純物を含
有していた。特に酸素は、5×1019〜2×1020cm-3をI
型半導体(92)において有していた。図面は5×1019cm-3
の酸素を含んだ場合である。加えて油回転ポンプからの
油成分の逆流により炭素が5×1019〜4×1020cm-3を有
していた。図面は1×1020cm-3を有する場合である。他
方、本発明に示すごとき排気系においては炭素濃度は1
×1017〜5×1018cm-3を有し、一般には1×1018cm-3
下しか含まれない。加えて酸素も5×1018cm-3以下一般
には1×1018cm-3以下であり、図面2では2×1018cm-3
の場合を示す。 【0030】図2において、裏面電極(94)のアルミニュ
−ムは3〜6×1020cm-3の酸素を有している。このた
め、この酸素がSIMS(二次イオン分析法)(カメカ社3F
型を使用)の測定において、バックグラウンドの酸素と
なり、N型半導体(93)中の酸素は1018〜1020cm-3となっ
てしまったものと考えられる。さらにP型半導体中の酸
素、MS中には水の成分等の酸化物不純物があり、この出
発材料をシランと同様に精製して0.1PPM以下の酸素また
は酸化物とすることによりさらに酸素濃度を下げること
の可能性が推定できる。 【0031】形成させる半導体の種類に関しては、Siの
みならず他はIV族のGe, Six C1-x(0<x<1)、Six
Ge1-x (0<x<1)、Six Sn1-x (0<x<1)単層
または多層であっても、またこれら以外にGaAs,GaAlAs,
BP,CdS等の化合物半導体等の非酸素化物であってもよい
ことはいうまでもない。 【0032】本発明は3つの反応容器を用いてマルチチ
ャンバ方式でのPCVD法を示した。しかしこれを1つの反
応容器とし、そこでPCVD法により窒化珪素をシラン(Si
H4またはSi2H6 )とアンモニア(NH3)とのPCVD反応によ
り形成させることは有効である。 また本発明の1つの
反応例えば系Iの反応を光CVD 法によりMSとSi2H6 をB2
H6を混入して行うことにも同時に本発明のTPと圧力調整
バルブを排気系に用いることは有効である。 【0033】さらに本発明は、反応容器を1つとしTiCl
4 とSiH4とのPCVD反応、MoCl5,WF5またはこれらと珪化
物との反応によるTi,TiSi2,Mo,MoSi2,W,WSi2等の非酸素
化物被膜の作製に同様に有効である。本発明において、
分離部は系IIを省略して単にゲイト弁のみとしてもよ
い。この本発明のプラズマCVD 装置を他の構造のシング
ルチャンバまたはマルチチャンバ方式に応用できること
はいうまでもない。また本発明の実施例は図1に示すマ
ルチチャンバ方式であり、そのすべての反応容器にてPC
VD法を供給した。しかし必要に応じ、この一部または全
部をプラズマを用いない光CVD 法、LT CVD法(HOMO CVD
法ともいう)、減圧CVD 法を採用して複合被膜を形成し
てもよい。 【0034】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for producing a vapor phase reactive coating. 2. Description of the Related Art Conventionally, in a CVD apparatus such as a PCVD apparatus, since the pressure of a reaction system is as high as 0.01 to 10 torr, only RP is used in an exhaust system and the like, and a higher degree of vacuum is generated. It was impossible at all to provide a TP or the like to make it work.
However, the present inventor has found that in such a PCVD apparatus, the exhaust system is
With only RP, this RP makes a discontinuous rotation, so that the atmosphere (especially oxygen) from the exhaust system at atmospheric pressure in contact with the air flows backward, and a part of this atmosphere mixes with the oil. It was found that re-vaporization caused a backflow into the reaction vessel. Further, for this reason, oxygen is mixed into the film formed by the backflow. For example, when a silicon film is formed, oxygen is mixed into the film at a concentration of 3 × 10 19 to 2.5 × 10 20 cm -3 . . For this reason, hydrogen or fluorine is added to such a film, so that what should be a silicon semiconductor can be called lower silicon oxide. The present invention aims to prevent such disadvantages. [0003] The present invention relates to the formation of a non-oxide film when forming a film using a reactive gas, the gas phase using a turbo molecular pump in an exhaust system. The reaction (hereinafter referred to as CVD)
The present invention relates to a gas phase reaction apparatus for controlling the concentration of oxygen in a coating to 5 × 10 18 cm −3 or less and a method for producing a coating using the apparatus. [0004] In the present invention, in the production of a non-oxygen or non-oxide coating, to prevent backflow of the atmosphere from the exhaust system,
Oil rotary rotary pump, mechanical booster
Instead of using only a discontinuous rotary type rough vacuum pump such as a pump (hereinafter simply referred to as a rotary pump or RP), a continuous exhaust type composite molecular pump or turbo molecular pump (hereinafter simply referred to as a turbo molecular pump). Molecular pump or TP)
Is interposed between the reaction vessel and the vacuum pump to prevent backflow of the atmosphere from the exhaust system. When the non-oxide film of the present invention, for example, non-single-crystal silicon is formed using silane (SinH 2n + 2 n> 1) as a reactive gas, the amount of oxygen in the film is 5 × 10 5 18
The purpose of the present invention is to prevent the backflow of the atmosphere from the exhaust system in order to make it equal to or less than cm −3, preferably 1 × 10 18 cm −3 or less. According to the present invention, the exhaust system is interposed between the reaction chamber and the VP via a valve for adjusting the pressure during the reaction, so that the reaction chamber has a plasma gas phase reaction (PCVD) in a pressure range of 0.05 to 10 torr. ), Photo CVD (Photo CVD) or a combination of these methods (hereinafter simply referred to as CVD method)
A film is formed using a pressure adjusting valve (control
(Also called a valve or butterfly valve). For this reason, the backflow of the oil component from the RP and
The purpose is to form a high-quality non-oxide film by preventing the backflow of air mixed with oil during RP rotation. Further, according to the present invention, when the reaction vessel is evacuated before performing the gas phase reaction, the TP can be connected to the reaction vessel with a large-diameter pipe, and the TP can be further connected to the reaction vessel. . Therefore, the pressure inside the reaction vessel can be made 3 × 10 −8 torr or lower (3 × 10 −8 to 1 × 10 −10 torr) using the same TP. In other words, the device of the present invention evacuates the reaction vessel to 10 -8 torr or less and CV
The pressure of 0.01 to 10 torr required for film formation by the method D was made possible by using the same TP, in addition to controlling the backflow of oxygen. The present invention further relates to a plasma CVD apparatus in which a plurality of reaction chambers are connected to each other to form a film as a semiconductor, and a P-type non-single-crystal semiconductor, an I-type non-single-crystal semiconductor and an N-type A single crystal semiconductor is stacked on a substrate,
The present invention relates to an apparatus and a method for manufacturing a semiconductor device forming a PIN junction. Further, the present invention provides a TP
And a pressure regulating valve is provided between TP and RP. That is, if the pressure regulating valve is
And the inner diameter of this valve is generally 1 to 2 inches. Therefore, even if this valve is fully opened, the conductance at this valve portion is low, and it takes a long time even if the inside of the reaction vessel is kept at a background level (3 × 10 −8 torr or less). In addition, this valve
When the diameter is as large as 10 inches, there is a disadvantage that the pressure cannot be adjusted with sufficient accuracy. [0009] The present invention eliminates these disadvantages, and is intended to reduce
A compound molecular pump that can be evacuated even at 01 to 10 torr is used as the TP, and a pressure control valve is provided between TP and RP, and pressure control is performed for both the inside of the TP and the reaction vessel. It is. Hereinafter, a case where a PIN junction is provided in the gas phase reaction apparatus of the present invention by a plasma CVD apparatus will be described. FIG. 1 shows an outline of the apparatus according to the present invention. That is, a doping system (50) for introducing a reactive gas, a reaction vessel
(51) and an exhaust system (52). The reaction vessel has a semiconductor layer formed as a double reaction vessel type having a reaction space in which an inner surface is formed by an insulator, and additionally, a P-type semiconductor (system I in the drawing) and an I-type semiconductor (system III in the drawing). FIG. 1 shows a multi-chamber type CVD apparatus, particularly a PCVD apparatus, in which respective reaction vessels are connected via a separation unit (system II in the drawing) when a junction is formed on a substrate by laminating with a N-type semiconductor. It is in the proposal as shown. According to the present invention, a non-single-crystal semiconductor layer to which hydrogen or a halogen element is added is used to form a semiconductor layer having a P, I, and N-type conductivity type having a low recombination center density, In addition to forming a PIN junction, it prevents each semiconductor layer from mixing impurities from other adjacent semiconductor layers and deteriorating the junction characteristics. And to a plasma gas phase reaction for performing continuous production without forming an interlayer insulator by oxidizing a part of a semiconductor. Further, the present invention relates to a so-called mass production system in which a multi-chamber plasma reaction method in which a number of such reaction vessels are independently connected in each reaction, in which a large number of substrates are simultaneously increased in film growth rate at a time. . In the present invention, the distance is 10 to 50 in the electrode direction.
cm e.g. 20 cm and width 15-120 cm e.g. 30
cm substrate (10 pieces of 15 cm × 30 cm per batch) was used.
In FIG. 1, a means (50) for introducing a reactive gas and an exhaust means
(52), these are provided with a supply nozzle and an exhaust nozzle,
A pair of electrodes (6
1), (51) or (62), (52) and reactive gas supply nozzle
(17), (18) and exhaust nozzles (17 '), (18') were provided.
That is, a structure in which the outside of the electrode is wrapped with a hood insulator (38), (3)
9 '). In order to confine the reaction space between the hoods, the outer periphery was surrounded by insulators (38) and (38 '). Although not shown, an opening / closing door is provided before and after the reaction vessel, and a substrate heating means such as a halogen lamp is provided on the inner surface of the door. This drawing shows a PIN junction, PI
P-junction, NIN-junction or PINPIN ... PIN-junction, etc. are applied to the semiconductor on the substrate by using semiconductor layers of different conductivity type or different materials, but with different main components or stoichiometric ratios of the semiconductors to be formed. This is an apparatus for automatically and continuously forming a multilayer in which semiconductor layers are stacked without being affected (mixed) by a semiconductor layer formed in a previous step. The drawing shows a part of a plurality of reaction systems constituting a PIN junction. That is, a multi-chamber system having two (I, II) of three reaction systems formed by stacking P, I and N type semiconductor layers, and further having a first spare chamber and a buffer chamber (II) for transfer. 1 shows an example of a plasma gas phase reaction apparatus. The system I, II, III in the drawing has two reaction vessels (101), (103) and a buffer chamber (102),
Separation sections (44), (45), (46) and (47) are provided between the respective reaction vessels. This device has a first spare room (10
0), and two substrates (1) each having two surfaces to be formed were inserted from the door (42) to two surfaces of the substrate holder (2). Then, insert this holder (3) into the outer frame jig (only
8), (38 ')). That is, the substrate having the surface on which the film is to be formed is in contact with the substrate holder (2) on the back side on which no film is formed, and the two substrates and the substrate holder are used as one holder (3) for 6 cm ± 0.5 cm.
It was planted in an insulating outer frame jig with a gap of m. As a result, 10 15 cm × 30 cm substrates could be simultaneously formed. Thus, the reaction space (6), (8), 55cm in height, 40cm in depth, and 40cm in width, is surrounded by insulators (39), (39 ') on the upper and lower sides, and the outer peripheral jig is on the side periphery (38) , (38 ') enclosed in an electrically insulating material. The first preliminary chamber (100) was evacuated by the RP (35) through the TP (86) and the stop valve (71). this
As the TP, a compound molecular pump TG550 manufactured by Osaka Vacuum was used. This compound molecular pump has a constant speed of 400 rps (rotation speed per second), and N 2 and SiH 4 have a pumping speed of 500 l / s.
Furthermore, exhaust at 0.01 to 10 torr is possible, and 10 torr at 10 torr
Evacuation of liter / sec is possible. In particular, in the case of 0.1 to 1 torr generally used for a gas phase reaction, 450 liter / sec.
Exhaust of up to 440 liters / sec is possible. In the present invention, the rotation speed of the TP is made variable. Therefore, even when the reaction vessel was at atmospheric pressure, the rotation speed of the TP was lowered to a fixed value of 100 to 200 rps, and the rotation was continued. And TP was not damaged. Therefore, the reaction vessel valved RP at atmospheric pressure
With (71) open, vacuum evacuation was achieved while driving vacuum evacuation by the TP. As a result, the TP prevents the oil component from flowing backward from the RP, and the substrate surface is not contaminated with the oil component. Thereafter, the inner diameters of the pressure adjusting valve (72) and the gate valve (85) are made the same as the inner diameter of the TP (using a VG150 or JIS B2290 vacuum flange), and the gate valve (8) is used.
5) Fully opened, 3 × 10 -8 by TP (also using TG550)
A reaction vessel (10
A gate valve (44) (opening 35 cm × 30 cm) for separation from 1) was opened, and the substrate held by the outer frame jig (38) was transferred. For example, the substrate is moved from the preliminary chamber (100) to the first reaction vessel (101), and the substrate is moved to the first reaction vessel (101) by closing the gate valve (44). At this time, the substrate (1) and the like held in the first reaction vessel (101) are stored in the buffer chamber (10) in advance or simultaneously.
2), the jig and the substrate (2) held in the buffer chamber (102) are stored in the second reaction vessel (103), and the substrate held in the second reaction vessel (103) is stored in the second reaction vessel (103). Buffer room
Although not shown in (104), the substrate and the jig in the third reaction chamber are provided with a gate valve in the second preliminary chamber on the outlet side.
(45), (46), and (47) are opened and moved. After this, the gate valve (4
4), (45), (46) and (47) were closed. The case where the P-type semiconductor layer is formed by the PCVD method in the first reaction vessel (101) in the system I will be described below.
The reaction system I (including the reaction vessel (101)) was 0.01 to 10 torr, preferably 0.01 to 1 torr, for example, 0.1 torr. That is, the pressure regulating valve (72) is closed, and the reaction vessel and the TP (87), (10
The pressure in 1) is 0.01 to 10 torr, especially 0.05 to 1 torr. This degree of vacuum is controlled by controlling the opening and closing of the pressure regulating valve (72) below the TP (87), and the rotation speed of the TP is set to 100 rps. Let me. The reason why the rotation speed of the TP was reduced was that the pressure control of the pressure regulating valve was easily performed by reducing the compression ratio of the TP from a constant of 10 7 to 10 8 to 10 2 to 10 3 . Since the present invention operates this continuous exhaust TP, it is possible to prevent, for the first time, the reverse diffusion of the polymerized oil of the RP (36) and the reverse flow of the exhaust air impregnated in the oil, particularly oxygen. did it. The reactive gas was supplied from the system I doping system (50). That is, silane (SinH 2n + 2 n) purified as silicide gas (24) and further filled in a stainless steel cylinder
≧ 1 Especially SiH 4 or Si 2 H 6 ) Silicon fluoride (SiF 4 or Si
F 2) was used. Here, an ultra-high-purity silane (purity 99.99%, water and oxygenates of 0.1 PPM or less), which is easy to handle, was used. In order to form SixC 1-x (0 <x <1) according to the present embodiment, methyl carbide (56) having a Si 予 め C bond in advance, ie, MMS (H Si (CH 3 ) 3 ), was used as the carbide gas (25). ) Or DMS
(Dimethylsilane (SiH 2 (CH 3 ) 2 purity 99.99%) was used. For silicon carbide (Si x C 1 -x 0 <x <1), P
Boron as an impurity of the type was added to the above-mentioned monosilane in 0.5%.
% Together with silane from a cylinder (24) mixed to a concentration of 10%. If necessary, hydrogen (purity of 7 N or more) or nitrogen (purity of 7 N or more) was supplied from (23) when the pressure in the reaction chamber was set to atmospheric pressure. Each of these reactive gases is flow meter (33)
And a valve (32), a reactive gas was supplied from a supply nozzle (17) to a reaction space (6) via a negative electrode (61) of a high frequency power supply (14). The reactive gas was supplied into a cylindrical space (6) surrounded by a holder (38), and a film was formed on a substrate (1) constituting this space. Further, electric energy, for example, high-frequency energy (14) of 13.56 MHz was applied between the negative electrode (61) and the positive electrode (51) to cause a plasma reaction, thereby forming a film of the reaction product on the substrate. The substrate was heated to 100 to 400 ° C., for example, 200 ° C. by the same means as the infrared heaters placed before and after the reaction vessel (103) shown in FIG. This infrared heater is a near infrared halogen lamp (constant emission wavelength 1 to 3 μm) heater or a far infrared ceramic heater (emission wavelength 8 to 25 μm).
And the cylindrical space surrounded by the holder in the reaction vessel was set at 210 ± 10 ° C., preferably within ± 5 ° C. Thereafter, as described above, the above-described reactive gas was introduced into the container, and a high-frequency energy (14) was further supplied to 5 to 100 W, for example, 20 W to cause a plasma reaction.
Thus, the P-type semiconductor layer has B 2 H 6 / SiH 4 = 0.5%, MS / (Si
H 4 + MS) = 20%, the average thickness of this reaction system I was 30
It was formed as a thin film having a thickness of about 300 mm, for example, about 200 mm. Eg = 2.15eVσ = 1 × 10 -6 to 3 × 10 -5 (Ωcm) -1
Met. Substrate is a conductor substrate (stainless steel, titanium, aluminum, other metals), semiconductor (silicon, germanium), insulator (glass, organic thin film) or composite substrate (glass or translucent organic resin) A conductive film such as tin oxide or ITO to which fluorine is added, which is a conductive film, or a two-layer film in which SnO 2 is formed on ITO
Was used. In this example, a composite substrate was used. Thus, a plasma gas phase reaction was performed for 1 to 5 minutes to form a silicon carbide film to which boron as a P-type impurity was added to a thickness of about 200 °. Further, the gate (45) was opened on the substrate on which the first semiconductor layer was formed, and the substrate was moved to the buffer chamber (102) according to the above-described operation sequence, and the gate (45) was closed. The buffer chamber (102) is previously evacuated to 10 -8 torr or less, for example, 4 × 10 -10 torr by a cryopump (88). This substrate was placed in a reaction vessel maintained at 3 × 10 −8 torr or less by TP (89) as in System III.
6) It was relocated after opening and closing. That is, the reaction system II in FIG.
In I, ultra-high-purity monosilane or disilane is added as a semiconductor reactive gas (water or silicon oxide, the concentration of oxide gas is 0.1 PPM or less) (28), and boron of 10 17 cm -3 or less is added. 0.5 to 0.5 depending on hydrogen, silane, etc.
B 2 H 6 diluted to 30 PPM was supplied from (27), and a carrier gas was supplied from (26) as needed. After reacting in the reaction vessel, the reactive gas reaches the TP (89) via the gate valve (84), and further reaches the control valve (74) and the RP (34). 7000 mm thick
SiH 4 60cc / min, film formation rate 2.52.5 / sec, substrate (20cm
20 sheets of × 60 cm, total area 24000 cm 2 ) and pressure 0.1 torr. When Si 2 H 6 was used, the film formation rate was 28 ° / sec. Thus, in the first reaction chamber, the P-type semiconductor layer was formed by the plasma vapor phase method, and then the I-type semiconductor layer was formed by the PCVD method to form a PI junction. After being formed to a thickness of about 7000 mm by the system III, the substrate is transferred to the next buffer chamber (102) according to the above-described operation, and further transferred to the next reaction chamber, and subjected to the same PCVD process. A type semiconductor layer was formed. This N-type semiconductor layer was supplied in the same manner as in system I by supplying silane with a phosphine of PH 3 / SiH 4 = 1.0% and hydrogen of a carrier gas at SiH 4 / H 2 = 20% by PCVD. To form a polycrystalline semiconductor layer having an N-type microcrystalline or fibrous structure with a thickness of about 500 mm, and furthermore, Si x C 1 on the upper surface of which silicon carbide is set to MS / (SiH 4 + MS) = 0.2. -x (0
It is formed by laminating N-type semiconductor layers represented by <x <1) to a thickness of 10 to 200 mm, for example, a thickness of 50 mm. Other reactors are the same as in system I. After such a step, a 100-1500 mm thick ITO is further placed on the substrate formed by forming a PIN junction outside the second preparatory chamber, and a reflective or sublimable metal electrode such as an aluminum electrode is further placed thereon. Was formed to a thickness of about 1 μm by a vacuum evaporation method, and a (ITO + SnO 2 ) front electrode {(PIN semiconductor)} (back electrode) was formed on a glass substrate. Its characteristic as a photoelectric conversion device is 8
AM1 (100mW / 100mW /
NEDO on a 40 cm x 60 cm glass substrate integrated as a hybrid type with intrinsic efficiency characteristics under the condition of cm 2 )
In the panel, 5.7% was obtained with an effective efficiency. As a result, the open circuit voltage of one element is 0.85 to 0.85.
0.9V (0.87 ± 0.02V), but short circuit current is 18 ± 2 mA
/ Cm 2, and the FF is as large as 0.60 to 0.70, and its variation is small within the panel and within the batch. Thus, it has been found that the method of the present invention is extremely effective industrially. FIG. 2 shows the result of measurement of the concentration distribution of oxygen and carbon impurities in a semiconductor by SIMS (using Cameca 3F) in the PIN type photoelectric conversion device manufactured by the present invention and the conventional method. The drawing shows aluminum {ITO} back electrode (9
4), N-type semiconductor (93), I-type semiconductor (92), P-type semiconductor (9
1) shows a tin oxide translucent conductive film (90) on a substrate. In the conventional exhaust system using only the RP pump, carbon is curved because the continuous exhaust system TP is not used.
(95), oxygen contained a high concentration of impurities as shown in curve (96). Especially for oxygen, 5 × 10 19 to 2 × 10 20 cm -3
Had in the type semiconductor (92). The drawing is 5 × 10 19 cm -3
Of oxygen. In addition, the carbon had 5 × 10 19 to 4 × 10 20 cm -3 due to the backflow of the oil component from the oil rotary pump. The drawing is for a case having 1 × 10 20 cm −3 . On the other hand, in the exhaust system as shown in the present invention, the carbon concentration is 1%.
It has from × 10 17 to 5 × 10 18 cm -3 , and generally contains only 1 × 10 18 cm -3 or less. In addition, oxygen is 5 × 10 18 cm −3 or less, generally 1 × 10 18 cm −3 or less, and FIG. 2 shows 2 × 10 18 cm −3.
The case of is shown. [0030] In FIG. 2, Aruminyu back electrode (94) - arm has oxygen 3~6 × 10 20 cm -3. For this reason, this oxygen is used for SIMS (secondary ion analysis) (Kameka 3F
It is considered that in the measurement, the background oxygen was used, and the oxygen in the N-type semiconductor (93) was 10 18 to 10 20 cm −3 . Oxygen impurities in the P-type semiconductor and oxide impurities such as water components in the MS are contained in the P-type semiconductor. The starting material is purified in the same manner as silane to obtain oxygen or oxide of 0.1 PPM or less to further reduce the oxygen concentration. The possibility of lowering can be estimated. Regarding the types of semiconductors to be formed, not only Si but also other group IV Ge, Si x C 1-x (0 <x <1), Si x
Ge 1-x (0 <x <1), Si x Sn 1-x (0 <x <1) Even if it is a single layer or a multilayer, besides these, GaAs, GaAlAs,
It goes without saying that non-oxygenated compounds such as compound semiconductors such as BP and CdS may be used. The present invention has shown the PCVD method in a multi-chamber system using three reaction vessels. However, this was used as one reaction vessel, where silicon nitride was converted to silane (Si
It is effective to form the film by a PCVD reaction between H 4 or Si 2 H 6 ) and ammonia (NH 3 ). Also the MS and Si 2 H 6 by the optical CVD method and the reaction of one reactive example system I of the present invention B 2
The TP and pressure regulating valve of the simultaneously present invention also possible to perform H 6 mixed be used for the exhaust system is effective. Further, according to the present invention, a single reaction vessel
4 and PCVD reaction with SiH 4, MoCl 5, WF 5 or Ti by reaction thereof with silicide, TiSi 2, Mo, MoSi 2 , W, equally effective in the production of non-oxygenates coating such as WSi 2 is there. In the present invention,
The separation section may omit the system II and simply use only the gate valve. It goes without saying that the plasma CVD apparatus of the present invention can be applied to a single-chamber or multi-chamber system having another structure. Further, the embodiment of the present invention is a multi-chamber system shown in FIG.
VD method was supplied. However, if necessary, part or all of this can be performed by photo-CVD without plasma or LT CVD (HOMO CVD).
), Or a reduced pressure CVD method may be used to form the composite coating. [0034]

【図面の簡単な説明】 【図1】 本発明を実施するためのプラズマ気相反応用
被膜製造装置の概略を示す。 【図2】 本発明および従来方法によって作られた半導
体装置中の不純物の分布を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an outline of an apparatus for producing a coating for a plasma vapor phase reaction for carrying out the present invention. FIG. 2 shows the distribution of impurities in a semiconductor device manufactured according to the present invention and a conventional method.

フロントページの続き (72)発明者 宮崎 稔 東京都世田谷区北烏山7丁目21番21号 株式会社半導体エネルギー研究所内 (56)参考文献 特開 昭57−44786(JP,A) 特開 昭59−16328(JP,A) 特開 昭57−49082(JP,A) 特開 昭56−151287(JP,A)Continuation of front page    (72) Inventor Minoru Miyazaki               7-21-21 Kitakarasuyama, Setagaya-ku, Tokyo               Semiconductor Energy Laboratory Co., Ltd.                (56) References JP-A-57-44786 (JP, A)                 JP-A-59-16328 (JP, A)                 JP-A-57-49082 (JP, A)                 JP-A-56-151287 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.減圧状態に保持された反応室におかれた基板上にT
i、TiSi、Mo、MoSi、W、WSi等の
非酸素化物被膜をCVD法にて形成するに際し、反応室
比較的高真空排気した後に反応室に反応性気体を導
入する手段と、基板上に反応生成物を成膜する手段と、
反応後、反応中の不要反応生成物を比較的低真空排気
する排気手段とを有し、該排気手段の反応室側にバルブ
を介して直列に配置された連続排気方式の複合分子ポン
プにより前記不要反応生成物を排気し、前記バルブは前
記複合分子ポンプの圧縮比を下げることを特徴とする
膜形成方法。 2.請求項1に記載の被膜形成方法おいて、CVD法
がプラズマCVD法、光CVD法、LTCVD法(HO
MOCVD法)、減圧CVD法であることを特徴とする
被膜形成方法。
(57) [Claims] T is placed on a substrate placed in a reaction chamber maintained under reduced pressure.
In forming a non-oxygenated film such as i, TiSi 2 , Mo, MoSi 2 , W, WSi 2 by a CVD method, the reaction chamber is evacuated to a relatively high vacuum and then a reactive gas is introduced into the reaction chamber. Means for forming a reaction product on the substrate,
After the reaction, an exhaust means for exhausting unnecessary reaction products during the reaction to a relatively low vacuum is provided , and by a continuous exhaust type compound molecular pump arranged in series via a valve on the reaction chamber side of the exhaust means. The unnecessary reaction product is exhausted, and the valve is
It is characterized by lowering the compression ratio of the serial composite molecular pump
Film formation method. 2. Oite the film forming method according to claim 1, CVD method a plasma CVD method, optical CVD method, LTCVD method (HO
MOCVD) and reduced pressure CVD.
Coating method.
JP6147197A 1994-06-06 1994-06-06 Coating method Expired - Lifetime JP2717239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6147197A JP2717239B2 (en) 1994-06-06 1994-06-06 Coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6147197A JP2717239B2 (en) 1994-06-06 1994-06-06 Coating method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1233847A Division JPH0821550B2 (en) 1989-09-08 1989-09-08 Gas phase reactor

Publications (2)

Publication Number Publication Date
JPH0750270A JPH0750270A (en) 1995-02-21
JP2717239B2 true JP2717239B2 (en) 1998-02-18

Family

ID=15424757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6147197A Expired - Lifetime JP2717239B2 (en) 1994-06-06 1994-06-06 Coating method

Country Status (1)

Country Link
JP (1) JP2717239B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725733B1 (en) * 2006-05-30 2007-06-08 (주)에이오앤 Valve for preventing reverse-flow
CN104233236B (en) * 2013-06-17 2016-08-10 沙嫣 A kind of PECVD stove with double high-vacuum pump system

Also Published As

Publication number Publication date
JPH0750270A (en) 1995-02-21

Similar Documents

Publication Publication Date Title
US4636401A (en) Apparatus for chemical vapor deposition and method of film deposition using such deposition
CN104094418A (en) Passivation film stack for silicon-based solar cells
US20080245414A1 (en) Methods for forming a photovoltaic device with low contact resistance
US7588957B2 (en) CVD process gas flow, pumping and/or boosting
US6531654B2 (en) Semiconductor thin-film formation process, and amorphous silicon solar-cell device
JP2717239B2 (en) Coating method
JP2717240B2 (en) Film forming equipment
JP3022369B2 (en) Gas phase reaction apparatus and operation method thereof
JP2717236B2 (en) Gas phase reaction film preparation method
JPS60138909A (en) Manufacturing equipment of vapor phase reaction film and manufacture thereof
JP2923748B2 (en) Coating method
JP2717235B2 (en) Gas phase reaction processing method
JP3062470B2 (en) Coating method
JP2639637B2 (en) Gas phase reaction film preparation method
JPH0821550B2 (en) Gas phase reactor
JP3697199B2 (en) Solar cell manufacturing method and solar cell
JPH061765B2 (en) Vapor-phase reactive coating method
JPH08195348A (en) Semiconductor device manufacturing equipment
JPH0831423B2 (en) Vapor-phase reactive coating method
JPH0831424B2 (en) Vapor-phase reactive coating method
JPH03183125A (en) Method for plasma vapor-phase reaction
JP2639637C (en)
JP3068276B2 (en) Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used therefor
CN112955413B (en) Method for producing coated glass substrates
JPH0344148B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term