JPS63940B2 - - Google Patents

Info

Publication number
JPS63940B2
JPS63940B2 JP54149727A JP14972779A JPS63940B2 JP S63940 B2 JPS63940 B2 JP S63940B2 JP 54149727 A JP54149727 A JP 54149727A JP 14972779 A JP14972779 A JP 14972779A JP S63940 B2 JPS63940 B2 JP S63940B2
Authority
JP
Japan
Prior art keywords
film
gas
film forming
support
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54149727A
Other languages
Japanese (ja)
Other versions
JPS5671931A (en
Inventor
Nobuo Kitajima
Kyosuke Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14972779A priority Critical patent/JPS5671931A/en
Publication of JPS5671931A publication Critical patent/JPS5671931A/en
Publication of JPS63940B2 publication Critical patent/JPS63940B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Description

【発明の詳細な説明】 本発明は、グロー放電等の放電を利用して、例
えば光導電膜、半導体膜、無機絶縁膜或いは有機
樹脂膜を形成するに有効な膜形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a film forming method effective for forming, for example, a photoconductive film, a semiconductor film, an inorganic insulating film, or an organic resin film using discharge such as glow discharge.

プラズマ現象を利用して、膜形成用の反応ガス
を分解して所定の支持体上に所望の特性を有する
膜を形成しようとする場合、殊に、大面積の膜の
場合には、全面積に亘つてその膜厚並びに、電気
的、光学的或いは光電的等の物理特性の均一化及
び品質の均一化を計るには、通常の真空蒸着法に
較べて非常に困難が附纒う。
When trying to form a film with desired properties on a given support by decomposing a reaction gas for film formation using plasma phenomenon, especially in the case of a large-area film, the total area It is much more difficult to achieve uniform film thickness, uniform physical properties such as electrical, optical, photoelectric, etc., and uniform quality over the course of the process, compared to ordinary vacuum evaporation methods.

例えば、SiH4ガスを放電エネルギーを使つて
分解し支持体上にアモルフアス水素化シリコン
(以後、a―Si:Hと記す)膜を形成して、この
膜の電気物性を利用し様とする場合、この膜の電
気物性が膜形成時の放電強度に大きく依存する
為、膜の全領域における電気物性の均一性を得る
には、膜形成の全領域において放電強度の均一化
を計る必要がある。
For example, when SiH 4 gas is decomposed using discharge energy to form an amorphous silicon hydride (hereinafter referred to as a-Si:H) film on a support, and the electrical properties of this film are to be utilized. Since the electrical properties of this film greatly depend on the discharge intensity during film formation, in order to obtain uniform electrical properties over the entire film region, it is necessary to equalize the discharge intensity throughout the film formation region. .

この放電強度の均一性は、電界強度、ガス流
量、ガス圧、ガスの導入位置と排出位置の配置、
放電電極の形状、配置等の要素に主に依存する。
The uniformity of this discharge intensity depends on the electric field strength, gas flow rate, gas pressure, arrangement of gas introduction and discharge positions,
It mainly depends on factors such as the shape and arrangement of the discharge electrodes.

而乍ら、従来より提案されている膜形成法で
は、上記の諸要素を一義的に決定して、膜形成条
件が最適となる様な均一な放電強度を得ることは
出来ずある程度の条件緩和の下で膜形成を行なつ
ているのが現状である。
However, with the film formation methods that have been proposed so far, it is not possible to uniquely determine the above factors and obtain a uniform discharge intensity that optimizes the film formation conditions. At present, film formation is performed under the following conditions.

又、大面積の膜を生産性、及び量産性良く形成
するには、ガスの消費が出来るだけ膜形成用だけ
になる様にガス消費量を経済化する事、反応ガス
濃度が膜形成領域で不均一分布しない様にするこ
と、多量のキヤリアガスを要しない様にする事、
膜成長速度の向上を計る事、等々が挙げられ、更
に均一特性と良好な品質の大面積の膜を得るに
は、成長膜厚分布が均一である事、放電によつて
生ずるガスプラズマに空間的不均一分布が生じな
い様にする事等が必要である。従来法は、これ等
の諸点に於いても充分満足し得るものではなく、
生産技術上必要な性能を有する装置の具現化を計
る事が出来なかつた。
In addition, in order to form a large-area film with good productivity and mass production, it is necessary to economize gas consumption so that as much gas as possible is consumed only for film formation, and to reduce the concentration of the reaction gas in the film formation area. To avoid uneven distribution, and to avoid requiring a large amount of carrier gas.
In order to obtain a large-area film with uniform characteristics and good quality, it is necessary to improve the film growth rate, etc. Furthermore, in order to obtain a large-area film with uniform characteristics and good quality, it is necessary to ensure that the grown film thickness distribution is uniform and that there is no space in the gas plasma generated by the discharge. It is necessary to take measures to prevent non-uniform distribution of data. Conventional methods are not fully satisfactory in these respects,
It was not possible to realize a device with the necessary performance in terms of production technology.

本発明は、上記の諸点に鑑み成されたものであ
つて、大きな面積の膜であつても全面積に亘つ
て、その物理的特性及び膜厚が実質的に均一であ
る膜が再現性良く高効率で形成され得る膜形成法
を提供するのを主たる目的とする。
The present invention has been made in view of the above points, and is capable of producing a film with substantially uniform physical properties and film thickness over the entire area even if the film has a large area with good reproducibility. The main objective is to provide a method for forming a film that can be formed with high efficiency.

又、本発明は、マスプロダクトに極めて有効な
膜形成法を提供することをも目的とする。
Another object of the present invention is to provide a method of forming a film that is extremely effective for mass products.

又、別には本発明は、放電強度が全膜形成領域
に亘つて均一にする事が出来、ガス消費量を極力
低減し得、且つ膜成長速度の大きい、極めて経済
的で生産性に富む膜形成法を提供することも目的
の1つである。
In addition, the present invention provides an extremely economical and highly productive film in which the discharge intensity can be made uniform over the entire film formation area, gas consumption can be reduced as much as possible, and the film growth rate is high. It is also an objective to provide a method of formation.

更には、一度に膜形成される実質的な面積が大
きいにも拘らず、実質的な膜形成空間領域をコン
パクトにし得る、従つて装置自体を小型化し得る
膜形成法を提供することも目的の1つである。
Furthermore, it is another object of the present invention to provide a film forming method that can make the practical space for film formation compact despite the fact that the film is formed on a large area at one time, and therefore the apparatus itself can be miniaturized. There is one.

本発明の膜形成法は、減圧にし得る堆積室内に
膜形成用のガスを導入し、放電を利用して所定の
支持体上に堆積膜を形成する膜形成法に於いて、
放電を起す為に平行平板電極を所定間隔を設けて
配設し、該平行平板電極間で膜形成用の支持体を
その膜形成面が電極面に対して略々垂直になる様
に蛇行して移送しながら膜形成する事を特徴とす
る。
The film forming method of the present invention is a film forming method in which a film forming gas is introduced into a deposition chamber that can be reduced in pressure, and a deposited film is formed on a predetermined support using electric discharge.
Parallel plate electrodes are arranged at predetermined intervals in order to generate electric discharge, and a support for film formation is meandered between the parallel plate electrodes so that the film forming surface is approximately perpendicular to the electrode surface. It is characterized by forming a film while being transferred.

或いは、前記膜形成法に於いて、支持体は、ガ
スの流れ方向に対して、その膜形成面が略々垂直
になる様に配置される事を特徴ともする。
Alternatively, the film forming method may be characterized in that the support is arranged such that its film forming surface is substantially perpendicular to the gas flow direction.

この様な本発明の膜形成法によれば、全面積に
亘つて、その膜厚並びに、電気的、光学的或い
は、光電的特性等の物理特性の均一化及び膜品質
の均一化を大面積に亘つて行なう事が出来ると共
に、装置を小型化する事が出来、大面積を要する
例えば、太陽電池、電子写真用感光体、或いは大
型テレビ、大型デイスプレイ等の光電変換層の形
成に極めて有効である。
According to the film forming method of the present invention, uniformity of film thickness, physical properties such as electrical, optical, or photoelectric properties, and uniformity of film quality can be achieved over a large area. It is extremely effective for forming photoelectric conversion layers that require large areas, such as solar cells, electrophotographic photoreceptors, large televisions, large displays, etc. be.

又、更には、ガス消費量が少なく、且つ膜成長
速度が大きいので極めて経済的で生産性に富み、
企業ベースにのり得るものである。
Moreover, it is extremely economical and highly productive because it consumes less gas and has a higher film growth rate.
This can be applied on a corporate basis.

以下、本発明の膜形成法を図面に従つて説明す
る。
The film forming method of the present invention will be explained below with reference to the drawings.

第1図は、本発明の膜形成法を具現化し得る装
置の好適な例の1つの概要を模式的に示した説明
図である。
FIG. 1 is an explanatory diagram schematically showing an outline of a preferred example of an apparatus that can embody the film forming method of the present invention.

第1図に示される堆積装置100の減圧にし得
る堆積室101の内部には、2枚の板状電極10
2―1,102―2が所定間隔を置いて略々その
面が平行になる様に配設される。
Inside the deposition chamber 101, which can be reduced in pressure, of the deposition apparatus 100 shown in FIG.
2-1 and 102-2 are arranged at a predetermined interval so that their surfaces are substantially parallel.

膜形成用の支持体103は、平行平板電極10
2―1,102―2の間に設けられた空間に電極
面に対して実質的に垂直になる様に又その膜形成
面はガスの流れ方向に対して垂直に略々なる様に
所定枚数設置される。
The support 103 for film formation is a parallel plate electrode 10
A predetermined number of sheets are placed in the space provided between 2-1 and 102-2 so that the film is substantially perpendicular to the electrode surface, and the film formation surface is approximately perpendicular to the gas flow direction. will be installed.

2枚の平板電極102―1,102―2は、絶
縁端子104―1,104―2によつて、装置本
体とは電気的に絶縁されて外部に設置されてある
放電用の電源105に接続されてある。
The two flat electrodes 102-1, 102-2 are connected to a discharge power source 105 installed outside and electrically insulated from the main body of the device through insulated terminals 104-1, 104-2. It has been done.

堆積室101へのガスの導入は、所定のガスが
充填されてあるボンベ106―1,106―2,
106―3の各々よりバルブ107―1,107
―2,107―3を介しガス導入パイプ108を
通じて行われる。
Gas is introduced into the deposition chamber 101 using cylinders 106-1, 106-2, 106-2, and 106-2 filled with a predetermined gas.
Valve 107-1, 107 from each of 106-3
-2,107-3 and through the gas introduction pipe 108.

3つのボンベ106の各々には、例えばa―
Si:H膜を形成するのであれば、ボンベ106―
1にはシランガスを、ボンベ106―2には、水
素ガスをボンベ106―1には、PH3やB2H6
の不純導入用のガスが充填される。
Each of the three cylinders 106 contains, for example, a-
If a Si:H film is to be formed, the cylinder 106-
The cylinder 106-1 is filled with silane gas, the cylinder 106-2 is filled with hydrogen gas, and the cylinder 106-1 is filled with a gas for introducing impurities such as PH 3 or B 2 H 6 .

ガスは堆積室101へは、矢印で示す様に導入
され、多数の支持体が設置されてある空間領域に
於いて、プラズマ化され、支持体103の表面に
所定の膜が形成される。膜形成に消費されなかつ
たガスは、矢印で示す方向に排気装置109の排
気動作によつて排出される。110はメインバル
ブであつて、堆積室101の内部と排気装置10
9との間の流通路を開閉する。
Gas is introduced into the deposition chamber 101 as shown by the arrow, and is turned into plasma in a spatial region where a large number of supports are installed, forming a predetermined film on the surface of the support 103. The gas not consumed for film formation is exhausted by the exhaust operation of the exhaust device 109 in the direction shown by the arrow. Reference numeral 110 is a main valve, which connects the inside of the deposition chamber 101 and the exhaust device 10.
Open and close the flow path between 9 and 9.

第1図に示す例に於いては、電極102―1,
102―2間に配設される支持体103は、ガス
の流れ方向に対して、その膜形成面が略々垂直に
なる様に配列されてあるが、膜形成用のガスが膜
形成に有効に消費される様にするには配設される
支持体の膜形成面をガスの流れ方向に対して略々
平行となる様に配列するのが有効である。
In the example shown in FIG. 1, the electrodes 102-1,
The supports 103 disposed between 102-2 are arranged so that their film forming surfaces are approximately perpendicular to the gas flow direction, but the film forming gas is effective for film formation. In order to ensure that the gas is consumed, it is effective to arrange the film-forming surface of the support provided so that it is approximately parallel to the flow direction of the gas.

この様にすれば、膜形成面をガスの流れ方向に
対して垂直にする場合に較べて、形成される膜の
特性及びその膜厚が大面積に亘つて均一になるば
かりか、その膜形成速度を大きくする事が出来
る。
In this way, compared to the case where the film formation surface is perpendicular to the gas flow direction, not only the properties and thickness of the film formed will be uniform over a large area, but also the film formation will be more uniform. You can increase the speed.

電極102―1,102―2の間に配列される
支持体103の配列間隔は、電極102―1,1
02―2の間隔、ガス流速、電極102―1,1
02―2に投入される電気エネルギーの大きさ、
堆積室101の内部形状、ガスの導入位置及び排
出位置等によつて適宜決定されるもので通常の場
合、1cm以上、好ましくは3cm以上とされるのが
望ましいものである。
The spacing between the supports 103 arranged between the electrodes 102-1 and 102-2 is as follows:
02-2 spacing, gas flow rate, electrodes 102-1,1
The amount of electrical energy input into 02-2,
It is determined appropriately depending on the internal shape of the deposition chamber 101, the gas introduction position, the gas discharge position, etc., and in normal cases, it is desirable that it be 1 cm or more, preferably 3 cm or more.

第2図には、本発明の膜形成法を具現化する更
に別の装置の模式的部分斜視図が示され、第1図
の場合と異なるのは、膜形成用の支持体が連続的
に移送し得る工夫を加えてあるところである。
FIG. 2 shows a schematic partial perspective view of yet another apparatus embodying the film forming method of the present invention. We have added some innovations to make it easier to transport.

2枚の平板電極201―1,201―2は、所
定間隔を置いて、略々その面が平行になる様に配
置され、該電極201―1,201―2間には、
供給ローラ203よりの長尺支持体204が規則
的に配列された多数の移送ローラ間を蛇行状に通
されて巻取ローラ205に巻取られる様にして配
設されてある。
The two flat plate electrodes 201-1, 201-2 are arranged with a predetermined interval so that their surfaces are substantially parallel, and between the electrodes 201-1, 201-2,
The elongated support 204 from the supply roller 203 is arranged so as to be passed in a meandering manner between a large number of regularly arranged transport rollers and taken up by a take-up roller 205 .

この様に、電極201―1,201―2間に膜
形成用の支持体204を蛇行させて移送させ乍
ら、膜形成することによつて、実質的に、狭い膜
形成空間領域で大面積の膜形成が一時に出来、然
も、膜形成にガスが有効に使用される為に堆積室
外に排出されるガスの量を著しく少なくすること
が出来る。
In this way, by forming a film while transporting the film-forming support 204 in a meandering manner between the electrodes 201-1 and 201-2, a large area can be substantially covered in a narrow film-forming space. can be formed at once, and since the gas is effectively used for film formation, the amount of gas discharged outside the deposition chamber can be significantly reduced.

第3図には、第2図の装置に於いて使用される
移送ローラ202の構造が模式的に示される。第
2図の様に移送ローラ202を配列してそれ等の
間を蛇行する様に支持体204を通すと、上段の
移送ローラ又は下段の移送ローラのいずれか一方
の面に膜形成面が接触するので、この接触による
膜の損傷を避ける為、移送ローラ202の両端に
於いて支持体204が移送ローラ202を接触す
る様に工夫される。
FIG. 3 schematically shows the structure of the transfer roller 202 used in the apparatus of FIG. 2. When the transfer rollers 202 are arranged as shown in FIG. 2 and the support 204 is passed in a meandering manner between them, the film forming surface comes into contact with the surface of either the upper transfer roller or the lower transfer roller. Therefore, in order to avoid damage to the film due to this contact, the supports 204 are designed to contact the transfer roller 202 at both ends of the transfer roller 202.

この様な移送ローラ202構造とすることで、
形成された膜が移送中、移送ローラとの接触によ
る損傷を防ぐ事が容易に出来る。
By having such a structure of the transfer roller 202,
It is possible to easily prevent the formed film from being damaged by contact with the transport roller during transport.

次に、第2図の装置を使用して、実際に膜形成
を行つた場合の例に就て記す。
Next, an example of actual film formation using the apparatus shown in FIG. 2 will be described.

堆積室のガス圧を0.1Torrとし、ガス流量を0.1
c.c./sec、ガス種をSiH4/Ar=1/10にし、支持体
の移送速度を10mm/minにし、電極図距離を2〜
4cmの間に設定して膜形成を行つたところ支持体
の膜形成面の全域に亘つて、膜厚特性の均一な、
高品質のa―Si:H膜が形成され得た。この場合
に使用した支持体は厚さ125μのポリイミドであ
る。
The gas pressure in the deposition chamber is 0.1 Torr, and the gas flow rate is 0.1
cc/sec, gas type SiH 4 /Ar = 1/10, support transfer speed 10 mm/min, electrode diagram distance 2~
When the film was formed with a setting distance of 4 cm, the film thickness was uniform over the entire film forming surface of the support.
A high quality a-Si:H film could be formed. The support used in this case was polyimide with a thickness of 125μ.

又、膜形成速度も従来法に較べて十数倍に上げ
ることが出来た。
Furthermore, the film formation rate could be increased more than ten times compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、各々本発明を具現化する
装置の好適な例を示す模式的説明図、第3図は、
第2図に於ける移送ローラ202の構造を説明す
る為の模式的側面図である。 100…堆積装置、101…堆積室、102…
電極、103…支持体、104…絶縁端子、10
5…電源、106…ガスボンベ、107…バル
ブ、108…ガス導入パイプ、109…排気装
置、110…メインバルブ、202…移送ロー
ラ、201…電極、204…支持体、203…供
給ローラ、205…巻取ローラ。
FIGS. 1 and 2 are schematic explanatory diagrams showing preferred examples of devices embodying the present invention, and FIG.
3 is a schematic side view for explaining the structure of the transfer roller 202 in FIG. 2. FIG. 100... Deposition device, 101... Deposition chamber, 102...
Electrode, 103... Support, 104... Insulated terminal, 10
5... Power supply, 106... Gas cylinder, 107... Valve, 108... Gas introduction pipe, 109... Exhaust device, 110... Main valve, 202... Transfer roller, 201... Electrode, 204... Support body, 203... Supply roller, 205... Volume Take roller.

Claims (1)

【特許請求の範囲】 1 減圧にし得る堆積室内に膜形成用のガスを導
入し、放電を利用して所定の支持体上に堆積膜を
形成する膜形成法に於いて、放電を起す為に平行
平板電極を所定間隔を設けて配設し、該平行平板
電極間で膜形成用の支持体をその膜形成面が電極
面に対して略々垂直になる様に蛇行して移送しな
がら膜形成する事を特徴とする膜形成法。 2 支持体は、ガスの流れ方向に対して、その膜
形成面が略々垂直になる様に配置される特許請求
の範囲第1項に記載の膜形成法。 3 支持体は、ガスの流れ方向に対して、その膜
形成面が略々平行になる様に配置される特許請求
の範囲第1項に記載の膜形成法。
[Scope of Claims] 1. In a film forming method in which a film forming gas is introduced into a deposition chamber that can be reduced in pressure and a deposited film is formed on a predetermined support using electrical discharge, in order to cause electrical discharge, Parallel plate electrodes are arranged at a predetermined interval, and a support for film formation is transferred between the parallel plate electrodes in a meandering manner so that the film forming surface is approximately perpendicular to the electrode surface. A film formation method characterized by the formation of 2. The film forming method according to claim 1, wherein the support is arranged so that its film forming surface is substantially perpendicular to the gas flow direction. 3. The film forming method according to claim 1, wherein the support is arranged so that its film forming surface is approximately parallel to the gas flow direction.
JP14972779A 1979-11-19 1979-11-19 Film formation Granted JPS5671931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14972779A JPS5671931A (en) 1979-11-19 1979-11-19 Film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14972779A JPS5671931A (en) 1979-11-19 1979-11-19 Film formation

Publications (2)

Publication Number Publication Date
JPS5671931A JPS5671931A (en) 1981-06-15
JPS63940B2 true JPS63940B2 (en) 1988-01-09

Family

ID=15481483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14972779A Granted JPS5671931A (en) 1979-11-19 1979-11-19 Film formation

Country Status (1)

Country Link
JP (1) JPS5671931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683335B2 (en) 2011-06-07 2020-06-16 Asahi Kasei Pharma Corporation Freeze-dried preparation containing high-purity PTH and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821597A (en) * 1992-09-11 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US6720576B1 (en) 1992-09-11 2004-04-13 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method and photoelectric conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683335B2 (en) 2011-06-07 2020-06-16 Asahi Kasei Pharma Corporation Freeze-dried preparation containing high-purity PTH and method for producing same

Also Published As

Publication number Publication date
JPS5671931A (en) 1981-06-15

Similar Documents

Publication Publication Date Title
US5187115A (en) Method of forming semiconducting materials and barriers using a dual enclosure apparatus
US4226897A (en) Method of forming semiconducting materials and barriers
US6495392B2 (en) Process for producing a semiconductor device
JP3960792B2 (en) Plasma CVD apparatus and method for manufacturing amorphous silicon thin film
US6470823B2 (en) Apparatus and method for forming a deposited film by a means of plasma CVD
JPH08298333A (en) Semiconductor coating film forming equipment, and thin film solar cell and forming method of thin film solar cell
JPS62151573A (en) Deposited film forming device
JPS63940B2 (en)
US5049523A (en) Method of forming semiconducting materials and barriers
JPS6239532B2 (en)
US5543634A (en) Method of forming semiconductor materials and barriers
EP1055747B1 (en) Apparatus and method for forming a film on a substrate
US5073804A (en) Method of forming semiconductor materials and barriers
JP3673593B2 (en) Non-single crystal semiconductor thin film forming apparatus and method
JP2001152347A (en) Plasma cvd apparatus, and manufacturing method of silicon thin film photoelectric converter
JPH0244141B2 (en)
JPS6191010A (en) Method of forming piles film
JP3683999B2 (en) Method and apparatus for forming non-single crystal semiconductor thin film
JP3478745B2 (en) Method and apparatus for forming deposited film
JP3069714B2 (en) Hydrogenated amorphous silicon film deposition system
JP2575397B2 (en) Method for manufacturing photoelectric conversion element
JPS62262419A (en) Plasma cvd equipment
JPS6345374A (en) Device for forming functional deposited film
JP3984761B2 (en) Photovoltaic element, manufacturing method thereof, and manufacturing apparatus thereof
JPS60249315A (en) Deposited film forming method