JPS62262419A - Plasma cvd equipment - Google Patents
Plasma cvd equipmentInfo
- Publication number
- JPS62262419A JPS62262419A JP61106170A JP10617086A JPS62262419A JP S62262419 A JPS62262419 A JP S62262419A JP 61106170 A JP61106170 A JP 61106170A JP 10617086 A JP10617086 A JP 10617086A JP S62262419 A JPS62262419 A JP S62262419A
- Authority
- JP
- Japan
- Prior art keywords
- cathodes
- film
- material gas
- discharge
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims description 31
- 239000002994 raw material Substances 0.000 claims description 18
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 54
- 239000007789 gas Substances 0.000 abstract description 40
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 abstract description 10
- 238000000354 decomposition reaction Methods 0.000 abstract description 9
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 7
- 229910000077 silane Inorganic materials 0.000 abstract description 7
- 229910000073 phosphorus hydride Inorganic materials 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
本発明は、非晶質半導体等の薄膜半導体を製造するため
のプラズマCVD装置に関するものである。The present invention relates to a plasma CVD apparatus for manufacturing thin film semiconductors such as amorphous semiconductors.
非晶質半導体は、近年急速にその研究開発が進み、各種
エレクトロニクス素子材料として応用分野を広げている
。その中でも特に、アモルファスシリコン(以下a−5
tと記す)膜は、大面積化が容易であることから、低コ
スト太陽電池用として注目を集めており、現在、40c
m X 120 csの寸法の大面積基板を用いた太陽
電池の試作が進められ、面内の膜質の均一化に向けて改
良が行われている。
この種の大面積太陽電池用a −Si膜の製造装置とし
ては、現在プラズマCVD装置が広く用いられている。
第2図がその典型的な構造例を示し、ガス回路系を通し
ての原料ガスは導入口25より真空引きされた反応炉1
内に送り込まれ、対向する一対の放電電極21.22の
間に高周波電源23または直流電源24により放電プラ
ズマを起こさせることによって原料ガスをグロー放電分
解するものである。
これによって、電源27に接続される基板加熱用ヒータ
26を内蔵した下部電極22上に載置した成膜用基板2
上に、a−5t膜を形成することができる。
そして、未反応ガスは排出口8より真空ポンプを通して
排気される。その際、真性(以下i形と記す)a−3i
膜を形成するには、原料ガスとしてシラン(SiH*)
、 ジシラン(SixHa)ガス等を導入し、p形
膜 −3i膜やn形膜−5i膜形成には、ドーパントガ
スとしてそれぞれジボラン(Bil+、)ガス、ホスフ
ィン(PHff)ガスを上記シラン、ジシランガス等に
混合して導入する。第3図は、このa −Si膜を用い
た太陽電池の代表的゛構造例を示す、ガラス等の絶縁性
透明基板2の上に透明電極31を設けたのち、p形膜2
.i形膜3.n形膜4の順でa−5tWiを堆積し、最
後に裏面金属電極35を形成したものである。したがっ
て、プラズマCVD装置において3種類のa−3i膜を
形成することになる。ところで、この種の大面積サイズ
ミー5i太陽電池をプラズマCVD装置にて製造する場
合の深刻な問題点は、a−5i膜質のa−3i膜面内で
の不均一化及び膜質低下である。この理由の第一は、大
面積化に伴って放電電極も大型化するため、電極面内で
の放電パワー密度が不均一化し、かつ装置の大型化によ
り原料ガスの流れが不均一になることにより、a −5
t膜中の構成元素の密度が面内でばらつくからである。
第二の理由は、単一炉内で3種類のa −5i膜を形成
する際には、例えば第一層であるp形膜−5i膜を堆積
後、第2図の放電電極22.23に第一層生成時の放電
残留物が付着しており、第二層を生成するにあたって電
極22.23の間で放電プラズマを起こすと、その放電
残留物がスパッタされて膜中に混入し、第二層の膜質に
影響を及ぼすためである。特に、太陽電池基板を大面積
化することにより、膜中への放電残留物の混入量が増加
するとともに、面内での混入量が大きくばらつく、この
対策として、最近、p形、i形、n形を形成する反応室
をそれぞれ独立に設けて、成膜用基板を各反応室間を搬
送できるように構成した分離形成型プラズマCVD装置
が開発され、上述の放電残留物の混入量の低減化が進め
られているが、この種の装置は、第2図に示した従来装
置に比べて装置製造費が大幅に増大するばかりでなく、
メンテナンスが難しくなるといった欠点を有している。
第三の理由は、p形及びn形のドーピング層を形成する
場合、前述したように少なくとも2種類以上の原料ガス
を混合したうえで、グロー放電分解するので、膜中に組
み込まれる各原子、すなわち、p形成ではシリコン、水
素及びほう素原子、n形成では、シリコン、水素及びり
ん原子の量を十分に制御することができないためである
。したがって、最適な膜質を有するものを得ることは難
しく、特に大面積寸法の太陽電池を製造するにあたって
は、原料ガスの混合状態が放電電極の間で不均一となる
ため、成膜されたa −3t膜の膜質の不均一化は顕著
にあられれる。Research and development of amorphous semiconductors has progressed rapidly in recent years, and the fields of application of amorphous semiconductors as materials for various electronic devices are expanding. Among them, amorphous silicon (hereinafter referred to as a-5
t) films are attracting attention as low-cost solar cells because they can be easily made into large-area films, and currently 40c
Trial production of solar cells using large-area substrates with dimensions of m x 120 cs is underway, and improvements are being made to make the in-plane film quality uniform. Plasma CVD equipment is currently widely used as a manufacturing equipment for this type of a-Si film for large-area solar cells. Figure 2 shows a typical example of its structure, in which the raw material gas is passed through the gas circuit system into the reactor 1, which is evacuated from the inlet 25.
The source gas is decomposed by glow discharge by causing discharge plasma to be generated between a pair of opposing discharge electrodes 21 and 22 by a high frequency power source 23 or a DC power source 24. As a result, the film forming substrate 2 is placed on the lower electrode 22 which has a built-in substrate heating heater 26 connected to a power source 27.
An a-5t film can be formed thereon. The unreacted gas is then exhausted from the exhaust port 8 through the vacuum pump. At that time, intrinsic (hereinafter referred to as i-type) a-3i
To form a film, silane (SiH*) is used as a raw material gas.
, Disilane (SixHa) gas, etc. are introduced, and diborane (Bil+) gas and phosphine (PHff) gas are introduced as dopant gases to form the p-type film-3i film and n-type film-5i film, respectively. Mix and introduce. FIG. 3 shows a typical structure example of a solar cell using this a-Si film. After a transparent electrode 31 is provided on an insulating transparent substrate 2 such as glass, a p-type film 2
.. i-shaped membrane 3. A-5tWi was deposited in the order of n-type film 4, and lastly, back metal electrode 35 was formed. Therefore, three types of a-3i films are formed in the plasma CVD apparatus. By the way, a serious problem when manufacturing this type of large-area size Mi-5i solar cell using a plasma CVD apparatus is that the a-5i film quality becomes non-uniform within the a-3i film surface and the film quality deteriorates. The first reason for this is that as the area becomes larger, the discharge electrode also becomes larger, so the discharge power density becomes uneven within the electrode surface, and the flow of raw material gas becomes uneven due to the larger size of the device. Accordingly, a −5
This is because the density of the constituent elements in the t-film varies within the plane. The second reason is that when forming three types of a-5i films in a single furnace, for example, after depositing the first p-type film-5i film, the discharge electrodes 22 and 23 of FIG. Discharge residue from the first layer generation is attached to the film, and when discharge plasma is generated between the electrodes 22 and 23 to generate the second layer, the discharge residue is sputtered and mixed into the film. This is because it affects the film quality of the second layer. In particular, as the area of solar cell substrates increases, the amount of discharge residue mixed into the film increases, and the amount of mixed discharge residue varies greatly within the plane.As a countermeasure, recently, p-type, i-type, A separate formation type plasma CVD apparatus has been developed in which reaction chambers for forming n-type structures are provided independently, and the film-forming substrate can be transported between the reaction chambers, thereby reducing the amount of contamination by the discharge residue mentioned above. However, this type of equipment not only requires a significant increase in manufacturing costs compared to the conventional equipment shown in Figure 2, but also
It has the disadvantage that maintenance becomes difficult. The third reason is that when forming p-type and n-type doped layers, as described above, at least two types of raw material gases are mixed and then decomposed by glow discharge, so each atom incorporated into the film, That is, this is because it is not possible to sufficiently control the amounts of silicon, hydrogen, and boron atoms in p-formation, and silicon, hydrogen, and phosphorus atoms in n-formation. Therefore, it is difficult to obtain a film with optimal film quality, and especially when manufacturing large-area solar cells, the mixed state of the raw material gases becomes non-uniform between the discharge electrodes, so that the formed a- The film quality of the 3t film is noticeably non-uniform.
本発明は、上述の問題を解決し、装置の製造費が安価で
メンテナンスが容易である単室反応炉でありながら、異
なる性質の薄膜半導体を積層した場合に膜質が良好で、
面内均一性が優れているプラズマCVD装置を提供する
ことを目的とする。The present invention solves the above-mentioned problems and is a single-chamber reactor that is inexpensive to manufacture and easy to maintain, yet provides good film quality when thin film semiconductors of different properties are stacked.
An object of the present invention is to provide a plasma CVD apparatus with excellent in-plane uniformity.
本発明は、反応炉内に配置された対向するt種間に電圧
を印加して放電プラズマを発生させて原料ガスを分解し
、基板支持体上の基板に薄膜半導体を形成するプラズマ
CVD装置において、一つの反応炉内に放電電極機能を
備えた一つの原料ガスに対するガス導入管と対向放電電
極の複数対がらなり、スイッチを介して電源に接続され
た群を複数群備え、各群のガス導入管を均一に分散して
基板支持体に向かって開口させるものである。これによ
り、例えばp形、i形、n形の各Ma−5i膜について
、各膜に必要な原料ガス専用の導入管内にのみ放電プラ
ズマを発生させ、その結果性ずるラジカルを支持体上の
基板に均一に分散して流すことができ、他の形のa −
3iIll生成の影響を受けることなく成膜できるので
、良質で膜質の面内均一性に優れたpini造のa −
5i膜が形成される。The present invention is directed to a plasma CVD apparatus that applies a voltage between opposing T species arranged in a reactor to generate discharge plasma to decompose raw material gas and form a thin film semiconductor on a substrate on a substrate support. , one reactor has multiple pairs of gas inlet tubes and opposing discharge electrodes for one raw material gas each having a discharge electrode function, and is equipped with multiple groups connected to a power source via a switch. The introduction tubes are uniformly distributed and open toward the substrate support. As a result, for example, for each p-type, i-type, and n-type Ma-5i film, discharge plasma is generated only in the introduction tube dedicated to the raw material gas necessary for each film, and as a result, the shearing radicals are transferred to the substrate on the support. can be uniformly dispersed and flowed into other forms of a-
A-
5i film is formed.
第1図は本発明の一実施例を示し、(alは側断面図、
(b)は基板面の平面図で、第2図と共通の部分には同
一の符号が付されている。この装置により、p形、i形
、n形のa−stillが同一基板上に形成される0反
応炉1内には上部に基板2を支持する基板支持体3が配
置され、下部には基板に向かって開口する多数のホロー
陰極(中空陰極)が分散配置されている。ホロー陰極は
図において異なるハツチングで示すようにそれぞれ3列
のジボラン専用ホロー陰極41.ホスフィン専用ホロー
陰極42およびシラン専用ホロー陰極43に分けられて
いる。
各ホロー陰極41.42.43に隣接して陽極5が配置
されている。各ホロー陰極群と隣接陽極群とをそれぞれ
まとめて放121電源s1.62.63に切り換えスイ
ッチ71.72.73を介して接続している0反応炉1
内を排出口8より真空ポンプを通して排気しながら、ス
イッチを閉じて電気エネルギーを与えることにより、ホ
ロー陰極に供給された原料ガスがグロー放電プラズマに
より分解して、プラズマ活性種(ラジカル)がそれぞれ
のホロー陰極から吹き出す、第一層目として第3図に示
したp形a −5i膜32を透明導電膜31を着けた基
板2の上に成膜する場合は、ホロー陰極41全部にジボ
ランガスを、ホロー陰極43全部にシランガスを送入し
、切り換えスイッチ71.73を閉じてホロー陰ff1
41.43と陽極5の間に放電パワーを適応して印加す
ることにより、ホロー陰極41の群からはジボランガス
のグロー放電分解によるラジカルが、ホロー陰極43の
群からはシランガスのグロー放電分解によるラジカルが
吹き出し、対向する基板2の上で混合し、基板上にp形
a−Si膜を堆積する。その際ジボラン専用放電電源6
1とシラン専用放電電源63について、それぞれ個別に
’8Bパワーを設定することにより、双方のプラズマ条
件を独自に制御することができ、最適なplia−5i
膜を形成することができるとともに、第1図に示したよ
うにホロー陰極群および陽極群は分散して配列すること
によって大面積寸法の基板上に均質な膜を得ることがで
きる。
次にp形a−5i膜32形成後、i形a −Si膜33
を形成する場合は、切り換えスイッチ71.73をいっ
たん開き、原料ガスの送入を停止した後、再びシランガ
スのみをホロー陰極群43へ送り込み、切り換えスイッ
チ73を閉じ、放電電源63の放電パワーを適当に設定
することによって、i層a −5tll!Iを良質で均
質に形成することができる。さらにn層a−Si膜33
を形成する場合は、同様にホスフィンガスとシランガス
を各専用ホロー陰極42.43の群に送入し、切り換え
スイッチ72.73を閉じ、各放電電源62.63のパ
ワーを適当に調整すればよい。
以上のように構成することによって、従来方法で問題と
なっていた、放電電極面内での放電パワー密度の不均一
化および原料ガス流の不均一化によるa−Si膜の膜質
のばらっては、大きく低減することができる。また、各
ホロー陰極は単一の原料ガスのみしか使用せず、しかも
グロー放電プラズマはホロー陰極管内で起こり、かつ放
電時の電界はホロー陰極と陽極の間だけに発生している
ため、従来方式の単室反応炉のように、第二層目のa
−5i膜形成時に放電電極上に付着した第一層目のa−
5i膜形成時の放電残留物をスパッタして膜中に取り込
むこともな(なり、膜質の低化を防止することができる
。また、各ホロー陰極群およびそれに隣接する陽極群ご
とに独自に放電電源を備えているため、各原料ガスごと
に独自に放電パワーやガス流量を調節することによって
放電プラズマを制御することができ、均質で良質なa
−5i膜を大面積にわたって形成することができる。
本発明の別の実施例の基板面の平面図を第4図に示す、
方形基板を用いた際に、基板の対角腺に平行な線上にホ
ロー陰極を配列し、各線上にジボラン専用ホロー陰極4
1.ホスフィン専用ホロー陰極42およびシラン専用ホ
ロー陰極43を一組として数組配置している。そして、
各ホロー陰極41.42゜43ごとに陽極5を隣接して
設置し、前述と同様に各原料ガスごとにグロー放電分解
させることによって大面積寸法の基板上に均−二こ膜形
成できるようにしている。
【発明の効果]
本発明によれば、原料ガスごとに独立に複数個分散配置
されたホロー陰極群およびそれぞれに隣接した陽極を設
け、各ホロー陰5陽極群ごとに独立に放゛−用電源をス
イッチを介して接続したプラズマCVD装置を構成する
ことにより、成膜のための各原料ガスの分解を他の原料
ガスの分解の際のhl、電残留物の膜中への取り込みを
防止して行うことができるので良質で均一の11111
膜半導体を生成でき、また各原料ガスごとに独自に放電
プラズマ生成条件を制御できるため、良質のドーピング
膜を形成することができる。FIG. 1 shows an embodiment of the present invention, (al is a side sectional view,
(b) is a plan view of the substrate surface, in which parts common to those in FIG. 2 are given the same reference numerals. With this apparatus, p-type, i-type, and n-type a-stills are formed on the same substrate.In the reactor 1, a substrate support 3 for supporting a substrate 2 is disposed in the upper part, and a substrate support 3 for supporting the substrate 2 is disposed in the lower part. A large number of hollow cathodes (hollow cathodes) that open toward the inside are arranged in a dispersed manner. As shown by different hatchings in the figure, the hollow cathodes have three rows of diborane-dedicated hollow cathodes 41. It is divided into a hollow cathode 42 exclusively for phosphine and a hollow cathode 43 exclusively for silane. An anode 5 is arranged adjacent to each hollow cathode 41, 42, 43. 0 reactor 1 in which each hollow cathode group and adjacent anode group are connected together to a power source s1.62.63 via a switch 71.72.73
By closing the switch and applying electrical energy while evacuating the interior through the exhaust port 8 through a vacuum pump, the raw material gas supplied to the hollow cathode is decomposed by the glow discharge plasma, and the plasma active species (radicals) are When forming the p-type a-5i film 32 shown in FIG. 3 as the first layer blown out from the hollow cathode on the substrate 2 on which the transparent conductive film 31 is attached, diborane gas is applied to the entire hollow cathode 41. Silane gas is supplied to all of the hollow cathodes 43, the changeover switches 71 and 73 are closed, and the hollow cathodes ff1
By applying discharge power adaptively between 41.43 and the anode 5, radicals are generated from the group of hollow cathodes 41 due to glow discharge decomposition of diborane gas, and radicals are generated from the group of hollow cathodes 43 due to glow discharge decomposition of silane gas. are blown out and mixed on the opposing substrate 2, depositing a p-type a-Si film on the substrate. At that time, diborane dedicated discharge power supply 6
By setting the '8B power for 1 and the silane-dedicated discharge power source 63 individually, the plasma conditions for both can be independently controlled, and the optimal PLI-5i
In addition to being able to form a film, a homogeneous film can be obtained on a substrate having a large surface area by arranging the hollow cathode group and the anode group in a dispersed manner as shown in FIG. Next, after forming the p-type a-5i film 32, the i-type a-Si film 33
In order to form a cathode, open the changeover switches 71 and 73, stop feeding the raw material gas, feed only the silane gas to the hollow cathode group 43 again, close the changeover switch 73, and set the discharge power of the discharge power source 63 to an appropriate level. By setting i-layer a -5tll! I can be formed with good quality and homogeneity. Furthermore, the n-layer a-Si film 33
In order to form a discharge voltage, phosphine gas and silane gas may be similarly introduced into each group of dedicated hollow cathodes 42.43, the selector switch 72.73 may be closed, and the power of each discharge power source 62.63 may be adjusted appropriately. . By configuring as described above, the uneven film quality of the a-Si film due to non-uniformity of the discharge power density within the surface of the discharge electrode and non-uniformity of the raw material gas flow, which has been a problem with the conventional method, can be avoided. can be significantly reduced. In addition, each hollow cathode uses only a single raw material gas, and the glow discharge plasma occurs inside the hollow cathode tube, and the electric field during discharge is generated only between the hollow cathode and the anode. As in the single-chamber reactor, the second layer a
-The first layer a- attached on the discharge electrode during the formation of the 5i film
Discharge residues from the formation of the 5i film are not sputtered and incorporated into the film, thereby preventing deterioration in film quality.In addition, each hollow cathode group and adjacent anode group are independently discharged. Since it is equipped with a power source, it is possible to control the discharge plasma by independently adjusting the discharge power and gas flow rate for each source gas.
-5i film can be formed over a large area. A plan view of the substrate surface of another embodiment of the present invention is shown in FIG.
When using a square substrate, hollow cathodes are arranged on lines parallel to the diagonal glands of the substrate, and 4 hollow cathodes dedicated to diborane are placed on each line.
1. Several sets of phosphine-dedicated hollow cathodes 42 and silane-dedicated hollow cathodes 43 are arranged. and,
An anode 5 is installed adjacent to each hollow cathode 41.42° 43, and by glow discharge decomposition of each raw material gas as described above, it is possible to form a uniform bilayer film on a large substrate. ing. Effects of the Invention According to the present invention, a plurality of hollow cathode groups and anodes adjacent to each group are provided for each raw material gas, and each hollow cathode group is provided with an independent power source for radiation. By configuring a plasma CVD apparatus that is connected via a switch, the decomposition of each raw material gas for film formation can be performed while preventing the incorporation of hl and electrolytic residues into the film during the decomposition of other raw material gases. High quality and uniform 11111
Since a film semiconductor can be produced and the discharge plasma generation conditions can be independently controlled for each raw material gas, a high-quality doped film can be formed.
第1図は本発明の一実施例を示し、(alは側断面図、
(b)は基板面の平面図、第2図は従来のプラズマCV
D装置の側断面図、第3図は本発明の実施例によって製
造される太陽電池の断面図、第4図は本発明の異なる実
施例の基板面の平面図である。
l:反応炉、2;基板、3:基板支持体、41ニジボラ
ン専用ホロー陰極、42:ホスフィン専用ホロー陰へ、
43:ンラン専用ホロー陰極、5:陽掻、61、62.
63:敢電電掻、71.72.73=スイ、チ。
;ゝ
、2.、−・ ・、71口 七
第1図
第2図
第3図
第4図FIG. 1 shows an embodiment of the present invention, (al is a side sectional view,
(b) is a plan view of the substrate surface, and Figure 2 is a conventional plasma CV
FIG. 3 is a cross-sectional view of a solar cell manufactured according to an embodiment of the present invention, and FIG. 4 is a plan view of a substrate surface of a different embodiment of the present invention. l: Reactor, 2: Substrate, 3: Substrate support, 41 hollow cathode exclusively for rainbow borane, 42: hollow cathode exclusively for phosphine,
43: Hollow cathode for use only, 5: Positive, 61, 62.
63: Dandendenkaki, 71.72.73 = Sui, Chi. ;ゝ、2. , -・ , 71 mouths 7Figure 1Figure 2Figure 3Figure 4
Claims (1)
して放電プラズマを発生させて原料ガスを分解し、基板
支持体上の基板に薄膜半導体を形成するものにおいて、
一つの反応炉内に放電電極機能を備えた一つの原料ガス
に対するガス導入管と対向放電電極の複数対からなり、
スイッチを介して電源に接続された群を複数群備え、各
群のガス導入管が均一に分散して基板支持体に向かって
開口することを特徴とするプラズマCVD装置。1) In a method in which a voltage is applied between opposing electrodes arranged in a reactor to generate discharge plasma to decompose a source gas and form a thin film semiconductor on a substrate on a substrate support,
Consisting of multiple pairs of gas inlet tubes and opposing discharge electrodes for one raw material gas with a discharge electrode function in one reactor,
A plasma CVD apparatus comprising a plurality of groups connected to a power source via a switch, and gas introduction tubes of each group being uniformly distributed and opening toward a substrate support.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61106170A JPS62262419A (en) | 1986-05-09 | 1986-05-09 | Plasma cvd equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61106170A JPS62262419A (en) | 1986-05-09 | 1986-05-09 | Plasma cvd equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62262419A true JPS62262419A (en) | 1987-11-14 |
Family
ID=14426786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61106170A Pending JPS62262419A (en) | 1986-05-09 | 1986-05-09 | Plasma cvd equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62262419A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4980204A (en) * | 1987-11-27 | 1990-12-25 | Fujitsu Limited | Metal organic chemical vapor deposition method with controlled gas flow rate |
EP0727508A1 (en) * | 1995-02-16 | 1996-08-21 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Method and apparatus for treatment of substrate surfaces |
US5888907A (en) * | 1996-04-26 | 1999-03-30 | Tokyo Electron Limited | Plasma processing method |
-
1986
- 1986-05-09 JP JP61106170A patent/JPS62262419A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4980204A (en) * | 1987-11-27 | 1990-12-25 | Fujitsu Limited | Metal organic chemical vapor deposition method with controlled gas flow rate |
EP0727508A1 (en) * | 1995-02-16 | 1996-08-21 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Method and apparatus for treatment of substrate surfaces |
US5888907A (en) * | 1996-04-26 | 1999-03-30 | Tokyo Electron Limited | Plasma processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0002383B1 (en) | Method and apparatus for depositing semiconductor and other films | |
US4470369A (en) | Apparatus for uniformly heating a substrate | |
CN101322251A (en) | Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device | |
KR101349266B1 (en) | Plasma processing apparatus and method of forming micro crystal silicon layer | |
US4462333A (en) | Process gas introduction, confinement and evacuation system for glow discharge deposition apparatus | |
JP5089669B2 (en) | Thin film forming equipment | |
US4520757A (en) | Process gas introduction, confinement and evacuation system for glow discharge deposition apparatus | |
KR101373746B1 (en) | Apparatus for Processing Substrate Using Plasma | |
EP2202785A1 (en) | Plasma treatment apparatus, plasma treatment method, and semiconductor element | |
JPS62262419A (en) | Plasma cvd equipment | |
JP4496401B2 (en) | Plasma CVD apparatus and method for manufacturing solar cell | |
US20060219170A1 (en) | Pore cathode for the mass production of photovoltaic devices having increased conversion efficiency | |
EP0100611A1 (en) | Reduced capacitance electrode assembly | |
JPH08195348A (en) | Semiconductor device manufacturing equipment | |
JPS6239532B2 (en) | ||
JPH0622203B2 (en) | Amorphous semiconductor thin film generator | |
JPH0458173B2 (en) | ||
JP2648684B2 (en) | Plasma gas phase reactor | |
KR101430747B1 (en) | Apparatus for Processing Substrate Using Plasma | |
JPH0620038B2 (en) | Plasma gas phase reactor | |
JP4346699B2 (en) | Method for manufacturing photoelectric conversion device | |
JP2001026878A (en) | Thin film forming device and formation of semiconductor thin film | |
JP3732340B2 (en) | Thin film forming apparatus and thin film forming method | |
JP2670561B2 (en) | Film formation method by plasma vapor phase reaction | |
JPH0134926B2 (en) |