JPS6010657A - Manufacture of resistor - Google Patents

Manufacture of resistor

Info

Publication number
JPS6010657A
JPS6010657A JP11961283A JP11961283A JPS6010657A JP S6010657 A JPS6010657 A JP S6010657A JP 11961283 A JP11961283 A JP 11961283A JP 11961283 A JP11961283 A JP 11961283A JP S6010657 A JPS6010657 A JP S6010657A
Authority
JP
Japan
Prior art keywords
resistor
resistance values
impurity
resistors
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11961283A
Other languages
Japanese (ja)
Inventor
Goro Mitarai
御手洗 五郎
Toru Yamaoka
徹 山岡
Kazumasa Satsuma
薩摩 和正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11961283A priority Critical patent/JPS6010657A/en
Publication of JPS6010657A publication Critical patent/JPS6010657A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the number of parts of a circuit and to reduce the assembling cost by forming small resistors having largely different resistance values and small irregular resistance values on the same semiconductor substrate. CONSTITUTION:After a resist film 8 is covered on a portion except the first resistor 5 of low resistance, impurity ions are implanted by doping to the resistor 6. After the film 8 is removed, a semiconductor substrate 1 which contains the resistor 6 is heat treated at the prescribed temperature. After the portion except the second resistor 7 of high resistance is covered with a resist film 8', the prescribed amount of impurity is doped by ion implantation to the resistor 7. The resist film 8' is removed, and the substrate 1 is heat treated at a low temperature T2 lower than the heat treating temperature T applied to the resistor 6. Thus, the resistors having large differences of the resistance values and small irregular resistance values are formed on the substrate 1.

Description

【発明の詳細な説明】 この発明は、特に多結晶シリコン層に不純物なドーピン
グして抵抗体l形成する抵抗体の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a method of manufacturing a resistor in which a polycrystalline silicon layer is doped with impurities to form a resistor.

最近、組立コストの低減および信頼性の向上を目的とし
て、単体のトランジスタ、ダイオードあるいは抵抗等で
形成されていた回路部分!モノリシック化した複合素子
が発表されている。この複・合素子の1つとして、トラ
ンジスタと抵抗ヶモノリシックに組み−込んだ素子c以
下抵抗材きTRと称テ)゛が発表されているーこのよう
な抵抗付きTRにおいては、抵抗体の抵抗値のバラツキ
が大きくて、従来の単体トランジスタと抵抗体で組んだ
回路より精度が悪くなわば、このような抵抗付きTRの
メリットはなくなる。したがって、抵抗付きTRにおい
ては、抵抗値のバラツキは小さく押さえなければならな
い。抵抗体でいえば、現在のモノリシック集積回路装置
の抵抗値のバラツキは±30%程度であるが、抵抗付き
TRでは±10%程度の精度が要求されている。
Recently, with the aim of reducing assembly costs and improving reliability, circuit parts that were formed from single transistors, diodes, or resistors! Monolithic composite devices have been announced. As one of these composite elements, a transistor and a resistor are monolithically incorporated into an element (hereinafter referred to as a "TR") with a resistor material below. In such a TR with a resistor, the resistance value of the resistor is If the variation in resistance is large and the accuracy becomes worse than a conventional circuit made up of a single transistor and a resistor, the merits of such a TR with a resistor disappear. Therefore, in a TR with a resistor, the variation in resistance value must be kept small. In terms of resistors, current monolithic integrated circuit devices have variations in resistance values of about ±30%, but TRs with resistors are required to have an accuracy of about ±10%.

さらに、このような抵抗付きTRにおいて、抵抗値のバ
ラツキが小さく、かつ、抵抗値が大きく異なる2個の抵
抗体を形成したい場合はモノリシック化するのはさらに
難しく、従来は単体の抵抗体とトランジスタな使って回
路ン形成していた。
Furthermore, in such a TR with a resistor, if you want to form two resistors with small variations in resistance value and greatly different resistance values, it is even more difficult to make it monolithic. It was used to form circuits.

この発明は、上記の点忙かんがみなされたもので、抵抗
値が大きく異なり、かつ、それぞれの抵抗値のバラツキ
が小さい2個の抵抗体な持つ抵抗付きTRの抵抗体の製
造方法を提供するものである。以下この発明の一実施例
を第1図(a)〜(e)に基づいて詳細に説明する。
The present invention has been made in view of the above-mentioned problems, and provides a method for manufacturing a resistor-equipped TR having two resistors with greatly different resistance values and small variations in their resistance values. It is. Hereinafter, one embodiment of the present invention will be described in detail based on FIGS. 1(a) to (e).

まず、第1図(a)Vc示すように、通常の製造方法に
よって、半導体基板1にベース領域21形成した後、ベ
ース領域2内にエミッタ領域3を形成する。その後、半
導体基板1の一生面上忙絶縁膜4を介して多結晶シリコ
ン膜5を、2000’A程度の厚さに被着する。続いて
、第1図(b)に示すように、後忙第1.第2の抵抗体
6および7となる多結晶シリコン層を所定の部分忙形成
する。次に、第1図(c) K示すように、低抵抗とな
る方の第1の抵抗体6以外をレジスト膜8で第2の抵抗
体7を含む半導体基板1の一生面上を覆った後、第1の
抵抗体6Vcイオン注入で不純物なドープする。次如、
レジスト膜81除去した後、第1の抵抗体6を含む半導
体基板1に、所定の温度T1で熱処理1行う。
First, as shown in FIG. 1(a) Vc, a base region 21 is formed in a semiconductor substrate 1 by a normal manufacturing method, and then an emitter region 3 is formed in the base region 2. Thereafter, a polycrystalline silicon film 5 is deposited on the entire surface of the semiconductor substrate 1 via the insulating film 4 to a thickness of about 2000'A. Subsequently, as shown in FIG. 1(b), the busy schedule 1. A polycrystalline silicon layer which will become second resistors 6 and 7 is formed in predetermined portions. Next, as shown in FIG. 1(c) K, the entire surface of the semiconductor substrate 1 including the second resistor 7 was covered with a resist film 8 except for the first resistor 6 which had a lower resistance. After that, the first resistor is doped with impurities by 6Vc ion implantation. Next,
After removing the resist film 81, the semiconductor substrate 1 including the first resistor 6 is subjected to heat treatment 1 at a predetermined temperature T1.

次に、第1図(d)K示すように、高抵抗となる方の第
2の抵抗体7以外l第1の抵抗体6を含む半導体基板1
の一生面をレジスト膜8′で覆った後、第2の抵抗体7
Vcイオン注入で所定の量の不純物lドープする。その
後レジスト膜8′夕除去し、第1の抵抗体6に加えた熱
処理温度T、より低温度T2で半導体基板IK熱処理を
行う。続いて、第1図(e)に示すように、ベース領域
2.エミッタ領域3に電極コンタクト用の窓な開けた後
、それぞれベース!ff19.エミッタ電極10.コレ
クタ電極11.および抵抗取出し電極12を被着し、目
的とする抵抗付きTRを得ることができる。
Next, as shown in FIG. 1(d)K, the semiconductor substrate 1 includes the first resistor 6 other than the second resistor 7 which has a high resistance.
After covering the entire surface of the resistor 7 with a resist film 8', the second resistor 7 is
A predetermined amount of impurity L is doped by Vc ion implantation. Thereafter, the resist film 8' is removed, and the semiconductor substrate is subjected to IK heat treatment at a heat treatment temperature T applied to the first resistor 6, but at a lower temperature T2. Subsequently, as shown in FIG. 1(e), the base region 2. After opening a window for electrode contact in emitter region 3, each base! ff19. Emitter electrode 10. Collector electrode 11. Then, a resistor lead-out electrode 12 is applied to obtain the desired resistor-equipped TR.

ここで、第2図は同じ寸法の多結晶シリコン層94゜ 中に同じ量の不純物をイオン注入で、ドープ量3x 1
0” atoms/am”をドープした抵抗体の不純物
)j−7’後の熱処理温度依存性な示したものであるが
、同じ形状で同量の不純物なドープした試料でも熱処理
温度の違いによって大きな抵抗値の差が、ゆアい、。 
1 また、第3図は2つの抵抗体に不純物を、ドープ量3 
X 10”atoms/cm” C曲mT)とI X 
10”atoms/Cm2(曲線II) ”kドープし
た後、第1回目〜第4回目まで、順次1100’C,,
1000’C。
Here, in FIG. 2, the same amount of impurity is ion-implanted into a polycrystalline silicon layer 94° with the same dimensions, and the doping amount is 3x1.
The dependence of the impurities on the resistor doped with 0" atoms/am) on the heat treatment temperature after J-7' is shown, but even for samples doped with the same amount of impurities in the same shape, there is a large difference in the heat treatment temperature. The difference in resistance is huge.
1 In addition, Figure 3 shows that two resistors are doped with impurities, and the doping amount is 3.
X 10”atoms/cm” C song mT) and I
10"atoms/Cm2 (Curve II) "After doping, 1100'C,...
1000'C.

800℃、1100℃で熱処理したものである。Heat treated at 800°C and 1100°C.

このように高温度で熱処理した後、同一試料なこの高温
度より低い温度で熱処理した場合はほとんど抵抗値の変
化は見られない。なお、横軸は熱処理回数、縦軸は抵抗
値な示す。
When the same sample is heat-treated at such a high temperature and then heat-treated at a temperature lower than this high temperature, almost no change in resistance value is observed. Note that the horizontal axis shows the number of heat treatments, and the vertical axis shows the resistance value.

この発明は、これらの実験結果から得られたものであり
、この発明による抵抗付きTRにおいては、第1の抵抗
体6および第2の抵抗体7の不純物ドープ後、異なった
温度で熱処理されているために大幅に抵抗値が異なって
おり、かつ、不純物ドープ量の精度の良好なイオン注入
で不純物のドープを行っているために、抵抗値は目標値
忙精度よくコントロールすることができるとともに、バ
ラツキも小さく押さえることができ、所望の抵抗付きT
R’&得ることができる。
The present invention was obtained from these experimental results, and in the resistor-equipped TR according to the present invention, after the first resistor 6 and the second resistor 7 are doped with impurities, they are heat-treated at different temperatures. Since the impurity is doped by ion implantation with high precision in the amount of impurity doped, the resistance value can be precisely controlled to the target value. Variations can be kept small and T with the desired resistance can be achieved.
R'& can be obtained.

2個の第1.第2の抵抗体6.7の抵抗値の差は、多結
晶シリコンへの不純物ドープ量な変えることにより、さ
らに大きくすることができるのはもちろんである。
Two first. Of course, the difference in resistance value of the second resistor 6.7 can be further increased by changing the amount of impurity doped into the polycrystalline silicon.

以上説明したように、この発明によれば、抵抗値の大き
く異なった、かつ、抵抗値のバラツキの小さい抵抗体な
同一半導体基板上に形成することができるため、回路の
部品点数l減らし、かつ、組立コストの低減2回路の信
頼性の向上に大きな効果を得ることができる。
As explained above, according to the present invention, resistors having widely different resistance values and small variations in resistance values can be formed on the same semiconductor substrate, thereby reducing the number of circuit parts and , it is possible to obtain significant effects in reducing assembly costs and improving reliability of the two circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜re)はこの発明の一実施例1示す抵抗
体の製造方法な示す工程別断面図、第2図は多結晶シリ
コン層中忙同じ量の不純物lイオン注入でドープした抵
抗体の不純物ドープ後の熱処理温度依存性を示す図、第
3図は不純物イオン注入後同一試料に熱処理l、異なっ
た温度(高温から低温へ)で繰り返し加えたときの抵抗
値の変化l示す相関図である。 図中、1はシリコン基板、4は絶縁膜、6. 7は第1
.第2の抵抗体である。なお、図中の同゛−符号は同一
または相当部分な示す。 第1図 第1図 −彰―麺 q −穎塀@S
Figures 1 (a) to (re) are cross-sectional views showing step-by-step cross-sectional views of a method of manufacturing a resistor according to Embodiment 1 of the present invention, and Figure 2 is a polycrystalline silicon layer doped with the same amount of impurity l ion implantation. Figure 3 shows the temperature dependence of heat treatment after impurity doping in a resistor. Figure 3 shows the change in resistance when heat treatment is repeatedly applied to the same sample at different temperatures (from high temperature to low temperature) after impurity ion implantation. It is a correlation diagram. In the figure, 1 is a silicon substrate, 4 is an insulating film, and 6. 7 is the first
.. This is the second resistor. Note that the same reference numerals in the figures indicate the same or corresponding parts. Fig. 1 Fig. 1 - Akira - Noodles q - Yingbei @S

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の多結晶シリコン層に不純物をドープして
少なくとも第1と第2の抵抗体を形成する製造方法にお
いて、前記第1の抵抗体となる多結晶シリコン層に不純
物をドープした後所定の温度で熱処理を行い前記第1の
抵抗体を形成する工程、次に第2の抵抗体となる多結晶
シリコン層に不純物をドープした後、前記第1の抵抗体
の作成時の熱処理温度より低い温度で熱処理を行い前記
第2の抵抗体な形成する工程を含むことt特徴とする抵
抗体の製造方法。
In a manufacturing method in which at least first and second resistors are formed by doping a polycrystalline silicon layer on a semiconductor substrate with an impurity, after doping the polycrystalline silicon layer that will become the first resistor with an impurity, A step of performing heat treatment at a temperature to form the first resistor, then doping an impurity into the polycrystalline silicon layer that will become the second resistor, and then performing a heat treatment at a temperature lower than that at which the first resistor was created. A method for manufacturing a resistor, comprising the step of performing heat treatment at a high temperature to form the second resistor.
JP11961283A 1983-06-29 1983-06-29 Manufacture of resistor Pending JPS6010657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11961283A JPS6010657A (en) 1983-06-29 1983-06-29 Manufacture of resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11961283A JPS6010657A (en) 1983-06-29 1983-06-29 Manufacture of resistor

Publications (1)

Publication Number Publication Date
JPS6010657A true JPS6010657A (en) 1985-01-19

Family

ID=14765722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11961283A Pending JPS6010657A (en) 1983-06-29 1983-06-29 Manufacture of resistor

Country Status (1)

Country Link
JP (1) JPS6010657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919346A (en) * 2016-10-10 2018-04-17 北大方正集团有限公司 The production method of polysilicon resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50134782A (en) * 1974-04-15 1975-10-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50134782A (en) * 1974-04-15 1975-10-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919346A (en) * 2016-10-10 2018-04-17 北大方正集团有限公司 The production method of polysilicon resistance
CN107919346B (en) * 2016-10-10 2019-12-31 北大方正集团有限公司 Method for manufacturing polysilicon resistor

Similar Documents

Publication Publication Date Title
US4394191A (en) Stacked polycrystalline silicon film of high and low conductivity layers
JPH0614532B2 (en) Method for forming a resistor in a polycrystalline semiconductor material
JPS5941864A (en) Method of producing monolithic integrated circuit
JPS6241425B2 (en)
US4502894A (en) Method of fabricating polycrystalline silicon resistors in integrated circuit structures using outdiffusion
JPS6010657A (en) Manufacture of resistor
US4155778A (en) Forming semiconductor devices having ion implanted and diffused regions
JPS62140451A (en) Manufacture of polycrystalline silicon resistor and wiring
JPS5948952A (en) Manufacture of resistor
JPH01128521A (en) Ion implantation
JPH02283016A (en) Forming method of semiconductor layer containing boron
JP3067340B2 (en) Semiconductor device
JPH0247853B2 (en)
JPS60127755A (en) Manufacture of semiconductor device
JPS63292663A (en) Manufacture of semiconductor device
JPS5946057A (en) Manufacture of semiconductor device
JPH0565060B2 (en)
JPS5826177B2 (en) Manufacturing method of semiconductor device
JP2901262B2 (en) Manufacturing method of polysilicon resistance element
JP2527044B2 (en) Method of manufacturing embedded resistor for integrated circuit device
JPS5861625A (en) Manufacture of semiconductor device
JPH0228364A (en) Manufacture of semiconductor device
JPH01165162A (en) Manufacture of semiconductor memory device
JPH0510820B2 (en)
JPH09500760A (en) Manufacturing process of semiconductor device with arsenic implanted emitter