JPS60105250A - Method for introducing impurity - Google Patents

Method for introducing impurity

Info

Publication number
JPS60105250A
JPS60105250A JP20400684A JP20400684A JPS60105250A JP S60105250 A JPS60105250 A JP S60105250A JP 20400684 A JP20400684 A JP 20400684A JP 20400684 A JP20400684 A JP 20400684A JP S60105250 A JPS60105250 A JP S60105250A
Authority
JP
Japan
Prior art keywords
mask
film
semiconductor substrate
silicon wafer
photoresist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20400684A
Other languages
Japanese (ja)
Inventor
Nozomi Horino
堀野 望
Yasuo Wada
恭雄 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20400684A priority Critical patent/JPS60105250A/en
Publication of JPS60105250A publication Critical patent/JPS60105250A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Abstract

PURPOSE:To obtain an MOSIC or the like with high performance and high integrity, while preventing the element properties and integrity from being degraded by a channel stopper, by selectively removing a third mask on a semiconductor substrate and by introducing an impurity into the substrate with the use of the layered mask and the third mask left on the side faces thereof. CONSTITUTION:A thin silicon oxide film 2 is formed on the surface of an N type silicon wafer 1. On this silicon oxide film 2, a layered film consisting of a lower nitride film 3 and an upper photoresist film 4 is selectively formed. A photoresist film 14 with a low viscosity is applied on the whole surface of the layered film and N type silicon wafer 1, and is etched for forming a photoresist film 15 covering the upper and side faces of the nitride film 3. After that, impurity ions of a high concentration are implanted into the surface of the N type silicon wafer 1 with the use of the nitride and photoresist film 3 and 15 as a mask. In such a manner, a channel stopper can be providing without degrading the element properties or decreasing the integrity.

Description

【発明の詳細な説明】 本発明は、半導体装置特にMISICやバイポーラIC
等のICの製法における不純物の導入法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to semiconductor devices, particularly MISICs and bipolar ICs.
The present invention relates to a method of introducing impurities in an IC manufacturing method such as the above.

従来、チャンネルストッパーを具(JMfるMO8IC
の製作にあたっては、選択酸化用マスクであるナイトラ
イド膜をマスクとして全面にチャンネルストッパ形成用
拡散不純物をイオン打ち込みしたのち、熱処理を行なっ
て、フィールド酸化シリコン膜をシリコンウェー八表面
に形成すると共に、そのフィールド酸化シリコン膜下に
チャンネルストッパ用拡散層を形成し、ついで、ナイト
ライド膜下のシリコンウェーハにソース、ドレイン等を
形成してMO8ICを製作するのか一般的である。
Previously, a channel stopper was used (JMf MO8IC
In manufacturing, a diffusion impurity for forming a channel stopper is ion-implanted into the entire surface using a nitride film, which is a mask for selective oxidation, and then heat treatment is performed to form a field silicon oxide film on the surface of the silicon wafer. Generally, a channel stopper diffusion layer is formed under the field silicon oxide film, and then a source, a drain, etc. are formed on the silicon wafer under the nitride film to manufacture an MO8IC.

しかしながら、このような製法にかかるグーヤンネルス
トッパは、素子アクティブ領域であるナイトライド膜下
のシリコンウェーハ領域にまで(い込んで形成されるた
め、上記素子アクティブ領域の減少やチャンネルストッ
パによる寄生接合容量の増大並びに素子耐圧の低下等を
招来している。
However, the Gouyannelle stopper used in this manufacturing method is formed by penetrating into the silicon wafer region under the nitride film, which is the active region of the device, resulting in a reduction in the active region of the device and parasitic junctions caused by the channel stopper. This results in an increase in capacitance and a decrease in element breakdown voltage.

そのため、集積度が低下し、素子特性が悪化している。As a result, the degree of integration is reduced and device characteristics are deteriorated.

それゆえ、本発明の目的は、チャンネルストッパによる
素子特性や集積度の低下を防止し、高性能でかつ高集積
度なMOS I C、バイポーラIC等の半導体装置を
得ることのできる不純物の導入法を提供することにある
Therefore, an object of the present invention is to provide a method for introducing impurities that can prevent deterioration of device characteristics and degree of integration due to channel stoppers and can obtain semiconductor devices such as MOS ICs and bipolar ICs with high performance and high degree of integration. Our goal is to provide the following.

最初に、本発明の前提となるMO8ICの製法を工程順
に図面を参照しながら詳述する。
First, the manufacturing method of MO8IC, which is the premise of the present invention, will be explained in detail in the order of steps with reference to the drawings.

(7)N型シリコンウェーハ1表面を熱酸化して薄い酸
化シリコン膜2を形成し、全面にナイトライド膜3をC
VD法等により設ける(第1図)。ついで選択酸化用マ
スクとなるナイトライド膜3パターンを形成するために
、フォトレジスト膜4をマスクとしてフォトエツチング
を行なう(第2図〜第3図)。上記酸化シリコン膜2は
、シリコンウェーハ1とナイトライド膜3との間に生ず
る熱歪等を緩和するものである。なお、シリコンウェー
ハ1としてP型のものを使用してもよく、また、この製
造プロセスは、公知なものである。
(7) The surface of the N-type silicon wafer 1 is thermally oxidized to form a thin silicon oxide film 2, and a nitride film 3 is coated on the entire surface.
It is provided by the VD method etc. (Fig. 1). Next, in order to form a pattern of the nitride film 3 serving as a mask for selective oxidation, photoetching is performed using the photoresist film 4 as a mask (FIGS. 2 and 3). The silicon oxide film 2 alleviates thermal strain and the like occurring between the silicon wafer 1 and the nitride film 3. Note that a P-type silicon wafer 1 may be used, and this manufacturing process is a known one.

印 ナイトライド膜3上のフォトレジスト膜4を加熱処
理して軟化し、流動状態にしてナイトライド膜3周縁の
酸化シリコン膜2表面に延在させ、第4図のようなフォ
トレジスト膜4′を設ける、(つ)上記フォトレジスト
膜4′およびナイトライド膜3をマスクとして、全面に
高濃度のリン等のN型不純物5をイオン打ち込みし、N
型シリコンウェー/・1表皮部にN型不純物イオン打ち
込み層6を設ける(第5図)。
The photoresist film 4 on the nitride film 3 is heat-treated to soften it, make it fluid, and extend onto the surface of the silicon oxide film 2 around the nitride film 3, forming a photoresist film 4' as shown in FIG. (1) Using the photoresist film 4' and nitride film 3 as a mask, ions of N-type impurity 5 such as phosphorus are implanted into the entire surface to form an N-type impurity.
An N-type impurity ion implantation layer 6 is provided on the surface of the type silicon wafer/.1 (FIG. 5).

上記(イ)〜(つ)工程は、本発明の特徴であり、N型
イオン打ち込み層6はチャンネルストッパ用拡散層を形
成するための拡散源となるもので、その領域は、ナイト
ライド膜3周縁より延在しているフォトレジスト膜4′
分だけナイトライド膜3より外側に設けられるものであ
る。
The above steps (a) to (t) are the characteristics of the present invention, and the N-type ion implantation layer 6 serves as a diffusion source for forming a channel stopper diffusion layer, and the region thereof is a nitride film 3. Photoresist film 4' extending from the periphery
This is provided outside the nitride film 3 by that amount.

なお、表面が露出している酸化シリコン膜2を取り除い
ておき、N型イオン打ち込み層6を形成するイオン打ち
込み作業を行なうこともできる。
It is also possible to perform ion implantation to form the N-type ion implantation layer 6 after removing the silicon oxide film 2 whose surface is exposed.

に) フォトレジスト膜4′ を取り除いたのち(第6
図)、シリコンウェーハ1表面をナイトライド膜3をマ
スクとして熱酸化し、フィールド酸化シリコン膜7を形
成すると共に、その下にN+型型数散層すなわちチャン
ネルストッパ)l同時に設ける(第7図)。
) After removing the photoresist film 4' (6th
), the surface of the silicon wafer 1 is thermally oxidized using the nitride film 3 as a mask to form a field oxidized silicon film 7, and an N+ type scattering layer (channel stopper) is simultaneously provided underneath (Fig. 7). .

ナイトライド膜3周縁より離間してN型イオン打ち込み
層6をあらかじめ形成しているため、チャンネルストッ
パ8はフィールド酸化シリコン膜7周縁部には形成され
ず、フィールド酸化シIJ:ffン膜7下にのみ形成す
ることができる、(9)選択酸化用マスクであったナイ
トライド膜3および酸化シリコン膜2を取り除いたのち
、周知技術を用いて、ゲート酸化シリコン膜9、ゲート
電極用多結晶シリコン膜10、ソースおよびドレインで
あるP 型層11をセルフアライメント方式により設け
る(第8図)。ついで、リンシリケートガラス膜などの
絶縁膜12を全面に被覆し、これにそれぞれのコンタク
ト窓を設けたのち、ドレイン電極D、ソース電極Sを形
成する(第9図)。
Since the N-type ion implantation layer 6 is formed in advance at a distance from the periphery of the nitride film 3, the channel stopper 8 is not formed at the periphery of the field silicon oxide film 7, but is formed under the field oxide silicon film 7. (9) After removing the nitride film 3 and the silicon oxide film 2, which were masks for selective oxidation, the gate silicon oxide film 9 and the polycrystalline silicon for the gate electrode are removed using well-known techniques. A film 10, a P type layer 11 serving as a source and a drain are provided by a self-alignment method (FIG. 8). Next, the entire surface is covered with an insulating film 12 such as a phosphosilicate glass film, contact windows are provided therein, and then a drain electrode D and a source electrode S are formed (FIG. 9).

上述したように、チャンネルストッパ8をi子アクティ
ブ領域から離間して設けているため、ソースおよびドレ
インであるP+型層11とチャンネルストッパ8とが重
畳することがない。そのため、接合容量が激減すると共
に、素子側圧を大幅に向上することができる。また、素
子アクティブ領域を可及的小とできるため、高集積度の
デバイスを得ることができる、 本発明は、上記製造工程に示すような半導体装置の製法
における基板への不純物の選択的な導入法として、第1
0図〜第14図に示すよう1fプロセスを用いて行なう
ものである。
As described above, since the channel stopper 8 is provided apart from the i-coupled active region, the P+ type layer 11, which is the source and drain, and the channel stopper 8 do not overlap. Therefore, the junction capacitance can be drastically reduced, and the element side pressure can be significantly improved. In addition, since the element active area can be made as small as possible, a highly integrated device can be obtained. As a law, the first
This is carried out using the 1f process as shown in FIGS. 0 to 14.

ナイトライド膜3上のフォトレジスト膜4を残したまま
、全面に低粘度のフォトレジスト膜14を塗布し、ナイ
トライド膜3周縁の段差部のフォトレジスト膜の厚さを
酸化シリコン膜2よりも大とし、薄い酸化シリコン膜2
上の膜厚分だけプラズマアッシャ法等によりエツチング
を行なった後、加熱することにより表面張力を利用して
酸化シリコン膜2表面に延在しているフォトレジスト膜
の厚さを増大させて所望の形状を有するフォトレジスト
膜15を得るものである。
A low-viscosity photoresist film 14 is applied to the entire surface while leaving the photoresist film 4 on the nitride film 3, and the thickness of the photoresist film at the stepped portion around the periphery of the nitride film 3 is made thicker than the silicon oxide film 2. Large and thin silicon oxide film 2
After etching is performed by a plasma asher method or the like by the above film thickness, the thickness of the photoresist film extending on the surface of the silicon oxide film 2 is increased by heating and using surface tension. A photoresist film 15 having a shape is obtained.

言い換えると、N型シリコンウェーハ1表面に薄い酸化
シリコン膜2を形成し、この酸化シリコン膜2上にナイ
トライド膜3及びその上にフォトレジスト膜4とからな
る積層膜を選択的に形成する(第10図)。そして上記
積層膜及びN型シリコンウェーハ1表面の薄い酸化シリ
コン膜2土全面に低粘度のフォトレジスト膜14を塗布
する(第11図)。そして、プラズマアッシャ法等によ
りエツチングを行いナイトライド膜3上面及び側面を覆
うフォトレジスト膜15を形成する(第13図)。その
後ナイトライド膜3及びフォトレジスト膜15をマスク
としてN型シリコンウェーハ1表面に高濃度の不純物を
イオン打ち込みする(第14図)。
In other words, a thin silicon oxide film 2 is formed on the surface of an N-type silicon wafer 1, and a laminated film consisting of a nitride film 3 and a photoresist film 4 is selectively formed on this silicon oxide film 2 ( Figure 10). Then, a low-viscosity photoresist film 14 is applied to the entire surface of the laminated film and the thin silicon oxide film 2 on the surface of the N-type silicon wafer 1 (FIG. 11). Then, etching is performed using a plasma asher method or the like to form a photoresist film 15 covering the top and side surfaces of the nitride film 3 (FIG. 13). Thereafter, using the nitride film 3 and the photoresist film 15 as masks, high concentration impurity ions are implanted into the surface of the N-type silicon wafer 1 (FIG. 14).

本発明は、MO8IC,MISIC,バイポーラIC等
の種々の態様の半導体装置およびその製法に適用でき、
素子特性や集積度を低下させることなくチャンネルスト
ッパを具備することができるものである。
The present invention can be applied to various types of semiconductor devices such as MO8ICs, MISICs, bipolar ICs, and methods for manufacturing the same.
A channel stopper can be provided without deteriorating device characteristics or degree of integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第9図は、本発明の前提となるMO8ICおよ
びその製法を工程j唄に示す断面図、第10図〜第14
図は、本発明の実施例を示す工程図である。 1・・・N型シリコンウェーッ・、2・・・酸化シ1ノ
コン膜、3・・・ナイトライド膜、4. 4’、13.
 14゜15・・・フォトレジスト膜、訃・・N型不純
物、6・・・N型不純物イオン打ち込み層、7・・・フ
ィールド化シリコン膜、8・・・チャンネルストツノく
、9・・・ゲート酸化シリコン膜、10・・・ゲート電
極、11・・・P″゛W層、12・・・絶縁膜、D・・
・ドレイン電極、5・・・ソース電極。
FIGS. 1 to 9 are cross-sectional views showing the MO8IC and its manufacturing method, which are the premise of the present invention, and FIGS. 10 to 14.
The figure is a process diagram showing an example of the present invention. 1...N-type silicon wafer, 2...Silicone oxide film, 3...Nitride film, 4. 4', 13.
14゜15... Photoresist film, N-type impurity, 6... N-type impurity ion implantation layer, 7... Field silicon film, 8... Channel stock, 9... Gate silicon oxide film, 10... Gate electrode, 11... P''W layer, 12... Insulating film, D...
- Drain electrode, 5...source electrode.

Claims (1)

【特許請求の範囲】[Claims] 1、第1導電型の半導体基板表面に不純物導入用のマス
クを選択的に形成し、このマスクを用いて上記半導体基
板よりも高濃度の不純物をイオン打ち込みにより上記半
導体基板に選択的に導入する不純物導入法であって、上
記第1導電型の半導体基板表面上に第1のマスク及びこ
の第1のマスク上に形成された第2のマスクとからなる
積層マスクを選択的に形成し、上記積層マスク上からこ
の積層マスクが形成されない上記半導体基板表面上に延
びる上記第2のマスクと同一材質の第3のマスクを形成
し、少くとも上記積層マスクの側面に上記第3のマスク
の一部が残るように上記積層マスクが形成されない上記
半導体基板上の第3のマスクを選択的に除去し、その後
上記積層マスク及ヒソの側面に残った第3のマスクを用
いてイオン打込みにより上記不純物を上記半導体基板に
導入することを特徴とする不純物導入法。
1. Selectively forming a mask for impurity introduction on the surface of a first conductivity type semiconductor substrate, and using this mask to selectively introduce impurities at a higher concentration than the semiconductor substrate into the semiconductor substrate by ion implantation. In the impurity introduction method, a stacked mask consisting of a first mask and a second mask formed on the first mask is selectively formed on the surface of the semiconductor substrate of the first conductivity type, and A third mask made of the same material as the second mask is formed extending over the surface of the semiconductor substrate on which the layered mask is not formed, and a portion of the third mask is formed on at least a side surface of the layered mask. The third mask on the semiconductor substrate on which the laminated mask is not formed is selectively removed so that the laminated mask remains, and then the impurity is removed by ion implantation using the laminated mask and the third mask remaining on the side surface of the fin. A method of introducing an impurity into the semiconductor substrate described above.
JP20400684A 1984-10-01 1984-10-01 Method for introducing impurity Pending JPS60105250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20400684A JPS60105250A (en) 1984-10-01 1984-10-01 Method for introducing impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20400684A JPS60105250A (en) 1984-10-01 1984-10-01 Method for introducing impurity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12192376A Division JPS5347782A (en) 1976-10-13 1976-10-13 Production of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60105250A true JPS60105250A (en) 1985-06-10

Family

ID=16483207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20400684A Pending JPS60105250A (en) 1984-10-01 1984-10-01 Method for introducing impurity

Country Status (1)

Country Link
JP (1) JPS60105250A (en)

Similar Documents

Publication Publication Date Title
KR930010121B1 (en) Process for forming high and low voltage cmos transistors on a single integrated circuit chip
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JPH0586673B2 (en)
JPS61263274A (en) Manufacture of semiconductor device
JPS59208851A (en) Semiconductor device and manufacture thereof
JPH05283687A (en) Production of semiconductor element
JPS60105250A (en) Method for introducing impurity
JPS6038864B2 (en) semiconductor equipment
JPS59168675A (en) Manufacture of semiconductor device
JPS62248256A (en) Semiconductor device
JPS60105249A (en) Method for introducing impurity
JPS6126234B2 (en)
JPH0472770A (en) Manufacture of semiconductor device
JPS6394667A (en) Semiconductor integrated circuit
JPS61125084A (en) Semiconductor integrated circuit device
KR0140959B1 (en) Manufacturing method of mosfet
JP3147374B2 (en) Semiconductor device
JPH0469433B2 (en)
JPS59103353A (en) Manufacture of semiconductor device
JPS6367778A (en) Manufacture of semiconductor device
JPH08274313A (en) Semiconductor device and its manufacture
JPH01175259A (en) Semiconductor device and its manufacture
JPH0214788B2 (en)
JPS63144543A (en) Formation of semiconductor interelement isolation region
JPH0320047A (en) Semicondcutor device