JPS60102774A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS60102774A
JPS60102774A JP58210650A JP21065083A JPS60102774A JP S60102774 A JPS60102774 A JP S60102774A JP 58210650 A JP58210650 A JP 58210650A JP 21065083 A JP21065083 A JP 21065083A JP S60102774 A JPS60102774 A JP S60102774A
Authority
JP
Japan
Prior art keywords
semiconductor layer
active region
thickness
carrier concentration
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58210650A
Other languages
Japanese (ja)
Other versions
JPH051631B2 (en
Inventor
Kazuo Sakai
堺 和夫
Yuichi Matsushima
松島 裕一
Shigeyuki Akiba
重幸 秋葉
Katsuyuki Uko
宇高 勝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP58210650A priority Critical patent/JPS60102774A/en
Publication of JPS60102774A publication Critical patent/JPS60102774A/en
Publication of JPH051631B2 publication Critical patent/JPH051631B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier

Abstract

PURPOSE:To produce the titled element with high performance stably by a method wherein N-I-P-I-N or P-I-N-I-P element is composed as a planar type element. CONSTITUTION:An n-GaAs(napprox.=10<18>cm<-3>) layer 2, an i-GaAs(napprox.=10<14>cm<-3>) layer 3, a p-GaAs(papprox.=10<18>cm<-3>) layer 4, an i-GaAs(napprox.=10<14>cm<-3>) layer 5, an n-GaAs(napprox.= 10<18>cm<-3>) layer 6, an insulating film 7, electrodes 8, 9 are successively laminated on an n<+>GaAs substrate 1 with a mesa structure on a part corresponding to an active region Ra. Crystal growth is performed by vapor epitaxial process and molecular beam epitaxial process etc. In such a constitution, a current component flowing outside the active region Ra may be neglected unless the space outside the active region Ra exceeds the active region Ra itself remarkably. In other words, a parasitic current component outside the active region Ra may be reduced by crystal growing process only utilizing a processed substrate to produce a planar type N-I-P-I-N or (P-I-N-I-P) terminal element 2 with ease.

Description

【発明の詳細な説明】 本発明はn−1−p−i−n構造(p−i−n−j−p
構造に対しても、同様に適用可能であるが、簡単のため
n−4−p−j−n構造で説明する)及びその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an n-1-p-i-n structure (p-i-n-j-p
Although the present invention is similarly applicable to other structures, the present invention relates to an n-4-p-j-n structure (for simplicity, the description will be made using an n-4-p-j-n structure) and a manufacturing method thereof.

n−1−p−i−n素子は、n−1−n構造の1層中に
100^前後の薄いp層を形成したもので、多数キャリ
アが主に伝導に関与する素子であるだめに高速素子とし
て期待されており、又最近ではこの構造を利用した3端
子素子も提案されている。
An n-1-p-i-n element has a thin p-layer of around 100^ formed in one layer of an n-1-n structure, and is an element in which majority carriers are mainly involved in conduction. It is expected to be a high-speed device, and recently, a three-terminal device using this structure has also been proposed.

更に、この素子は過剰雑音のない高感度光検出素子とし
て使用することも可能であり、その応用範囲は広い。
Furthermore, this element can also be used as a highly sensitive photodetector element without excessive noise, and its range of applications is wide.

始めに、n−i −p−i −n 2端子素子の動作を
説明する。第1図はGa Asを用いた従来のn−1−
p−j−n2端子素子の熱平衡状態及び電圧■を印加し
た時のバンド構造を示したものであり、φBOは2つの
n層の間のポテンンヤル障壁の高さ 4− を表わす。電圧Vを印加した時に流れる電流の密度Jは
熱電子放出の式によって表わされ、となる。ここに、A
矢は実効的なリチャードソン定数、Tは絶対温度、kは
ボルツマン定数、qは電子素置であり、αl、α2はa
、 + d2を2つのi層の厚さとした時、α+=d+
/ (d++dz ) 、α2二d2/ (dl+d2
)で与えられる。d、\d2とすれば、電圧−電流特性
に非対称性が現われる。このだめ、通常のpn接合ダイ
オードと同様に順方向、逆方向といった呼び方ができ、
例えばd+<dzならば第1図(hは逆方向にバイアス
された状態と考えられる。
First, the operation of the n-i-p-i-n two-terminal element will be explained. Figure 1 shows a conventional n-1-
This figure shows the thermal equilibrium state of a p-j-n two-terminal element and the band structure when a voltage (2) is applied, where φBO represents the height 4- of the potential barrier between two n-layers. The density J of the current flowing when the voltage V is applied is expressed by the thermionic emission formula, and is expressed as follows. Here, A
The arrow is the effective Richardson constant, T is the absolute temperature, k is the Boltzmann constant, q is the electron configuration, αl, α2 are a
, + When d2 is the thickness of the two i layers, α+=d+
/ (d++dz), α22d2/ (dl+d2
) is given by d,\d2, asymmetry appears in the voltage-current characteristics. This type of diode can be referred to as forward direction or reverse direction, just like a normal pn junction diode.
For example, if d+<dz, then h in FIG. 1 is considered to be biased in the opposite direction.

光照射が無い場合、この素子に正孔は注入されないので
、素子の応答速度は極めて速く、超高速素子として期待
されている。一方、光照射を行なった場合、光励起され
た少数キャリアである正孔はp層の部分に集まる。これ
は、ボテノ7ヤル障壁φ80の値を小さくするように働
くため、素子を流ねる電子電流は増加する。即ち、光照
射により光電流が流れるわけであるが、この時の感度に
ついては約70OA、 /W 、利得にして約1000
倍もの値も報告さねている。一方、応答速度についても
50〜500 psの値が報告されており、高利得高速
受光素子として大いに期待される。
When there is no light irradiation, no holes are injected into the device, so the response speed of the device is extremely fast, and it is expected to be an ultra-high-speed device. On the other hand, when light irradiation is performed, holes, which are photoexcited minority carriers, gather in the p-layer. Since this works to reduce the value of the barrier φ80, the electron current flowing through the element increases. In other words, a photocurrent flows due to light irradiation, and the sensitivity at this time is about 70OA, /W, and the gain is about 1000.
They have also reported double the value. On the other hand, values of response speed of 50 to 500 ps have been reported, and there are great expectations as a high-gain, high-speed light-receiving element.

従来の報告では能動領域周辺部を工、チングで除去した
メサ型素子が用いられているが、メサ型の場合メサ周辺
部が外部からの不純物の影響を受け易いだめ、プレーナ
型素子とした方が安定な素子が得やすい。しかし、今1
でプレーナ型素子の具体的な構造についての提案はなか
った。
Previous reports have used mesa-type devices in which the periphery of the active region has been removed by machining or etching, but in the case of mesa-type devices, the periphery of the mesa is easily affected by impurities from the outside, so it is better to use a planar-type device. It is easy to obtain stable elements. But now 1
However, there were no proposals regarding the specific structure of planar elements.

本発明は、n−1−p−i−n素子をプレーナ化する際
に、能動領域周辺部からの漏れ電流の低減を図り、安定
かつ高性能なプレーナ型n −j−p −1−n素子を
作製するようにした半導体素子及びその製造方法を提供
するものである。
The present invention aims to reduce leakage current from the periphery of the active region when planarizing the n-1-p-i-n element, and provides a stable and high-performance planar type n-j-p-1-n The present invention provides a semiconductor device and a method for manufacturing the same.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

オす、本発明の詳細な説明する。n−1−p−i−n素
子の熱平衡時におけるボテンシャル障壁φBOは、ボア
ンン方程式を解くことにより得られ、例えばp層の厚さ
XAが、d+ + d2に比べて十分小さい時には、 で与えられる。ここに、NAはp層でのアクセグタ濃度
、εSは誘電率、eは電気素量である。本発明において
は、xA又はd1或いはd2の大きさを平面的に変化さ
せることにより、能動領域内外で多数キャリアに対する
ポテンシャル障壁の高さを変え、これにより実効的に電
流が流れる領域を制限しようとするものである。先ず、
XAを変化させた時の素子への影響について考えてみる
。この場合、φBOは(2)式に従って変化するので、
XAの増加によりφBOは増加し、電流密度は(1)式
に示すように順方向、逆方向共に減少する。次にd2(
d+ <d2)を増加させた場合を考えると、φBO、
α2は増加し、αIは減少し、全体として電流密度は減
少する。以上のように、XA又はdl+d2のうち厚い
方の厚さを増加させると電流密度は減少する。又、これ
を同時に増加させても電流密度は減少する。
The present invention will now be described in detail. The potential barrier φBO at the time of thermal equilibrium of the n-1-p-i-n element is obtained by solving the Boann equation, and for example, when the thickness XA of the p layer is sufficiently small compared to d+ + d2, it is given by . Here, NA is the accessor concentration in the p layer, εS is the dielectric constant, and e is the elementary charge. In the present invention, by changing the magnitude of xA or d1 or d2 in a plane, the height of the potential barrier to majority carriers inside and outside the active region is changed, thereby effectively limiting the area where current flows. It is something to do. First of all,
Let's consider the effect on the element when changing XA. In this case, φBO changes according to equation (2), so
As XA increases, φBO increases, and the current density decreases in both the forward and reverse directions as shown in equation (1). Next, d2(
Considering the case where d+ < d2) is increased, φBO,
α2 increases, αI decreases, and the overall current density decreases. As described above, increasing the thickness of XA or dl+d2, whichever is thicker, reduces the current density. Moreover, even if these are increased at the same time, the current density decreases.

以Fに、実施例により具体的に説明する。Hereinafter, this will be explained in detail with reference to Examples.

〔実施例1〕 第2図は本発明を用いたプレーナ型n−1−p−i−n
2端子素子の実施例を示したもので、(ωは載断面を含
む斜視図、(lは断面図である。ここで、1はn+−G
aAs基板であり、能動領域に対応する部分に直径約1
00μmの円形メサ構造(高さ約05μm)が形成され
ている。2はn−GaAs層(n = 1.0I8z”
)、3は1−GaAs層(n(10”crn”)、4は
p −caAs層(p=1018cn1−3)、5はi
 −Ga As層(n’:to14cm−3)、6はn
−GaAs層(n : 1018tyn” )、7は絶
縁膜、8,9は電極である。結晶成長は、気相エヒタキ
シャル成長法、分子線エピタキシャル成長法又は有機金
属気相堆積法(MOCVD)等により行うわけであるが
、基板に段差があるだめメサ部分とそれ以外の部分で成
長速度に差が出てくる。
[Example 1] Figure 2 shows a planar type n-1-p-i-n using the present invention.
This shows an example of a two-terminal element, (ω is a perspective view including the loading section, (l is a cross-sectional view, and 1 is n+-G
It is an aAs substrate, with a diameter of about 1 in the part corresponding to the active area.
A circular mesa structure (about 05 μm in height) with a diameter of 00 μm is formed. 2 is an n-GaAs layer (n = 1.0I8z”
), 3 is a 1-GaAs layer (n(10"crn"), 4 is a p-caAs layer (p=1018cn1-3), 5 is i
-GaAs layer (n':to14cm-3), 6 is n
-GaAs layer (n: 1018tyn"), 7 is an insulating film, and 8 and 9 are electrodes. Crystal growth is performed by vapor phase epitaxial growth, molecular beam epitaxial growth, metal organic chemical vapor deposition (MOCVD), etc. However, because there is a step in the substrate, there is a difference in the growth rate between the mesa part and the other parts.

例えば、能動領域内部及び外部での各層の厚さは、それ
ぞれ、層2が〜0.5μm及び〜0.6μm1層3が〜
20μm及び〜2.4μm、層4が〜100X及び〜1
20λ、層5が〜005μm及び〜006μm1層6が
〜1μmのように結晶成長する。ここで能動領域内部及
び外部での電流密度について、(1) + (2)式を
参考にして考えてみる。Ga AsO比誘電率を13と
仮定すると、能動領域内外でφBOはそれぞれ0.68
eV及び0.98 eVとなり、能動領域外部の密度J
Oと能動領域内部の密度Jl比Jo/J1をとってみる
と、室温において、Jo/Jiユ9×10−6となる。
For example, the thickness of each layer inside and outside the active area is ~0.5 μm for layer 2 and ~0.6 μm for layer 3, respectively.
20μm and ~2.4μm, layer 4 ~100X and ~1
20λ, layer 5 ~005 μm and ~006 μm, layer 6 ~1 μm. Here, the current density inside and outside the active region will be considered with reference to equations (1) and (2). Assuming that the dielectric constant of GaAsO is 13, φBO is 0.68 inside and outside the active region.
eV and 0.98 eV, and the density J outside the active region
Taking the ratio Jo/J1 of O and the density Jl inside the active region, Jo/Ji becomes 9×10 −6 at room temperature.

従って、第2図のような構造にすれば、能動領域外部の
面積が能動領域部分に比べて極端に大きくない限り、能
動領域外部を流れる電流成分は無視できる。即ち、加工
した基板を用いて結晶成長を行うだけで能動領域外部の
寄生電流成分を十分に低減でき、容易にプレーナ型n−
i −p−i −n 2端子素子を実現できる。
Therefore, with the structure shown in FIG. 2, the current component flowing outside the active region can be ignored unless the area outside the active region is extremely large compared to the active region portion. That is, by simply performing crystal growth using a processed substrate, the parasitic current component outside the active region can be sufficiently reduced, and the planar type n-
An i-p-i-n two-terminal device can be realized.

〔実施例2〕 第3図は、本発明を用いたn−i −p−i −n 2
端子素子の別の実施例を示したもので、←)は截断面を
含む斜視図、(ト)は断面図である。この実施例は、第
2図に示す〔実施例1〕のプレーナ型n−j−p−1−
n2端子素子と同一の層構造を有する素子における能動
領域Raの周囲を半絶縁性又はp型の還状領域10で取
り囲んだもので、この還状領域10は層6から層3に達
するように形成されている。還状領域10ば、電流が能
動領域Raの外部に流れるのを防ぐだめのものであるが
、本発明の構造と併用することにより、寄生電流成分を
より一層低減でき、安定々プレーナ型n−i −p−i
 −n 2端子素子を実現できる。
[Example 2] FIG. 3 shows n-i-p-i-n 2 using the present invention.
Another embodiment of the terminal element is shown, in which ←) is a perspective view including a cut section, and (G) is a sectional view. This embodiment is based on the planar type n-j-p-1- of [Embodiment 1] shown in FIG.
The active region Ra in an element having the same layer structure as the n2 terminal element is surrounded by a semi-insulating or p-type ring-shaped region 10, and this ring-shaped region 10 extends from layer 6 to layer 3. It is formed. The annular region 10 is only intended to prevent current from flowing outside the active region Ra, but by using it in combination with the structure of the present invention, the parasitic current component can be further reduced, and the planar type n- i-p-i
-n A two-terminal device can be realized.

次に、3端子素子(トランジスタ)について考えてみる
。3端子素子はn−1−p−i−n構造を二つ直列に接
続した構造になっており、真中のn層部分がベースに両
端のn層がエミッタ及びコレクタとして働く。第4図は
熱平衡状態及び電圧を印加した時のバンド構造を示した
ものである。通常ベースはエミッタに対してプラスに、
又コレクタはベースに対してプラスにバイアスされる。
Next, let's consider a three-terminal element (transistor). The three-terminal element has a structure in which two n-1-p-i-n structures are connected in series, with the n-layer part in the middle serving as a base and the n-layers at both ends serving as an emitter and a collector. FIG. 4 shows the band structure in a thermal equilibrium state and when a voltage is applied. Usually the base is positive with respect to the emitter,
The collector is also positively biased with respect to the base.

ベーース・エミッタ間障壁φBKは、ベース・エミッタ
間の印加電圧VBEにより高さが低くなり、この分だけ
余分に障壁を越える電子が増え、障壁を越えた電子は加
速される。ベース領域を電子が散乱されない程度の薄さ
く1μm以下)にしておけば、電子はベース領域をエネ
ルギーを失なわずに通過し、コレクタ・ベース間障壁φ
cnも通り越えてコレクタに達する。従って、ベースの
電圧を変化することにより、コレクタに流れる電流を制
御できるわけである。この素子で特徴的なことは、少数
キャリア(この場合、正孔)がトランジスタの動作に関
与しないことであり、このため少数キャリア蓄積の問題
がなくなり、超高速のトランジスタとして非常に有望と
考えられている。しかし、こうし′に3端子構造を実際
どのような構造で作るかは明確になっていなかった。本
発明は、こうした3端子素子にも適用可能であり、以下
にこの場合の実施例を詳細に説明する。
The height of the base-emitter barrier φBK is lowered by the applied voltage VBE between the base and emitter, and the number of electrons that cross the barrier increases accordingly, and the electrons that cross the barrier are accelerated. If the base region is made thin (1 μm or less) to the extent that electrons are not scattered, electrons will pass through the base region without losing energy, and the collector-base barrier φ
It also passes through cn and reaches the collector. Therefore, by changing the voltage at the base, the current flowing to the collector can be controlled. A distinctive feature of this device is that minority carriers (holes in this case) do not participate in the operation of the transistor, which eliminates the problem of minority carrier accumulation, making it very promising as an ultra-high-speed transistor. ing. However, it was not clear what kind of structure would actually be used to create the three-terminal structure in this case. The present invention can also be applied to such a three-terminal element, and examples in this case will be described in detail below.

〔実施例3〕 第5図は、本発明を用いだn−i −p−i −n 3
端子素子の実施例を示しだもので、(a)は載断面を 
11− 含む斜視図、(lは断面図である。21はn十−GaA
s基板であり、能動領域に対応する部分に直径約10μ
mの円形メサ構造(高さ約1μm)が形成されている。
[Example 3] FIG. 5 shows that using the present invention, ni-pi-n 3
This figure shows an example of the terminal element, and (a) shows the mounting cross section.
11 - Perspective view including (l is a sectional view. 21 is n+GaA
s substrate, with a diameter of about 10μ in the part corresponding to the active area.
A circular mesa structure (about 1 μm in height) is formed.

22,26.30はn−GaAs層(n = 1.01
8crn−3)、23 、25 、27 、29は1−
GaAs層(n 、 p<10”crn”)、24 、
28はp −Ga As層(p = 1018cn1”
 )、31..32は遠吠の電極分離領域で、半絶縁性
半導体等により構成される。33は絶縁体薄膜、34,
35.36は電極である。結晶成長は気相エピタキ/ヤ
ル成長法。
22, 26.30 is an n-GaAs layer (n = 1.01
8crn-3), 23, 25, 27, 29 are 1-
GaAs layer (n, p<10"crn"), 24,
28 is a p-GaAs layer (p = 1018cn1”
), 31. .. Reference numeral 32 denotes a howling electrode separation region, which is made of a semi-insulating semiconductor or the like. 33 is an insulating thin film, 34,
35 and 36 are electrodes. Crystal growth is by vapor phase epitaxy/dial growth method.

分子線エピタキシャル成長法又は有機金属気相堆積法(
MOCVD)等により行うわけであるが基板に段差があ
るためメサ部分とそれ以外の部分で成長速度に差が生じ
る。例えば、能動領域内部及び外部での層22〜25の
厚さはそれぞれ層22が〜0.5μm及び〜06μm1
層23が〜20μm及び〜24μm1層24が〜100
λ及び〜120又、層25が〜005μm及び〜006
μmのように結晶成長できる。又、層26は〜0.3μ
m、層27は〜0.05μm、層28は〜ioo久、層
29は〜2μm1層3oは〜3μmのように結晶成長す
る。この実施例では層27から301では能動領域部 
12− を残してエツチングする構造としており、更に電極分離
用還状領域3l 、 32が31については層26から
層23に達するように、又32については層30から層
27に達するように形成されている。〔実施例t〕。
Molecular beam epitaxial growth method or organometallic vapor phase deposition method (
Although this is done by MOCVD or the like, there is a difference in the growth rate between the mesa part and other parts because there is a step in the substrate. For example, the thickness of layers 22-25 inside and outside the active area is ~0.5 μm and ~06 μm, respectively.
Layer 23 is ~20 μm and ~24 μm 1 layer 24 is ~100 μm
λ and ~120 and layer 25 is ~005 μm and ~006
Crystals can be grown as small as μm. Also, layer 26 has a thickness of ~0.3μ
The crystals are grown so that the layer 27 is ~0.05 μm, the layer 28 is ~100 μm, the layer 29 is ~2 μm, and the layer 3o is ~3 μm. In this embodiment, layers 27 to 301 have active area portions.
It has a structure in which the etching is performed leaving only 12-, and furthermore, the ring-shaped regions 3l and 32 for electrode separation are formed so as to reach from layer 26 to layer 23 for 31, and from layer 30 to layer 27 for 32. ing. [Example t].

〔実施例2〕において説明したと同様の理由により、電
極35と電極36の間で流れる電流は能動領域部に集中
し、能動領域外部に流れる電流は低減でき、安定なn−
i −p−i −n 3端子素子を実現できる。なお、
本実施例では層22から層25までの厚さを能動領域の
内外で変えたが、層26から層30までの厚さを同時に
変えても差し支えない。
For the same reason as explained in [Embodiment 2], the current flowing between the electrode 35 and the electrode 36 is concentrated in the active region, and the current flowing outside the active region can be reduced, resulting in stable n-
An i-p-i-n three-terminal device can be realized. In addition,
In this embodiment, the thicknesses of layers 22 to 25 are varied inside and outside the active region, but the thicknesses of layers 26 to 30 may also be varied at the same time.

以上の説明では、GaAsを材料として説明に用いたが
、GaAtAs 、 InGaAsP 、 InGaA
LAs等の混晶も使用可能であり、更に単一組成の材料
でn −1−p−i−n素子を作るのではなく、組成の
異なる材料を用いて、ペテロ構造を有するn−1−p−
i−n素子を作ってもよい。また、以上の構造は伝導型
を逆にしたp−1−n−1−p素子にも適用可能なこと
は言うまでもない。
In the above explanation, GaAs was used as the material, but GaAtAs, InGaAsP, InGaA
Mixed crystals such as LAs can also be used, and instead of making n-1-p-i-n elements with materials of a single composition, materials with different compositions are used to create n-1-p-i-n elements with a Peter structure. p-
An i-n element may also be made. Moreover, it goes without saying that the above structure can also be applied to a p-1-n-1-p element in which the conduction type is reversed.

以上説明したような構造は、結晶成長については気相エ
ビタキ/ヤル成長法、分子線エピタキソヤル成長法、有
機金属気相堆積法等により、〔実施例2〕及び〔実施例
3〕の還状領域についてはイオン打込み或は不純物拡散
により形成でき又、絶縁膜及び電極形成は従来技術で可
能であるので本発明は従来技術をもって容易に実現可能
である。
The structure as explained above can be obtained by forming the circular region of [Example 2] and [Example 3] by using vapor phase epitaxy/yaru growth method, molecular beam epitaxy growth method, organometallic vapor phase deposition method, etc. for crystal growth. can be formed by ion implantation or impurity diffusion, and the insulating film and electrodes can be formed using conventional techniques, so the present invention can be easily realized using conventional techniques.

以」−詳細に説明したように、本発明を用いれば安定な
動作特性を有するプレーナ型n−1−p−i−n素子が
作製可能であり、超高速素子及び高感度受光素子へ広く
応用が可能となる。
- As explained in detail, using the present invention, it is possible to fabricate a planar type n-1-p-i-n device with stable operating characteristics, and it can be widely applied to ultra-high speed devices and high-sensitivity photodetecting devices. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)はそれぞれ、n−1−p−i
 −n 2端子素子の熱平衡状態及び電圧印加時のバン
ド構造図、第2図(→、(b)はそれぞれ本発明の実施
例であるn−i −p−i −n 2端子素子の載断面
を含む胴視図及び断面図、第3図(a) ; (b)は
それぞれ本発明の他の実施例であるn−1−p−i−n
 2端子素子の載断面を含む斜視図及び断面図、第4図
(a)。 旬はそれぞれn−i −p−i −n 3端子素子の熱
平衡状態及び電圧印加時のバンド構造図、第5図(a)
。 (b)はそれぞれ本発明の他の実施例であるn−1−p
−i−n3端子素子の載断面を含む斜視図及び断面図で
ある。 1 ・n+−Ga As基板、2−n−Ga、As層、
3・・1−Ga As層、4 ・p−GaA、s層、5
−1−GaAs層、6− n−GaAs層、7・・絶縁
層、8.9=電極、21、− n+−GaAs基板、2
2 、26 、30− n−GaA、s層、23 、2
5 、27 、29 ・= 1−GaAs層、24 、
28−p −GaAs層、31..32・・遠吠の電極
分離領域、33・・・絶縁体薄膜、34 、35 、3
6・・・電極。 特許出願人 国際電信電話株式会社 代 理 人 犬 塚 学 外1名 ト1j) ul?Iす1%I −リ− −378−
Figures 1 (a) and (b) are respectively n-1-p-i
-n band structure diagram of the thermal equilibrium state of the two-terminal element and when voltage is applied; A trunk view and a cross-sectional view including FIG. 3(a); FIG.
FIG. 4(a) is a perspective view and a sectional view including a mounting section of a two-terminal element. Figure 5(a) shows the band structure diagram of the thermal equilibrium state of the 3-terminal device and when voltage is applied.
. (b) are n-1-p, which are other embodiments of the present invention, respectively;
-i-n3 A perspective view and a sectional view including a mounting section of the terminal element. 1 ・n+-Ga As substrate, 2-n-Ga, As layer,
3..1-GaAs layer, 4.p-GaA, s layer, 5
-1-GaAs layer, 6- n-GaAs layer, 7... insulating layer, 8.9=electrode, 21, - n+-GaAs substrate, 2
2, 26, 30- n-GaA, s layer, 23, 2
5, 27, 29 ・= 1-GaAs layer, 24,
28-p-GaAs layer, 31. .. 32...Howling electrode separation region, 33...Insulator thin film, 34, 35, 3
6...electrode. Patent applicant International Telegraph and Telephone Corporation Representative Inuzuka 1 person from outside the university ul? Isu1%I-Lee-378-

Claims (1)

【特許請求の範囲】 (])キャリア濃度1.017cn1” 以上の第1の
半導体層とキャリア濃度1016c1n” 以下の第2
の半導体層とキャリア濃度10I7z”以上の第3の半
導体層とキャリア濃度1016crn−3以下の第4の
半導体層とキャリア濃度10I7crn−3以上の第5
の半導体層が順次積層され、前記第1の半導体層及び第
5の半導体層の伝導型は等しくかつ前記第3の半導体の
伝導型とは異なるように形成された構造を有し、前記第
1の半導体層及び前記第5の半導体層には直接もしくは
前記第1の半導体層及び前記第5の半導体層と同−伝導
型の半導体を介して電極が独立に形成された半導体素子
において、能動領域における前記第3の半導体層の厚さ
は300X以下でありかつ前記第2の半導体層と前記第
3の半導体と前記第4の半導体層のうち少くとも1層に
ついては能動領域以外の部分の厚さが能動領域部分の厚
さよりも大きいことを特徴とする半導体素子。 (2)能動領域の周囲に半絶縁性又は前記第3の半導体
層と同一の伝導型の還状領域が前記第5の半導体層から
前記第2の半導体層に達する壕で形成されていることを
特徴とする特許請求範囲第1項記載の半導体素子。 (3)キャリア濃度1017cn1−3 以上の第1の
半導体層とキャリア濃度1016c1n−3以下の第2
の半導体層とキャリア濃度1017cm−3以上の第3
の半導体層とキャリア濃度1016crn−3以下の第
4の半導体層とキャリア濃度1017crn” 以上の
第5の半導体層が順次積層され、前記第1の半導体層及
び第5の半導体層の伝導型は等しくかつ第3の半導体の
伝導型とは異なるように形成された構造を有し、第1の
半導体層及び第5の半導体層には直接もしくは第1の半
導体層及び第5の半導体層と同−伝導型の半導体を介し
て電極が独立に形成された半導体素子において、能動領
域における前記第3の半導体層の厚さは300八以下で
ありかつ前記第2の半導体層と第3の層 半導)、と第4の半導体層のうち少くとも1層について
は能動領域外部の厚さが能動領域部分の厚さよりも大き
くなるように形成され、さらに、前記第5の半導体層に
接してギヤリア濃度】o16tyn−3以下の第6の半
導体層、キャリア濃度10177m”以」−の第7の半
導体層、キャリア濃度1o】6cm”以下の第8の半導
体層、ギヤリア濃度1o17crn−3以上の第9の半
導体層が順次積層され、前記第7の半導体層の伝導型は
前記第3の半導体層・の伝導型と等しく、前記第9の半
導体層の伝導型は前記第5の半導体層の伝導型と等しく
、前記第5の半導体層の厚さは1μm以下でかつ前記第
7の半導体層の厚さは300^以下であり、前記第9の
半導体層には直接もしくは該第9の半導体層と同一伝導
型の半導体を介して電極が独立に形成されたことを特徴
とする半導体素子。 (4)前記第6.第7.第8の半導体層のうち少くとも
一層については能動領域外部の厚さが能動領域部分の厚
さよりも大きいことを特徴とする特許請求範囲第3項記
載の半導体素子。 (5)表面に台地状構造を形成した半導体基板」−に、
ギヤリア濃度1017crn−3以上の第1の半導体層
と、キャリア濃度1.016Lyn”以下の第2の半導
体層と、キャリア濃度が1017cm’以上で前記第1
の半導体層とけ異なる導電型を有し前記台地状構造の位
置における厚さが300 X以下である第3の半導体層
と、キャリア濃度1016ctn−3以下の第4の半導
体層と、ギヤリア濃度が10I7ご3以上で前記第1の
半導体層と同一の導電型を有する第5の半導体層とを順
次形成し、さらに、前記第1の半導体層と前記第5の半
導体層に導通する電極を形成することにより、前記台地
状構造の位置に能動領域が形成され、前記第2の半導体
層と前記第3の半導体層と前記第4の半導体層のうち少
くとも1層については前記能動領域外部1の部分の厚さ
が前記能動領域部分の厚さより大きくなるように形成す
る半導体素子 3− の製造方法。
[Claims] (]) A first semiconductor layer having a carrier concentration of 1.017cn1" or more and a second semiconductor layer having a carrier concentration of 1016c1n" or less.
a third semiconductor layer with a carrier concentration of 10I7z'' or more, a fourth semiconductor layer with a carrier concentration of 1016crn-3 or less, and a fifth semiconductor layer with a carrier concentration of 10I7crn-3 or more.
have a structure in which the first semiconductor layer and the fifth semiconductor layer are formed to have the same conductivity type and different from the conductivity type of the third semiconductor layer; In a semiconductor device in which electrodes are independently formed on the semiconductor layer and the fifth semiconductor layer directly or through a semiconductor of the same conductivity type as the first semiconductor layer and the fifth semiconductor layer, the active region The thickness of the third semiconductor layer is 300X or less, and the thickness of at least one of the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer is greater than the thickness of a portion other than the active region. A semiconductor device characterized in that the thickness of the active region is greater than the thickness of the active region. (2) A semi-insulating or circular region of the same conductivity type as the third semiconductor layer is formed around the active region as a trench extending from the fifth semiconductor layer to the second semiconductor layer. A semiconductor device according to claim 1, characterized in that: (3) A first semiconductor layer with a carrier concentration of 1017cn1-3 or more and a second semiconductor layer with a carrier concentration of 1016c1n-3 or less.
and a third semiconductor layer with a carrier concentration of 1017 cm-3 or more.
a fourth semiconductor layer with a carrier concentration of 1016 crn-3 or less, and a fifth semiconductor layer with a carrier concentration of 1017 crn'' or more are sequentially stacked, and the conductivity types of the first semiconductor layer and the fifth semiconductor layer are the same. and has a structure formed to have a conductivity type different from that of the third semiconductor, and the first semiconductor layer and the fifth semiconductor layer are directly or the same as the first semiconductor layer and the fifth semiconductor layer. In a semiconductor element in which electrodes are formed independently through conductive semiconductors, the thickness of the third semiconductor layer in the active region is 300 mm or less, and the thickness of the second semiconductor layer and the third layer semiconductor are ), and at least one of the fourth semiconductor layers is formed so that the thickness outside the active region is greater than the thickness of the active region portion, and further, the gearia concentration is formed in contact with the fifth semiconductor layer. A sixth semiconductor layer with a carrier concentration of 10177m" or less, an eighth semiconductor layer with a carrier concentration of 1o17cm" or less, a ninth semiconductor layer with a gear carrier concentration of 1o17crn-3 or more. Semiconductor layers are sequentially stacked, the conductivity type of the seventh semiconductor layer is equal to the conductivity type of the third semiconductor layer, and the conductivity type of the ninth semiconductor layer is the same as the conductivity type of the fifth semiconductor layer. Equally, the thickness of the fifth semiconductor layer is 1 μm or less, the thickness of the seventh semiconductor layer is 300^ or less, and the ninth semiconductor layer is directly or the same as the ninth semiconductor layer. A semiconductor device characterized in that electrodes are formed independently through conductive semiconductors. (4) The thickness of at least one of the sixth, seventh, and eighth semiconductor layers outside the active region. A semiconductor device according to claim 3, characterized in that the thickness of the active region is larger than the thickness of the active region.
The first semiconductor layer has a gear carrier concentration of 1017 crn-3 or more, the second semiconductor layer has a carrier concentration of 1.016 Lyn'' or less, and the first semiconductor layer has a carrier concentration of 1017 cm' or more.
a third semiconductor layer having a conductivity type different from that of the semiconductor layer and having a thickness of 300X or less at the position of the plateau-like structure; a fourth semiconductor layer having a carrier concentration of 1016 ctn-3 or less; and a gear carrier concentration of 10I7. Step 3 or more to sequentially form a fifth semiconductor layer having the same conductivity type as the first semiconductor layer, and further form an electrode conductive to the first semiconductor layer and the fifth semiconductor layer. As a result, an active region is formed at the position of the plateau-like structure, and at least one of the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer is located outside the active region 1. A method for manufacturing a semiconductor device, in which the thickness of the active region portion is larger than the thickness of the active region portion.
JP58210650A 1983-11-09 1983-11-09 Manufacture of semiconductor element Granted JPS60102774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58210650A JPS60102774A (en) 1983-11-09 1983-11-09 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58210650A JPS60102774A (en) 1983-11-09 1983-11-09 Manufacture of semiconductor element

Publications (2)

Publication Number Publication Date
JPS60102774A true JPS60102774A (en) 1985-06-06
JPH051631B2 JPH051631B2 (en) 1993-01-08

Family

ID=16592817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58210650A Granted JPS60102774A (en) 1983-11-09 1983-11-09 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS60102774A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513990A (en) * 1978-07-18 1980-01-31 Nec Corp Semiconductor device
JPS5572083A (en) * 1978-11-27 1980-05-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photo-detector
JPS58139464A (en) * 1982-02-15 1983-08-18 Semiconductor Energy Lab Co Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513990A (en) * 1978-07-18 1980-01-31 Nec Corp Semiconductor device
JPS5572083A (en) * 1978-11-27 1980-05-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photo-detector
JPS58139464A (en) * 1982-02-15 1983-08-18 Semiconductor Energy Lab Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH051631B2 (en) 1993-01-08

Similar Documents

Publication Publication Date Title
US4119994A (en) Heterojunction and process for fabricating same
KR890004972B1 (en) Hetero junction bipolar tr manufacturing method
JP3311848B2 (en) Bipolar transistor
JPH0665216B2 (en) Semiconductor device
JPS6152990B2 (en)
US4910562A (en) Field induced base transistor
JPS60102774A (en) Manufacture of semiconductor element
JPS6124832B2 (en)
CA1315017C (en) Heterojunction bipolar transistor and the manufacturing method thereof
JPS6024592B2 (en) Manufacturing method of wide-gap emitter transistor
US4811070A (en) Heterojunction bipolar transistor with inversion layer base
JPS61294857A (en) Manufacture of bipolar transistor
JP2758611B2 (en) Bipolar transistor element
JPS59104177A (en) Semiconductor element
JP2854634B2 (en) Light receiving device
US3165429A (en) Method of making a diffused base transistor
JPS62141770A (en) Bipolar transistor
JP2580281B2 (en) Bipolar transistor element
JPH0571172B2 (en)
JPS6035570A (en) Wide gap emitter transistor
JPS62141772A (en) Bipolar transistor
JPS60242672A (en) Semiconductor device
JPH0453110B2 (en)
JPS6390848A (en) Semiconductor device
JPS61292365A (en) Hetero-junction bipolar transistor