JPS58139464A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58139464A
JPS58139464A JP57022299A JP2229982A JPS58139464A JP S58139464 A JPS58139464 A JP S58139464A JP 57022299 A JP57022299 A JP 57022299A JP 2229982 A JP2229982 A JP 2229982A JP S58139464 A JPS58139464 A JP S58139464A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
layers
electrode
phototransistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57022299A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP57022299A priority Critical patent/JPS58139464A/en
Publication of JPS58139464A publication Critical patent/JPS58139464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Bipolar Transistors (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a phototransistor having good sensitivity by forming a hetero junction on the conductive layer on a conductive or insulating substrate, superposing non-single crystal Si layer as an N-I-P-I-N or P-I-N-I-P structure and inserting the I layer between the layers E and (b) and between the B and C. CONSTITUTION:Amorphous Si layers 3-7 are laminated by the prescribed plasma CVD method on a transparent conductive film 2 on a glass 1 to form an N-I-P-I-N structure. Al electrodes 9, 8 are respectively formed on the film 2 and the layer 7. When a light 10 is emitted through the electrode 2, reverse p-n junction are formed between the layers 3 and 5 and between the layers 5 and 7. When positive voltage to the emitter 3 is applied to the collector 8, the layer 2 is energized from the layer 3, holes 25 which are produced by the light at no- voltage applying time are not discharge to the I layer and the base 5, and stored to lower the voltage between the E and B. In this manner, a phototransistor which amplifies the current between the E and B by the holes 25 produced in proportion to the emitted light amount during the voltage application is obtained to increase Eg of the layer 3 and to form a large barrier, and when the I layer 4 is formed thinly as compared with the I layer 6, high withstand voltage hFE can be obtained.

Description

【発明の詳細な説明】 本発明は、基板電極を九は絶縁基板上の導電層の電極上
に、アモルファスf九はS〜100ムのショートレンジ
オーダの結晶性(規則性)を有する半非単結晶質(セミ
アモルファス)またはマイクロポリクリスタル構造を有
するいわゆる非単結晶半導体を積層して、Px舅エフま
たはNIPIN構造を有するトランジスタおよびその複
合化した半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a semi-amorphous material having crystallinity (regularity) on the short range order of S to 100 μm, with a substrate electrode on an electrode of a conductive layer on an insulating substrate. The present invention relates to a transistor having a PxF or NIPIN structure in which so-called non-single crystal semiconductors having a single crystalline (semi-amorphous) or micro-polycrystalline structure are stacked, and a semiconductor device having a composite thereof.

本発明は透光性基板上に透光性導電膜をMlの電極とし
て設け、この上面に水素またはハロゲン元素が再結合中
心中和剤として添加され良前記した非単結晶半導体を積
層し、この半導体をバイポーラトランジスタまたはフォ
トトランジスタとして動作せしめ、さらにこのトランジ
スタを複合化し、光センナのアレーを設け、加えてダイ
オードアレーより4さらにトランジスタの増巾作用を設
けて照射光に対する感度を向上せしめた光変換集積回路
に関する。
In the present invention, a transparent conductive film is provided as an Ml electrode on a transparent substrate, and a non-single crystal semiconductor as described above is laminated on the upper surface of the transparent conductive film to which hydrogen or a halogen element is added as a recombination center neutralizing agent. Photoconversion involves making a semiconductor operate as a bipolar transistor or phototransistor, compounding these transistors, providing an array of photosensors, and adding an amplifying effect to the transistors compared to a diode array to improve sensitivity to irradiated light. Concerning integrated circuits.

従来グッズマ0マD法ま九は減圧CVD法にょシ光電変
換装置を半導体層を積層して設けんとする場合、PxM
接合金有するダイオード構造の太陽電池が有名である。
Traditionally, the low-pressure CVD method was used to produce goods.When a photoelectric conversion device is to be provided by stacking semiconductor layers, PxM is used.
Solar cells with a diode structure having a bonded metal are famous.

これは本発明人にょ如なされ友ものであり、昭和49年
6月2o日(%願昭49−71’73& ) Kその詳
細が示されている。さらにその際、光入射先側のPま友
は夏場での光吸収損失を少々くする友め、炭化珪素等の
元・・E、としたヘテ費接合の光電変換装置が本発明人
により提案されている。(U8?4.239.554 
 対応日本特許 特許願53−86861,63−86
868昭和53年7月1’7日出願)しかしこれらはす
べてダイオード構造であ)、トランジスタとしては増巾
作用を期待することができない。そのため光センナとし
ての微弱光の検出には不適当であシ、またマトリックス
アレーを設けた場合、その周辺部のデコーダ・ドライバ
ーを同一プロセスにより作ることは不可能であった0本
発明はかかる欠点を除去するため、パイボーラトランジ
スタヲ100〜400’O%K 16G−30000の
温度で作る。
This is a work made by the inventor of the present invention, and its details are shown on June 2, 1973. Furthermore, at that time, the present inventor proposed a photoelectric conversion device using a heterojunction in which P on the light incident side is made of a material such as silicon carbide to slightly reduce light absorption loss in the summer. has been done. (U8?4.239.554
Corresponding Japanese patent patent application 53-86861, 63-86
868 (filed on July 1'7, 1972)) However, all of these have a diode structure), and cannot be expected to have a widening effect as a transistor. Therefore, it is unsuitable for detecting weak light as an optical sensor, and when a matrix array is provided, it is impossible to make the decoder and driver in the peripheral area by the same process.The present invention has these drawbacks. In order to remove this, a pievora transistor is made at a temperature of 100 to 400'O%K 16G-30000.

即ちプラズマOVD法によシ非単結晶珪素、炭化珪素、
ゲルマニュームを主材料として用い、基板上に積層法に
より作製した半導体装置に関する◇ またプラズマOVD法を用いたバイポーラトランジスタ
に関しては、本発明人の出願になる特許(trapa、
 254.4txe対応日本特許 特許願53−834
61,53−83468昭和63年1月8日)が知られ
ている@この特許はエネルギバンド中をヘテμ接合を有
して連続的に接合して、PIPまたは11トランジスタ
を構成せしめることを特徴としている。
That is, non-single crystal silicon, silicon carbide,
◇ Regarding a semiconductor device manufactured using germanium as the main material by a lamination method on a substrate ◇ Also, regarding a bipolar transistor using a plasma OVD method, there is a patent filed by the present inventor (TRAPA,
254.4txe compatible Japanese patent patent application 53-834
61, 53-83468 (January 8, 1988) is known. This patent is characterized in that a PIP or 11 transistor is constructed by continuously connecting a Hete μ junction in the energy band. It is said that

しかしこのPIF t 友はMP)i )ランジスタは
PIN接合面において半導体層の形成の際互いKそのP
または夏型用の不純物が30〜300ムも混入しあうた
め、十分なダイオード特性を有せしめることができない
。そのため例えばエミッタ接地?本発明けかかる欠点を
さらに除去し、PM接合面Kl(真性ま九は不純物を4
44的に添加しないいわゆる実質的に真性の半導体 以
下工という)層を介在せしめ、それをPINのダイオー
ドではな(PIMIPと2層の1層をPM接合に介在せ
しめる仁とによ)、そのトランジスタ特性の改良を施し
九ことKある。特にこの1層に関しエミッタ・ペース間
に介在する1層ti 100〜3000ムを有せしめ、
ペース・コレクタ間には1000ム〜IOFを有せしめ
、その比を3〜100倍とし、ペース−コレクタ間には
逆バイヤスの耐圧を向上せしめたことを特徴としている
However, this PIF t friend is MP
Alternatively, since 30 to 300 μm of summer-type impurities are mixed in with each other, sufficient diode characteristics cannot be obtained. So for example emitter grounded? The present invention further eliminates the drawbacks of the PM junction surface Kl (intrinsic mak-
A so-called substantially intrinsic semiconductor layer (hereinafter referred to as "processing") that does not contain any additives is interposed, and it is not a PIN diode (PIMIP and a layer with one of the two layers interposed in the PM junction), but the transistor There are nine characteristics that have been improved. In particular, this one layer has a layer ti of 100 to 3000 μm interposed between the emitter and the paste,
It is characterized by having 1000 μm to IOF between the pace and collector, making the ratio 3 to 100 times, and improving the withstand voltage of reverse bias between the pace and collector.

加えてニオツタに対しては、ペースまたはその中間の1
層に比べて広いIgを有せしめ、例えばエミッタは1i
lxo+−x(0<x<1 代表的K ld x=0.
3〜0.6)としてMg2.0〜2.5・マを有せしめ
、その他の1層、ペースは珪素によシ1.6〜1.8・
Vを有せしめた。かくするとペースからエミッタに逆向
きに流れるキャリアに対しバリヤを作ることができるた
め、例えばM:[PIM )ランジスタにおいては、ホ
ールに対するバリヤにするため逆にエミッタよシベース
への電流流入勅イを高めその結果電流4q 44 K増
大、ひいては低品1用トランジスタへの適用が可能とな
った。
In addition, against Niotsuta, use Pace or one in between.
The emitter has a wide Ig compared to the layer, for example, the emitter is 1i
lxo+-x(0<x<1 Representative K ld x=0.
3 to 0.6) with Mg2.0 to 2.5 Mg, and the other layer has a silicon pace of 1.6 to 1.8 Mg.
It was made to have a V. In this way, it is possible to create a barrier against carriers flowing in the opposite direction from the base to the emitter. For example, in an M:[PIM] transistor, the current flow from the emitter to the base is increased to create a barrier against holes. As a result, the current increased by 4q 44 K, and it became possible to apply it to low-quality 1 transistors.

またこの1電ツタを基板上の第1の11極上に設け、こ
の1電ツタOEgをエミッタ・ペース間の1層に比べて
前記した如く大きくすると、透光性基板側よシの光照射
に対しエミッタ領域でO光吸収損失を少なくすることが
でき、照射光を有効K1層に注入することができる0す
るとこのI層すなわち1建ツタ・ベース間での空乏層領
域に対応するI層にて、効率よく電子・ホール対を発生
させることができる。このうち特K mxpxm ) 
9ンジスタにおいては、ホールをとのI層、ベースまた
はその近傍の補機領域に参4+、L、ベースのエネルギ
ポテンシャルを下げ、パルス読出しの時瞬間的に流すよ
うにすると光感tをさもに増大させることができた。
In addition, if this single electric ivy is provided on the first 11 poles on the substrate and this single electric ivy OEg is made larger than the one layer between the emitter and the paste as described above, light irradiation from the side of the translucent substrate can be achieved. On the other hand, the O light absorption loss can be reduced in the emitter region, and the irradiation light can be injected into the effective K1 layer. Therefore, electron-hole pairs can be generated efficiently. Of these, special K mxpxm)
In the case of 9 transistors, if the energy potential of the 4+, L, and base is lowered and the holes flow into the I layer, the base, or the auxiliary area near it, and the holes are made to flow instantaneously during pulse readout, the photosensitivity t can be reduced. I was able to increase it.

本発明はかくの如くエネルギバンド的にはへデー接合と
し、さらに非単結晶半導体をN111Mま九はMIII
P構造とせしめ、積層的Kx層をニオツタ・ベース間、
ペース・コレクタ間に設置することにより、バイポーラ
トランジスタ4IK光感度のよい7オトト2ンジスタま
たはそのアレーを設けることができるようになった。
In this way, the present invention makes a Hede junction in terms of energy band, and furthermore, the non-single crystal semiconductor is N111M or MIII.
P structure, stacked Kx layer between Niotsuta and base,
By installing the bipolar transistor between the pace and the collector, it is now possible to provide a bipolar transistor (4IK) or an array thereof with high photosensitivity.

以下に図面に従ってその詳細を説明する。The details will be explained below according to the drawings.

実施例1 第1図は本発明の半導体装置のたて断面図を示す。Example 1 FIG. 1 shows a vertical sectional view of a semiconductor device of the present invention.

第xWA■は透光性基板例えばガラス(1)上に透明導
電膜(3)をIテO(酸化インジエーム、酸化スズ混合
)酸化スズ、アンチ七ン等の不純物が添加された酸化シ
ランを500〜5000ムC厚さに形成し九〇 さらKこの上面にMtJの第1の非単結晶半導体φ1)
(3)を80〜800ムの厚さに、真性または実質的に
真性の第3の非単結晶半導体(8富)←)をZo。
No. The first non-single crystal semiconductor φ1) of MtJ is formed on this upper surface to a thickness of ~5000 μm and 90 μm.
(3) to a thickness of 80 to 800 μm, and an intrinsic or substantially intrinsic third non-single crystal semiconductor (8 rich)←).

〜3000ムの厚さに、P型の第3の非単結晶半導体(
83) (5)を100〜3000ムの厚さに1真性ま
たは実質的に真性の第4の非単結晶半導体(84) (
6)を1oooム〜1opの厚さに1さらK11lの第
6の非単結晶半導体(II !S) (’F)をZoo
−!5000ムの厚さにプラズマ0マD法により同一反
応炉または分離型式方式の本発明式の出願になる特許願
(s 3−tt2gg7昭和63年13月10日出願)
K基いて形成した。
A third non-single crystal semiconductor of P type (
83) (5) to a thickness of 100 to 3000 μm as a mono-intrinsic or substantially intrinsic fourth non-single crystal semiconductor (84) (
6) Zoo the sixth non-single crystal semiconductor (II!S) ('F) of K11l to a thickness of 100mm to 1op.
-! A patent application filed on March 10, 1988, using the same reactor or separate type system for a thickness of 5,000 μm using the plasma 0MAD method (filed on March 10, 1988, s3-tt2gg7)
It was formed based on K.

このプラズマ0マD法は上記の本発明式の特許願に詳細
に示されているが、これは0.06〜2tOrrK保持
され大反応炉内にシラン、81町さらに01゜等、必要
に応じてはB、it、 P馬等とともに導入し、プラズ
マグ關−まえはアーク放電法によシ分解して、基板上K
 10G〜400’Oの温度で積層して形成する方法を
示す。この際第1の電極(2)の外部と抄出し電極(9
)を設ける領域のみ、あらかじめカバーマスクをして半
導体が形成されないようにし友0さらKこの後、外部引
出し電極(9)と第80電極(8)を真空蒸着法により
0.3〜1.5Pの厚さに金属例えばアル建具ニームを
形成させた。
This plasma 0 MAD method is shown in detail in the above-mentioned patent application of the present invention, which is maintained at 0.06 to 2 tOrrK, and silane, 81°, and 01°, etc. are added as necessary in the large reactor. Plasma plates are introduced together with B, IT, P, etc., and plasma plates are disassembled using the arc discharge method and then placed on the substrate.
A method of laminating and forming at a temperature of 10G to 400'O is shown. At this time, the outside of the first electrode (2) and the extracted electrode (9)
) is to be provided with a cover mask in advance to prevent the formation of a semiconductor. After that, the external lead electrode (9) and the 80th electrode (8) are formed using a vacuum evaporation method of 0.3 to 1.5 P. Metals such as Al joinery neem were formed to a thickness of .

この第11g1−におけるエネルギバンド図を第3図(
AK番号を対応させて示す。
The energy band diagram for this 11g1- is shown in Figure 3 (
The AK numbers are shown in correspondence.

図面よ)明らかな如く、第1の電極(2)を通して照射
光CLΦが与えられ、81のエミッタ(3)、83のペ
ース(5)とがM(ト))工(4)?(5)のダイオー
ドを構成しさらKa:soペース(5)と86のコレク
タ())とが?(6) X (6)M eF)と逆向き
のダイオードを構成している。
As is clear from the drawing, the irradiation light CLΦ is applied through the first electrode (2), and the emitter (3) of 81 and the pace (5) of 83 are connected to the M (g) (4)? What constitutes the diode (5) and the Ka:so pace (5) and the collector () of 86? (6)

こむでコレクタ(8)Kエミッタに比べて正の電荷が与
えられると、このエネルギバンド巾は左から右下、9に
な〉、電流はエミッタからコレクタに流れるoしか%を
九電圧が加わらない時が光照射によ〉生成したホール−
けI層←)、ベース(5)K放出される仁とがないため
蓄積され、結果としてエミツ、り0ベ一ス間の電位を小
さくする。
When a positive charge is given to the collector (8) K compared to the emitter, this energy band width is from left to lower right, 9〉, and the current flows from the emitter to the collector. Only 9% of the voltage is applied. Holes created by time through light irradiation
Since there is no base (5) K to be released, the potential between the base (5) and the base (5) is reduced, resulting in a decrease in the potential between the base and the base.

このためエミッタ・コレクタ間に電圧が加えられる間に
照射され九光の量に比例して作られたホール(2)によ
シ、1建ツタ・ベース間に流れる電流を増感(電子の注
入効率の増加)せしめることができ、いわゆる増巾効果
を有するフォトトランジスタを構成させることができる
。また第2図■よシ明らかな如く、ホールに)がエンツ
タ側に流れζtnいために1エミツタのバリヤ(ロ)が
大きい程よく、このエミッタを広いIgKするととは、
こむでの照射光での吸収損失を少なくするに加えて、光
増中作用を向上せしめる丸めにはきわめて重要なことで
ある。
For this reason, the current flowing between the ivy and the base is sensitized (electron injection Therefore, a phototransistor having a so-called amplification effect can be constructed. Also, as is clear from Fig. 2 (■), the larger the barrier (B) of one emitter, the better, since the hole (into the hole) flows toward the emitter side.
In addition to reducing the absorption loss of the irradiated light in the pores, rounding is extremely important to improve the photomagnification effect.

またエミッタ(3)、コレクタ(9間における電圧V、
tの多くを逆向ダイオードの1層(6)K加えることk
よ〉、耐圧の向上に加えて、電流増巾率を向上させるこ
とができる。そのため2つの1層(4) (@) にお
いて、その厚さを←)をうすく、(6)を厚く形成せし
めること、即ちC,x (4)の厚さ)〈(工(6)の
犀さ)とすることは、フォトトランジスタ作用にお−て
きわめて重要である。
Also, the voltage V between the emitter (3) and the collector (9),
Adding much of t to one layer of reverse diode (6)K
In addition to improving the withstand voltage, it is also possible to improve the current amplification rate. Therefore, in the two single layers (4) (@), the thickness of (←) is made thin and (6) is made thick, that is, the thickness of C,x (4)) This is extremely important for phototransistor operation.

実施例3 第1図(2)は本発明の他の実施例を示す〇この実施例
においては、ステンレス等の導電性基板電極またはセラ
ミックス、耐熱性有機物膜よシなる基板a)上に、金属
電極(2)を0.1〜5Pの厚さに設は友。
Embodiment 3 FIG. 1 (2) shows another embodiment of the present invention. In this embodiment, metal is deposited on a substrate a) such as a conductive substrate electrode made of stainless steel, ceramics, or a heat-resistant organic film. It is best to set the electrode (2) to a thickness of 0.1 to 5P.

仁の上面に実施例1と同様にプラズマ気相法によシPW
の第1の半導体層(81) (3)、τ型の第8の半導
体層CB la) (4)、夏型の第3の半導体層(8
3)(5)、I型01に4 O半導体層(84)(6)
、P 型tD 第aの半導体層(B6)(ロ)を漸次積
層して設けた。
PW was applied to the top surface of the lint using the plasma vapor phase method in the same manner as in Example 1.
(81) (3), τ-type eighth semiconductor layer CB la) (4), summer-type third semiconductor layer (8
3) (5), 4O semiconductor layer (84) (6) in I type 01
, P type tD a-th semiconductor layer (B6) (b) was gradually laminated and provided.

この際ベースになる第3の半導体(6)の表面の一部が
露出するように被膜形成の際カバーマスクを形成させ九
〇さらに電極を第1のエミッタ(8)、第2のエミッタ
(8)を設けた0非単結晶半導体である曳め、2層(力
の横方向の抵抗が大きく(8) (8)は互いに4!に
アイソレイシlンを施さなくても、その電極(8)(8
)の直下(>aS(ηがエミッタとして機能させるのに
十分でありえ。
At this time, a cover mask is formed during film formation so that a part of the surface of the third semiconductor (6) serving as the base is exposed. ) with two layers of non-single-crystal semiconductor (with large lateral resistance of force (8)). (8
) directly below (>aS(η) may be sufficient to make it function as an emitter.

第1図(9)はエミッタ85邑ペースs 5(5) 、
コレクタa X(S)を構成させている0ペースは外部
引出し電極部@を構成させている0この(6)に対応し
てエネルギバンド図は第8図@に示されている。
Figure 1 (9) shows the emitter 85 pace s 5 (5),
The zero pace that constitutes the collector aX(S) constitutes the external extraction electrode portion @.An energy band diagram corresponding to (6) is shown in Fig. 8 @.

番号は第2図(4)(9)を互いに対応させている0こ
の図面においては21Mエアであるが、第2図(4)と
同様K MIPINの構造としてもよい0エミツタ、ベ
ース、コレクタおよびその中間の2つのI屡の厚さは実
施例1と同様である。
The numbers correspond to each other in Fig. 2 (4) and (9). 0 In this drawing, it is 21M air, but it may also be a K MIPIN structure as in Fig. 2 (4). 0 Emitter, base, collector, and The thickness of the two intermediate layers is the same as in Example 1.

実施例3 この実施例は実施例10IIIPIN接合のフォトトラ
ンジスタをマトリックス構造にしてフォトトランジスタ
アレイを構成せしめたものである。
Embodiment 3 In this embodiment, the III PIN junction phototransistors of Embodiment 10 are arranged in a matrix structure to form a phototransistor array.

IIs図はその回路図を示す。Diagram IIs shows its circuit diagram.

第4図は第S図の回路図に従って作られたプレイの平面
図(4)およびム−lでのたて断面図(9)を示してい
る。
FIG. 4 shows a plan view (4) and a vertical sectional view (9) of a play made according to the circuit diagram of FIG. S.

第S図KThいて、IIPIN)?/レジスタ MXP
XMトランジスタを簡略化して)IPM )ランジスタ
と記す)(イ)はベースが接続されていないが、このフ
ォトトランジスタの二次元プレイはひとつのトランジス
タが−にみられる如く、エミッタ・ベース間のダイオー
ドによる光電変換用のフォトダイオードと逆方向になっ
たベース・コレクタ間のダイオードによる回路選択のた
めのダイオードニジなっている。これは読出しの時はこ
の回路選択用のダイオード(ブロッキングダイオード)
がオンになって、光電流が負荷抵抗Reを流れる@この
時光変換用フォトダイオードには外部より光があたり続
けていたと考えられるから、この藺の読出しの時引加さ
れた逆方向の電圧によ襲、フォトダイオードの持つキャ
パシタα→に充電され、その電荷をこの間に発生した光
電流で放電した分だけ読み出しの時このフォトダイオー
ドのキャパシタを充電することになシ、いわゆる蓄積効
果が得られる。この蓄積効果によfi 21Mフォトダ
イオードの1o’−1層倍もその感度を高める仁とがで
き良0 すなわちフォトトランジスタは第3図に示す如きエミッ
タ接地構造を有する電流増巾回路を構成している。
Figure S KTh, II PIN)? /Register MXP
The XM transistor is simply referred to as ) IPM ) transistor) The base of (a) is not connected, but the two-dimensional play of this phototransistor is that one transistor is connected by a diode between the emitter and base, as seen in -. There is a diode switch for circuit selection using a photodiode for photoelectric conversion and a diode between the base and collector in the opposite direction. This is a diode (blocking diode) for selecting this circuit when reading.
is turned on, and a photocurrent flows through the load resistor Re. At this time, it is thought that the light conversion photodiode was continuously exposed to light from the outside, so the reverse voltage applied during this readout As a result, the photodiode's capacitor α→ is charged, and the photocurrent generated during this period charges the photodiode's capacitor to the extent that it is discharged.The so-called storage effect is obtained by charging the photodiode's capacitor during readout. . This accumulation effect can increase the sensitivity by 10'-1 times as much as that of a 21M photodiode.In other words, the phototransistor constitutes a current amplification circuit with a common emitter structure as shown in Figure 3. There is.

この半導体装置として[4図を示す0 図面において明らかな如く、照射光α0)は基板(1)
側より与えられ、透光性第1の電極(2)上KM(3)
工(4) P (5)工(6) M (’F)が実施例
1と同様にこの基板および複数の上面を全面にわたって
積層されて設けられている。第1の電極(2)の電極リ
ード配線間は半導体層に光照射が行なわれないように遮
光させると各素子のコントラストをさらに向上できる。
In this semiconductor device, [0 as shown in Figure 4] As is clear from the drawing, the irradiated light α0) is applied to the substrate (1).
KM (3) on the transparent first electrode (2) given from the side
Similar to the first embodiment, the substrate and the plurality of upper surfaces are provided in a laminated manner over the entire surface thereof. The contrast of each element can be further improved by blocking light between the electrode lead wires of the first electrode (2) so that the semiconductor layer is not irradiated with light.

図面よシ明らかな如く、第1の電極リード(1)が!方
向に設ゆられると、第3の電極・リード(8)はX方向
に設けられ、その交さ点−がひとつのフォトトランジス
タを構成している。非単結晶半導体は吸着水分の影響を
受けやすいため、これら半導体装置KWA*にある如く
耐湿性樹脂を0.5〜3Pの厚さにオーバコートをし、
その信頼性の向上に務め友。
As is clear from the drawing, the first electrode lead (1)! When placed in the X direction, the third electrode/lead (8) is placed in the X direction, and their intersection constitutes one phototransistor. Since non-single crystal semiconductors are easily affected by adsorbed moisture, they are overcoated with moisture-resistant resin to a thickness of 0.5 to 3P, as shown in these semiconductor devices KWA*.
Friend working to improve its reliability.

各トランジスタは単結晶半導体にみられる如く、基板と
コレクタとの間に逆バイヤスを加えq PI II合に
よるアイソレイションは非単結晶半導体である丸め不要
である。
Each transistor applies a reverse bias between the substrate and the collector, as seen in single crystal semiconductors, and isolation by q PI II coupling eliminates the need for rounding, which is the case with non-single crystal semiconductors.

すなわちフォトトランジスタアレーは実施例1と全く同
一工程で、41 K :yオドエッチによるマスク合わ
せをさらに加えることなく作ることができる0これは非
単結晶半導体の午ヤリアの移動度が単結晶のそれに比べ
て1/1o〜1/100である特性を利用し九九めであ
る。
In other words, the phototransistor array can be fabricated in exactly the same process as in Example 1 without additional mask alignment using 41 K:y odo-etch. It is a ninety-nine number using the characteristic that the ratio is 1/1o to 1/100.

かかる構造とすることによ)、フォトトランジスタアレ
ーを第S図にその番号を対応させて第4図KII施例1
と同様に作製した。
By adopting such a structure), the phototransistor array is shown in FIG. 4 KII Example 1 with its numbers corresponding to those in FIG.
It was prepared in the same manner as .

この図面では二次元のフォトトランジスタアレーであシ
、イメージセンナ等に用いた場合、1層を珪素(1,6
〜1.8・マ)とすると、その視感度が人間の目と同じ
であるため、人の夜光と同じ波長感応を得ることができ
る。−次元のフォトトランジスタアレーを第1図のム−
iの部分を一部のみ作って作製し、コ/ピエータのカー
ド読取りセンナ等に用いてもよい。
This drawing shows a two-dimensional phototransistor array, and when used in an image sensor, etc., one layer is made of silicon (1,6
~1.8·ma), its luminous sensitivity is the same as that of the human eye, so it is possible to obtain the same wavelength sensitivity as human night light. -dimensional phototransistor array as shown in Figure 1.
It is also possible to manufacture only a part of the part i and use it as a card reading sensor of a co/peater.

tたこのフォトトランジスタの周辺部には実施例2に示
す如きバイポーラトランジスタを用いた論理回路を用い
てもよいが、また絶縁タイト型電界効果半導体装置(w
eν1りを構成せしめてもよい。この場合は工さツタが
ソースを九はドレイン、コレクタがドレインまたはソー
スを構成せしめ、その中間のX−P−1層に対したて方
向に流れるチャネルを構成させるたてチャネルエGFI
Iテを構成させればよい。
A logic circuit using a bipolar transistor as shown in Embodiment 2 may be used around the phototransistor of the octopus, but an insulating tight field effect semiconductor device (w
eν1 may be configured. In this case, the vertical channel E GFI is used to configure the source, the collector to configure the drain or source, and the channel flowing in the vertical direction to the X-P-1 layer in between.
All you have to do is configure the IT.

かくすると同一基板上に・IGFITとバイポーラトラ
ンジスタとフォトトランジスタとを同一半導体層を用い
て作ることがてきる。その九め大集積化され友アモルフ
ァス半導体を含1輿単結晶半導体を用い友集積回路を構
成させることができた。
In this way, an IGFIT, a bipolar transistor, and a phototransistor can be formed on the same substrate using the same semiconductor layer. It was possible to construct an integrated circuit using only one single crystal semiconductor, including the ninth highly integrated amorphous semiconductor.

本発明において半導体装置を積層するKあ九や、反応炉
よシ外部にとシ出すと空気と酸化しその際電流を通し得
る薄膜の絶縁膜が形成される。これらの絶縁膜は特に積
極的効果を有さ表いことも含めて、本発明の半導体の変
形である。
In the present invention, when semiconductor devices are laminated or exposed outside a reactor, they are oxidized with air, forming a thin insulating film that can conduct current. These insulating films are semiconductor variations of the present invention, including the fact that they have particularly positive effects.

本発明において第1の半導体層に用いるjlixO,−
4(0<x<1)とした広いMgを有する半導体は一般
的に結晶化度が0〜:SO−と低く、1層は81を主成
分とするためせの結晶化度が20−5011と高くな〉
、本発明の非単結晶半導体を用いた半導体装置に用いら
れる半導体層において、一部がアモルファス、一部がセ
宅アモルファス尋の混合が表されてよいことはいうまで
もない。
jlixO,- used for the first semiconductor layer in the present invention
Semiconductors with a wide Mg content of 4 (0 <That's expensive〉
It goes without saying that the semiconductor layer used in the semiconductor device using the non-single crystal semiconductor of the present invention may be partially amorphous and partially amorphous.

411*0簡5epia 第1図は本発明の半導体装置のたて断面図を示すO 第2図はts1図に対応した半導体装置のエネルギバン
ド図を示す。
411*0 5epia FIG. 1 shows a vertical cross-sectional view of the semiconductor device of the present invention. FIG. 2 shows an energy band diagram of the semiconductor device corresponding to the ts1 diagram.

第S図はフォトトランジスタアレーの回路図を示す。FIG. S shows a circuit diagram of a phototransistor array.

第1図は第S図に対応し九本発明の半導体装置を示す。FIG. 1 corresponds to FIG. S and shows a semiconductor device according to the present invention.

’I’l’+、’l出で、1人 茎1 口 菓3■ 茎2箇 1 篤4閃'I'l'+,'l out, 1 person 1 stalk Ka3■ 2 stems 1 Atsushi 4th flash

Claims (1)

【特許請求の範囲】 1 導電性基板または絶縁性基板上の等電性層の第1の
電極上に一導電型の第1の非単結晶半導体と、該失導体
上に真性または実質的に真性の第2の非単結晶半導体と
、該半導体上に前記第1の半導体とは逆導電型の第3の
非単結晶半導体と、該半導体上に真性または実質的に真
性の第4の非単結晶半導体と、該半導体上に前記第1の
半導体と同一導電型の第5の半導体を積層して、NIP
工N接合またはP工N工P接合を有せしめるとともに、
前記第5の半導体上に第2の電極を設けたことを特徴と
する半導体装置。 2、特許請求の範囲第1項において、第3の半導体に密
接して第3の電極を設けることによりトランジスタが設
けられたことを特徴とする半導体装置。 3、芳許請求の範囲第1項において、第1、第2または
第3の半導体はS ixo、−、(Q< x(υよりな
り、他部を構成する半導体は珪素または5ixGθ、 
(0< x< 1)よシなりかつこれらの半導体には水
素またはハロゲン元素が添加されたことを特徴とする半
導体装置。
[Claims] 1. A first non-single crystal semiconductor of one conductivity type on a first electrode of an isoelectric layer on a conductive substrate or an insulating substrate; an intrinsic second non-single-crystal semiconductor, a third non-single-crystal semiconductor having a conductivity type opposite to that of the first semiconductor on the semiconductor, and an intrinsic or substantially intrinsic fourth non-single-crystal semiconductor on the semiconductor; A single crystal semiconductor and a fifth semiconductor having the same conductivity type as the first semiconductor are laminated on the semiconductor, and NIP is performed.
In addition to having a work-N joint or a P-work N-work P joint,
A semiconductor device characterized in that a second electrode is provided on the fifth semiconductor. 2. A semiconductor device according to claim 1, characterized in that a transistor is provided by providing a third electrode in close contact with a third semiconductor. 3. In claim 1, the first, second or third semiconductor is Sixo, -, (Q< x(υ), and the semiconductor constituting the other part is silicon or 5ixGθ,
(0<x<1), and a semiconductor device characterized in that hydrogen or a halogen element is added to these semiconductors.
JP57022299A 1982-02-15 1982-02-15 Semiconductor device Pending JPS58139464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57022299A JPS58139464A (en) 1982-02-15 1982-02-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57022299A JPS58139464A (en) 1982-02-15 1982-02-15 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58139464A true JPS58139464A (en) 1983-08-18

Family

ID=12078861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57022299A Pending JPS58139464A (en) 1982-02-15 1982-02-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58139464A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052055A (en) * 1983-08-31 1985-03-23 Nec Corp Semiconductor device
JPS60102774A (en) * 1983-11-09 1985-06-06 Kokusai Denshin Denwa Co Ltd <Kdd> Manufacture of semiconductor element
JPS6167262A (en) * 1984-09-10 1986-04-07 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS6167261A (en) * 1984-09-10 1986-04-07 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS6167263A (en) * 1984-09-10 1986-04-07 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS6171665A (en) * 1984-09-17 1986-04-12 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS62169381A (en) * 1987-01-05 1987-07-25 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS62169380A (en) * 1987-01-05 1987-07-25 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS62169379A (en) * 1987-01-05 1987-07-25 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS62169378A (en) * 1987-01-05 1987-07-25 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS62174979A (en) * 1987-01-05 1987-07-31 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS62279672A (en) * 1986-05-28 1987-12-04 Kanegafuchi Chem Ind Co Ltd Semiconductor device
US4810662A (en) * 1987-09-16 1989-03-07 National Science Council Method of fabricating a Si/SiC amorphous heterojunction photo transistor
US4855797A (en) * 1987-07-06 1989-08-08 Siemens Corporate Research And Support, Inc. Modulation doped high electron mobility transistor with n-i-p-i structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115854A (en) * 1981-12-28 1983-07-09 Seiko Epson Corp Manufacture of image sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115854A (en) * 1981-12-28 1983-07-09 Seiko Epson Corp Manufacture of image sensor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052055A (en) * 1983-08-31 1985-03-23 Nec Corp Semiconductor device
JPS60102774A (en) * 1983-11-09 1985-06-06 Kokusai Denshin Denwa Co Ltd <Kdd> Manufacture of semiconductor element
JPH051631B2 (en) * 1983-11-09 1993-01-08 Kokusai Denshin Denwa Co Ltd
JPS6167262A (en) * 1984-09-10 1986-04-07 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS6167261A (en) * 1984-09-10 1986-04-07 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS6167263A (en) * 1984-09-10 1986-04-07 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS6171665A (en) * 1984-09-17 1986-04-12 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS62279672A (en) * 1986-05-28 1987-12-04 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPS62169381A (en) * 1987-01-05 1987-07-25 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS62169378A (en) * 1987-01-05 1987-07-25 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS62174979A (en) * 1987-01-05 1987-07-31 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS62169379A (en) * 1987-01-05 1987-07-25 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS62169380A (en) * 1987-01-05 1987-07-25 Semiconductor Energy Lab Co Ltd Semiconductor device
US4855797A (en) * 1987-07-06 1989-08-08 Siemens Corporate Research And Support, Inc. Modulation doped high electron mobility transistor with n-i-p-i structure
US4810662A (en) * 1987-09-16 1989-03-07 National Science Council Method of fabricating a Si/SiC amorphous heterojunction photo transistor

Similar Documents

Publication Publication Date Title
JPS58139464A (en) Semiconductor device
JP5805681B2 (en) Photodiode array
JPH0290573A (en) Monolithic solar battery and bypass diode system
JP2010226073A (en) Photodiode, and photodiode array
WO2001075977A1 (en) Semiconductor energy detector
US4244750A (en) Photovoltaic generator
JP6799386B2 (en) Solid-state image sensor and its manufacturing method
JPH02263474A (en) Insulated gate type field effect transistor
CN107039474A (en) Photo-electric conversion element and its manufacture method and photoelectric conversion device
JP2003115598A (en) Optical electromotive device and manufacturing method
JPS6313358B2 (en)
JPS58141561A (en) Semiconductor device
JPS63228766A (en) Solar battery
JPH01205462A (en) Semiconductor element
JPS63174480A (en) Photoelectric converting device
JP3398161B2 (en) Photoelectric conversion device
JPS59112652A (en) Semiconductor image pickup device
JPS58118142A (en) Semicondutor device
JP3151488B2 (en) Switching device
JP3086514B2 (en) Optical semiconductor device
JP2802245B2 (en) Light control semiconductor device
JPH08213581A (en) Integrated photodetector and manufacturing method thereof
JPS6320874A (en) Radiation detector
TWI408820B (en) Solar battery
JPS62144354A (en) Solid-state image pickup device