JPS599978A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS599978A
JPS599978A JP57120243A JP12024382A JPS599978A JP S599978 A JPS599978 A JP S599978A JP 57120243 A JP57120243 A JP 57120243A JP 12024382 A JP12024382 A JP 12024382A JP S599978 A JPS599978 A JP S599978A
Authority
JP
Japan
Prior art keywords
amorphous
composition ratio
film
semiconductor device
photoconductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57120243A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sato
和彦 佐藤
Genshiro Nakamura
中村 源四郎
Hisao Yakushiji
薬師寺 久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57120243A priority Critical patent/JPS599978A/en
Publication of JPS599978A publication Critical patent/JPS599978A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03765Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System including AIVBIV compounds or alloys, e.g. SiGe, SiC

Abstract

PURPOSE:To obtain a stable semiconductor device, which is used in behalf of amorphous Si and has excellent characteristics, by using amphous Si1-xGex, whose composition ratio is within a specified range. CONSTITUTION:In amorphous Si1-xGex which is formed by a glow discharge method, yield of distortion and degradation in photoconductivity are largely decreased with the increase in a composition ratio x. This is different from amorphous Si. Addition of a small amount of Ge gives sufficient effect. Thus the yield of the distortion and the degradation in the photoconductivity are improved by the addition of the Ge, and a band gap is also continuously changed between 1.85-1.1eV by the addition of the Ge. With the concentration of the Ge, the conductivity is increased, and the photoconductivity tends to be decreased. In the range of 0<x<0.1, however, they are almost the same as the amorphous Si film, and can be used in behalf of the amorphous Si.

Description

【発明の詳細な説明】 この発明はアモルファス半導体装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous semiconductor device.

アモルファスシリコン(Si)は光電変換材料トシて有
望視されておシ、ステンレス鋼、ガラス等ノ安価な基板
上への生成と大面積化が可能であることから太陽電池、
感光材料、 TPT )ランジスタ等への応用がなされ
ている。
Amorphous silicon (Si) is considered to be a promising photoelectric conversion material, and is used in solar cells because it can be produced on inexpensive substrates such as stainless steel and glass, and can be grown over large areas.
It has been applied to photosensitive materials, TPT) transistors, etc.

特にグロー放電分解法にして生成したアモルファスS1
は膜質が良好であるが、膜中に多量の水素を含み、基板
上に厚いアモルファスS1膜を成長するような□゛場合
内部応力がかなり大きく、基板が歪んだり、アモルファ
スS1膜が基板から剥離し易いことが良く知られている
In particular, amorphous S1 produced by glow discharge decomposition method
The film quality is good, but when the film contains a large amount of hydrogen and a thick amorphous S1 film is grown on the substrate, the internal stress is quite large, causing the substrate to become distorted or the amorphous S1 film to peel off from the substrate. It is well known that it is easy to do.

さらに、グロー放電分解法で作成したアモルファスS1
は光照射を行うと、光構造変化を起こし、照射後には伝
導度、光伝導度の低下という現象を起こす(Staeb
ler −WronIllki効果)。これらの1模が
基板から剥離したり、光照射により膜質が変化する七い
うことはデバイスへの応用に大きな障害となり、また信
頼性という観点からも問題となる点である。
Furthermore, amorphous S1 prepared by glow discharge decomposition method
When irradiated with light, it causes a change in the optical structure, and after irradiation, a phenomenon of a decrease in conductivity and photoconductivity occurs (Staeb
ler-WronIllki effect). The fact that one of these patterns peels off from the substrate or the film quality changes due to light irradiation is a major obstacle to application to devices, and also poses a problem from the viewpoint of reliability.

この発明は以上のような点に鑑みてなされたもので、ア
モルファス5i(a−8i)の代りに、これにゲルマニ
ウム(Gθ)を添加したアモルファス・シリコン・ゲル
マニウム(a−8i□−xGθX)を用いることによっ
て、その他の特性を余り劣化させることなく、上述のよ
うな問題点を大幅に改善した半導体装置を提供すること
を目的としている。
This invention was made in view of the above points, and instead of amorphous 5i (a-8i), amorphous silicon germanium (a-8i□-xGθX), which is added with germanium (Gθ), is used. It is an object of the present invention to provide a semiconductor device in which the above-mentioned problems can be significantly improved by using the semiconductor device without significantly deteriorating other characteristics.

第1図はシリコン基板(1)の上にグロー放電法によっ
てアモルファス半導体膜(2)を堆積したときの歪の発
生を誇張して示す側面図で、図のΔhで歪量を示すこと
VCする。第2図はa〜81□−エGe工膜をグロー放
電法によって81基板上に堆積したときの基板の歪量Δ
hとGe濃度との関係を概念的に示す図で、小破のGe
の添加(Geの組成比Xの小さいゝ値)で歪の発生は著
しく減少することが判る。
Figure 1 is a side view exaggerating the occurrence of strain when an amorphous semiconductor film (2) is deposited on a silicon substrate (1) by a glow discharge method, and the amount of strain is indicated by Δh in the figure. . Figure 2 shows the amount of strain Δ on the substrate when a ~ 81□-E Ge film was deposited on the 81 substrate by the glow discharge method.
This is a diagram conceptually showing the relationship between h and Ge concentration.
It can be seen that the occurrence of strain is significantly reduced by the addition of (a small value of the Ge composition ratio X).

第3図はa−8i@を用いた光電素子に光照射したとき
の伝導度σの変化の一例をホす図で、時間0の光照射開
始時点の光体導度初期値σphoから時間とともに光体
導度σphは減少していくこと(Staebler −
Wroneki効果)を示している。
Figure 3 shows an example of the change in conductivity σ when a photoelectric element using a-8i@ is irradiated with light. The light conductivity σph decreases (Staebler −
Wroneki effect).

第4図はa−8iGθ膜の場合についてAMllool
−X   X mw/cm2の光を4時間照射した場合の光体導度の初
期値からの低下の率(σph/σア。)とGeの組成比
Xとの関係を示す図で、a−8iでは光照射後は初期値
の20%程度まで低下するが、a−8i□−XGeXで
はGθ組成比Xの増加に伴ってその低下は急激に改善さ
れ、わずかのGeの添加で十分効果があることがこのよ
うニGθの添加によって歪の発生、光体導度の低下は改
善されるが、その他の特性に対する影響を調べてみる。
Figure 4 shows AMllool for the case of a-8iGθ film.
-X In 8i, the value decreases to about 20% of the initial value after light irradiation, but in a-8i□-XGeX, the decrease rapidly improves as the Gθ composition ratio X increases, and the addition of a small amount of Ge is sufficient. Although the addition of Gθ improves the occurrence of distortion and the decrease in optical conductivity, let us examine the effect on other characteristics.

第5図はa−8i□−XGeX膜についてGθ組成比X
とバンドギャップEgo ptとの関係を示す図で、G
eの添加によってバンドギャップEgyptは1.85
〜1.1 eV程度の間で連続的に変化する。第6図は
伝導度と光体導菱とのGe組成比Xに対する依存性の代
表的−例を示す図で、膜の作1戊法によっである程度の
バラツキはあるが、Ge#度と共に伝導度は上り、光体
導度は低下する傾向にある。しかし、図でも判るように
、Ge濃度が小さい領域(Xが0〜0.1)ではa−8
i膜の特性とさほど変らない。第7区Iはa−8i□−
XGe−を用いて単層の太陽電池を作成した場合の太1
湯電池特性のGe組成比XK対する依存性を示す図で、
開放端電圧は第5図のバンドギャップに対応してGθ組
成比Xとともに低下し、短絡電流はGθ組成比Xの値0
.1〜0.4の点に最大値がある。そして、変換効率は
Ge組成比Xが小さい領域では低下は小さく、Xの大き
い鎖酸で低下が見られる。
Figure 5 shows the Gθ composition ratio X for the a-8i□-XGeX film.
This is a diagram showing the relationship between G and bandgap Ego pt.
By adding e, the band gap Egypt becomes 1.85.
It changes continuously between approximately 1.1 eV and 1.1 eV. Figure 6 is a diagram showing a typical example of the dependence of conductivity and light conductor on the Ge composition ratio X. Although there is some variation depending on the method of film production, The conductivity tends to increase and the light conductivity tends to decrease. However, as can be seen in the figure, in the region where the Ge concentration is small (X is 0 to 0.1), a-8
The characteristics are not much different from those of the i-film. Ward 7 I is a-8i□-
Thickness 1 when creating a single layer solar cell using XGe-
A diagram showing the dependence of hot water battery characteristics on the Ge composition ratio XK,
The open circuit voltage decreases with the Gθ composition ratio X, corresponding to the band gap shown in FIG. 5, and the short circuit current decreases when the Gθ composition ratio X is 0.
.. The maximum value is between 1 and 0.4. The conversion efficiency decreases little in the region where the Ge composition ratio X is small, and decreases in the chain acid where X is large.

以上のように従来のa−8iの代り1InGe組成比X
が0.1以下のa−8i□、、XGeいを用いることに
よって、一般的特性をさほど低下さ仕ることt、K<、
基板の走の発生、および元伝導胚の時間的低下を大幅に
改善できる。
As mentioned above, instead of the conventional a-8i, 1InGe composition ratio
By using a-8i□, ,
The generation of substrate chemotaxis and the temporal decline of the original conducting embryo can be significantly improved.

fSお、上記説明からこの発明は元電半導体系子に適し
ていることは勿論であるが、薄膜トランジスタ等の材料
としても効果がある。
fS: From the above description, it goes without saying that the present invention is suitable for electronic semiconductor devices, but it is also effective as a material for thin film transistors and the like.

以上説明したように、この発明ではGe組成比Xが帆1
以下のa−8i□、Ge Xを半導体材料としたので特
性の優れンと、かつ安定した半導体装置が得られる。
As explained above, in this invention, the Ge composition ratio
Since the following a-8i□ and GeX are used as semiconductor materials, a semiconductor device with excellent characteristics and stability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシリコン基板上Vこグロー放電法によってアモ
ルファス半導体1漢を堆積したときの歪の発生を誇張し
て示す側面図、第2図はa−8i□−XGeX膜をグロ
ー放電法によって81基板上に堆積したときの基板の歪
とGe濃度との関係を概念的に示す図、第3図はa−8
i膜を用いた光゛屯素子に光照射したときの伝導度の変
化の一例を示す図、第4図はa−8i□−XGeX膜に
ついて所定の光通を照射した場合の光体導度の初期値か
らの低下率とGo組成比Xとの関係をボす図、第5図は
a−8i□−XGeX膜について、Gei成比Xとバン
ドギャップとの関係を示す図、第6図は伝導度と光体導
度とのGe組成比xlc対する依存性の代表的−例を示
す図、第7代理人  S 野 価 −(外1名) 第2図 第3図       第4図 時間       cIe紐戒比X 第す図 (ie瓶へ化石 第7図 ae紐八へて 手続捕正書(自発) ’4!+’ j’l’ li: L<信殿1、・10′
1の人示    !11″願昭57−120243号2
 発明の名f+、   半導体装置 3、  tiliilをするに ・Ift’lとの関係   ’I’5’1t’l出願人
5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明細書をつぎのとおり訂正する。 以上
Figure 1 is a side view exaggerating the occurrence of strain when one amorphous semiconductor is deposited on a silicon substrate by the glow discharge method. A diagram conceptually showing the relationship between substrate strain and Ge concentration when deposited on a substrate, Figure 3 is a-8
A diagram showing an example of the change in conductivity when a light beam element using an i film is irradiated with light. Figure 4 shows the light conductivity when the a-8i□-XGeX film is irradiated with a predetermined light beam. Figure 5 is a diagram showing the relationship between the rate of decrease from the initial value and the Go composition ratio X, and Figure 5 is a diagram showing the relationship between the Ge composition ratio Figure 2 shows a typical example of the dependence of conductivity and light conductivity on the Ge composition ratio xlc. String command ratio
1 person demonstration! 11″ Application No. 57-120243 No. 2
Name of the invention f+, Semiconductor device 3, Relationship between tiliil and If'l 'I'5'1t'l Applicant 5, Detailed description of the invention column 6 of the specification subject to amendment, Contents of the amendment The specification is amended as follows. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)  半導体材料としてゲルマニウム組成比が0よ
り太きく0.1以下のアモルファス・シリコン・ゲルマ
ニウム膜を用いたことを特徴とする半導体装置。
(1) A semiconductor device characterized in that an amorphous silicon germanium film having a germanium composition ratio greater than 0 and less than 0.1 is used as a semiconductor material.
(2)  アモルファス・シリコン・ゲルマニウムII
Eはグロー放電法で形成されたものであることを特徴と
する特許請求の範囲第1項記載の半導体装置。
(2) Amorphous silicon germanium II
2. The semiconductor device according to claim 1, wherein E is formed by a glow discharge method.
JP57120243A 1982-07-08 1982-07-08 Semiconductor device Pending JPS599978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57120243A JPS599978A (en) 1982-07-08 1982-07-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57120243A JPS599978A (en) 1982-07-08 1982-07-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS599978A true JPS599978A (en) 1984-01-19

Family

ID=14781374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57120243A Pending JPS599978A (en) 1982-07-08 1982-07-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS599978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102035U (en) * 1986-12-20 1988-07-02
JPH01143363A (en) * 1987-11-30 1989-06-05 Hitachi Ltd Manufacture of amorphous solar cell
JPH0262079A (en) * 1988-08-29 1990-03-01 Hitachi Ltd Silicon amorphous solar cell
JP2007050858A (en) * 2005-08-19 2007-03-01 Yanmar Co Ltd Vehicle frame

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558092A (en) * 1978-07-04 1980-01-21 Nec Corp Fine film solar cell and its production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558092A (en) * 1978-07-04 1980-01-21 Nec Corp Fine film solar cell and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102035U (en) * 1986-12-20 1988-07-02
JPH01143363A (en) * 1987-11-30 1989-06-05 Hitachi Ltd Manufacture of amorphous solar cell
JPH0262079A (en) * 1988-08-29 1990-03-01 Hitachi Ltd Silicon amorphous solar cell
JP2007050858A (en) * 2005-08-19 2007-03-01 Yanmar Co Ltd Vehicle frame

Similar Documents

Publication Publication Date Title
US3922774A (en) Tantalum pentoxide anti-reflective coating
US3988774A (en) Process for producing a photodiode sensitive to infrared radiation
Chamberlin et al. Chemically sprayed thin film photovoltaic converters
JPS599978A (en) Semiconductor device
US3977905A (en) Solar cell with niobium pentoxide anti-reflective coating
GB2016803A (en) Thin film transistor construction and manufacturing method of the same
JPS5878473A (en) Thin film solar battery
JPS6043869A (en) Semiconductor device
Schumacher et al. Novel, Colloidally Rough, In2 O 3 Films Displaying High Quantum Efficiencies
JPS56142680A (en) Photoconductive semiconductor device
SE7909584L (en) SOLAR CELL WITH GROUND GAY TRANSITION
JPH10226598A (en) Transparent conductive titanium oxide film and its production
JPS61135167A (en) Thin-film solar cell
JP3238929B2 (en) Method of forming amorphous silicon carbide film and photovoltaic device
JPS54139490A (en) Semiconductor memory unit
JPH0262482B2 (en)
US4658087A (en) Photoelectrodes for photoelectrochemical cell devices
JPH0575153A (en) Transparent conductive film for photoelectric conversion element and its production
US3634424A (en) Photoconductive material and method for its preparation
JPS60117781A (en) Thin film element
JPS6269566A (en) Manufacture of photoelectric conversion device
JP2978050B2 (en) Manufacturing method of amorphous alloy semiconductor
JP2002033499A (en) Photovoltaic device
JPS5997515A (en) Amorphous silicon
JPH0433378A (en) Photovoltaic device