JPS599912A - Liquid phase crystal growth method - Google Patents

Liquid phase crystal growth method

Info

Publication number
JPS599912A
JPS599912A JP11896482A JP11896482A JPS599912A JP S599912 A JPS599912 A JP S599912A JP 11896482 A JP11896482 A JP 11896482A JP 11896482 A JP11896482 A JP 11896482A JP S599912 A JPS599912 A JP S599912A
Authority
JP
Japan
Prior art keywords
solution
substrate
temperature
growth
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11896482A
Other languages
Japanese (ja)
Inventor
Takashi Sugino
隆 杉野
Kazunari Oota
一成 太田
Masaru Kazumura
数村 勝
「よし」川 昭男
Akio Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11896482A priority Critical patent/JPS599912A/en
Publication of JPS599912A publication Critical patent/JPS599912A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To uniformalize the thickness of the grown layer in a substrate surface by a method wherein the temperature of the substrate on the side where the solution begins to contact therewith is set lower than that on the side where it contacts therewith lastly in a sliding-type liquid phase crystal growth method. CONSTITUTION:A semiconductor substrate 1 formed of GaAs or so is fitted in a boat body 4, and a solution 2 of Ga and GaAs, etc. is put in a solution reservoir of a slide boat 3. Under such conditions that the solution 2 is heated up to 850 deg.C, held at that temperature for ca. 1hr and then cooled at a speed of 0.5 deg.C/min, the solution 2 is slid over the substrate 1 to make a growth. In this constitution, the temperature of the substrate 1 on the P side where the solution 2 is removed from the substrate 1 is set lower than that on the Q side where the solution 2 is slid to come into contact with the substrate, thereby to restrict lowering of the supersaturation degree of the solution 2 on the P side. Namely, the crystal is grown in the condition that the solution 2 has a temperature change with a gradient of 0.02 deg.C/mm. in the sliding direction. By so doing, it becomes possible to significantly uniformalize the thickness of the grown layer in the surface of the substrate 1.

Description

【発明の詳細な説明】 本発明は液相結晶成長法に関するものであり、特に基板
面内の成長層の厚さを均一にする液相結晶成長法を提供
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid phase crystal growth method, and in particular provides a liquid phase crystal growth method that makes the thickness of a grown layer uniform within the plane of a substrate.

液相エビタギシャル成長法によって結晶成長を行なう場
合、基板結晶と溶液をボードに装着し、溶液を基板上に
スライドさせて成長を行なう。いわゆるボートスライド
方式が広く用いられている。
When crystal growth is performed by liquid phase epitaxial growth, a substrate crystal and a solution are mounted on a board, and the solution is slid onto the substrate to perform growth. The so-called boat slide method is widely used.

この方式では多層連続成長が可能であり、成長層の薄膜
化も容易に行なえることから、半導体レーーリ′−結晶
の作製等に利用されている。この液相エピタキシャル成
長法では成長用溶液を過飽和の状態にした後、基板上に
溶液をスライドさせ、冷却しながら成長を行ない薄膜層
を得る。基板の面精が大きく溶液のヌライド距離が長く
なると、溶液が先ず基板上に接する部分と、成長後溶液
が最後に基板からはなれる部分の間で成長層の厚さに大
きい差が生じる。
This method allows continuous growth of multiple layers, and the growth layer can be easily made thin, so it is used for the production of semiconductor Lehli' crystals, etc. In this liquid phase epitaxial growth method, a growth solution is brought into a supersaturated state, and then the solution is slid onto a substrate and grown while being cooled to obtain a thin film layer. When the surface roughness of the substrate is large and the nulling distance of the solution is long, a large difference in the thickness of the grown layer occurs between the part where the solution first contacts the substrate and the part where the solution finally leaves the substrate after growth.

本発明はこのように成長層の厚さに差が生じる原因を究
明し、その原因を除去することにより基板面内の成長層
の厚さを均一にする液相結晶成長溶液がスライドする方
向について考えると基板の溶液がスライドしてくる側で
の成長層は、その反対側の溶液かはなれていく基板端部
付近での成長層より厚くなる。この原因として、過飽和
の状態になった溶液が基板と接した所で、成長は速く行
なわれ、その反対側の溶液が基板からはなれて行く側で
は過飽和度が低下した溶液が基板上に接することになり
、成長は遅くなるだめであると考えられる。
The present invention investigates the cause of the difference in the thickness of the grown layer, and eliminates the cause to make the thickness of the grown layer uniform within the plane of the substrate. When you think about it, the growth layer on the side of the substrate where the solution slides is thicker than the growth layer on the opposite side, near the edge of the substrate where the solution moves away. The reason for this is that growth occurs faster where a supersaturated solution comes into contact with the substrate, and on the other side, where the solution is moving away from the substrate, a less supersaturated solution comes into contact with the substrate. It is thought that this will slow down the growth.

このように結晶成長速度に差が生じる現象を防止するた
めには溶液の過飽和度の低下を抑制することが必要であ
る。本発明は第1図(&)に示すようにスライドボート
3にためられた溶g!2が成長基板1」二をスライドし
ていく方向において、第1図(b)に示すように成長基
板1に温度分布を付け、それにより成長基板1上にスラ
イドしてきた溶液2の過飽和度を制御することを特徴と
する方法である。
In order to prevent such a phenomenon in which the crystal growth rate differs, it is necessary to suppress the decrease in the supersaturation degree of the solution. As shown in FIG. In the direction in which the solution 2 slides over the growth substrate 1, a temperature distribution is applied to the growth substrate 1 as shown in FIG. This method is characterized by controlling.

すなわち、本発明は第1図において、溶液1が結晶基板
1から除去されるP側では溶液の過飽和度は低下を抑制
するため、基板の温度を溶液がスライドしてくるQ側よ
シ低くする。溶液がスライドする方向における結晶基板
1の温度分布は第2図の曲線A1.A2.A3 に示す
ように様々な分布をとることができ、又、結晶基板1の
両端間の?晶度差石 も様戎な値をとるが最適条件は、
ボートの構造、溶液の形状や量、基板の形状等によって
決定される。
That is, in order to suppress the decrease in the degree of supersaturation of the solution on the P side where the solution 1 is removed from the crystal substrate 1 in FIG. 1, the temperature of the substrate is lowered on the Q side where the solution slides. . The temperature distribution of the crystal substrate 1 in the direction in which the solution slides is shown by the curve A1. in FIG. A2. As shown in A3, various distributions can be taken, and between both ends of the crystal substrate 1? Crystalline stones also take various values, but the optimal conditions are:
It is determined by the structure of the boat, the shape and amount of the solution, the shape of the substrate, etc.

以下にGaAs0液+目結晶成長法を例にとり、従来の
場合と本発明の実施例を具体的に述べる。
In the following, a conventional case and an embodiment of the present invention will be specifically described using the GaAs0 solution + eye crystal growth method as an example.

第1図のボート本体4内へGaAs基板1を装着しスラ
イドボート3の溶液だめにGaとGaAsよりなる溶液
2を入れ、850°Cまで温度を上げ、1時間保持した
後、0.5°C今で冷却し、GaAs基板1−」−に溶
液2をスライドさせて成長を行なう。GaAs基板1の
幅(溶液2がスライドする方向の基板の長さ)が16π
mの時には基板の両側より3mmの位置での成長層厚を
測定すると、いずれも0.5μmで厚さの差は々かった
。一方、GaAs基板1の幅を30間にした場合両側か
ら3πmの位置では成長層厚は0.3μmと0.7μm
となり04μmの差ができ、成長層厚にばらつきを生じ
た。
A GaAs substrate 1 is mounted inside the boat body 4 shown in FIG. 1, a solution 2 made of Ga and GaAs is put into the solution reservoir of the slide boat 3, the temperature is raised to 850°C, and after holding for 1 hour, the temperature is increased to 0.5°C. C. Now cool down and slide the solution 2 onto the GaAs substrate 1 to perform growth. The width of the GaAs substrate 1 (the length of the substrate in the direction in which the solution 2 slides) is 16π
When the thickness of the grown layer was measured at a position 3 mm from both sides of the substrate at m, the thickness of the grown layer was 0.5 μm in both cases, and there was a large difference in thickness. On the other hand, when the width of the GaAs substrate 1 is set to 30 mm, the grown layer thickness is 0.3 μm and 0.7 μm at the position 3πm from both sides.
This resulted in a difference of 0.4 μm, resulting in variations in the thickness of the grown layer.

次にGaAs基板1の幅を3ommとして溶液2のスラ
イド方向に0.02℃7mmの勾配で温度変化をもだせ
て前記と同様の成長を行なった。ずなわちGaAs基板
1の溶液2がスライド方向てくるQ惧11の温度と、そ
の反対側(溶液がスライドして基板から除去されるP側
)との間で0.6°Cの温度差をイーjけて本発明の実
施例により結晶成長を行なった。
Next, the width of the GaAs substrate 1 was set to 3 om, and the same growth as described above was performed by changing the temperature in the sliding direction of the solution 2 at a gradient of 0.02° C. and 7 mm. That is, there is a temperature difference of 0.6°C between the temperature at Q11 where the solution 2 of the GaAs substrate 1 comes in the sliding direction and the opposite side (the P side where the solution slides and is removed from the substrate). Crystal growth was carried out according to an example of the present invention.

その結果、両側から3myttの位置での成長層の厚さ
は0.6μmと0゜6μmであり、その差は非常に小さ
く、基板内で温度差を付けないで成長する方法より成長
層の膜厚は均一になった。
As a result, the thickness of the grown layer at a position 3 mytt from both sides was 0.6 μm and 0.6 μm, and the difference between them was very small. The thickness became uniform.

以上説明したように本発明の液相結晶成長法は薄膜成長
において基板面内における成長層膜厚の均一化に効果的
な方法であり、工業上の利用価値が高い。
As explained above, the liquid phase crystal growth method of the present invention is an effective method for making the thickness of a grown layer uniform within the plane of a substrate in thin film growth, and has high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

@1図(2L)は本発明の液相結晶成長法に用いる成長
用ボートの断面図、第1図(1))は第1図(2L)に
示す成長用ボートの温度勾配を示す図、第2図は成長基
板内の種々の温変分布の状態を示す図である。 1・・・・・GaAs基板、2・・・・・GaAs溶液
、3・・・・・・スライドボート、4・・・・・・ポー
ト本体、5・・・・・・石英棒。 代理人の氏名  弁理士 中 尾 敏 男 ほか1名第
1図 ( 第2図 基〕及の幅方向
@1 Figure (2L) is a cross-sectional view of the growth boat used in the liquid phase crystal growth method of the present invention, Figure 1 (1)) is a diagram showing the temperature gradient of the growth boat shown in Figure 1 (2L), FIG. 2 is a diagram showing various temperature distribution states within the growth substrate. 1... GaAs substrate, 2... GaAs solution, 3... slide boat, 4... port body, 5... quartz rod. Name of agent: Patent attorney Toshio Nakao and one other person

Claims (1)

【特許請求の範囲】[Claims] スライド式液相結晶成長法において、溶液が接し始める
側の基板温度よりも、溶液が最後に接する側の基板温度
を低くすることを特徴とする液相結晶成長法。
A sliding liquid phase crystal growth method characterized in that the temperature of the substrate on the side that the solution comes into contact with at the end is lower than the temperature of the substrate on the side that the solution starts coming into contact with.
JP11896482A 1982-07-07 1982-07-07 Liquid phase crystal growth method Pending JPS599912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11896482A JPS599912A (en) 1982-07-07 1982-07-07 Liquid phase crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11896482A JPS599912A (en) 1982-07-07 1982-07-07 Liquid phase crystal growth method

Publications (1)

Publication Number Publication Date
JPS599912A true JPS599912A (en) 1984-01-19

Family

ID=14749632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11896482A Pending JPS599912A (en) 1982-07-07 1982-07-07 Liquid phase crystal growth method

Country Status (1)

Country Link
JP (1) JPS599912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231430A (en) * 1990-07-31 1993-07-27 Canon Kabushiki Kaisha Ophthalmic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231430A (en) * 1990-07-31 1993-07-27 Canon Kabushiki Kaisha Ophthalmic apparatus

Similar Documents

Publication Publication Date Title
Baliga Morphology of silicon epitaxial layers grown by undercooling of a saturated tin melt
JPS599912A (en) Liquid phase crystal growth method
US4052252A (en) Liquid phase epitaxial growth with interfacial temperature difference
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JPH0542400B2 (en)
JPS6021897A (en) Process for liquid phase epitaxial crystal growth
JPS5827238B2 (en) Single crystal manufacturing method
Tadano et al. Observation of screw dislocations in GaAs
JPH0247440B2 (en)
Zakharenkov et al. Liquid epitaxy growth of InP layers
JPS58110491A (en) Liquid phase epitaxial growth method
JPH0769798A (en) Production of cdte crystal
JPH0475327A (en) Manufacture of semiconductor device
JPS5941959B2 (en) Liquid phase epitaxial growth equipment
JPS584810B2 (en) Manufacturing method of semiconductor device
KR20040048564A (en) PMN-PT optical waveguides by thermal diffusion and fabrication methods thereof
JPS61220321A (en) Selective vapor growth method
JPS6129122A (en) Gaas liquid phase epitaxial growth method
JPS5917241A (en) Liquid phase growth method
JPH02290016A (en) Manufacture of semiconductor device
JPH01143322A (en) Compound semiconductor substrate
JPS6110099A (en) Method for continuous growth of thin film crystal
JPH0311728A (en) Solid-phase epitaxy
JPH02237125A (en) Growth of epitaxial crystal
JPS62176985A (en) Liquid phase epitaxy