JPH0769798A - Production of cdte crystal - Google Patents

Production of cdte crystal

Info

Publication number
JPH0769798A
JPH0769798A JP24621693A JP24621693A JPH0769798A JP H0769798 A JPH0769798 A JP H0769798A JP 24621693 A JP24621693 A JP 24621693A JP 24621693 A JP24621693 A JP 24621693A JP H0769798 A JPH0769798 A JP H0769798A
Authority
JP
Japan
Prior art keywords
melt
cdte
crystal
ampule
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24621693A
Other languages
Japanese (ja)
Inventor
Ryoichi Ono
良一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP24621693A priority Critical patent/JPH0769798A/en
Publication of JPH0769798A publication Critical patent/JPH0769798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To improve productivity and to reduce production cost by bringing a-Cd-Te melt containing excessive Te into contact with a CdTe raw material in a crystal growth container, cooling and solidifying crystal under a specific condition. CONSTITUTION:A holding fixture 3 which is supported by a quartz ampule l made of quartz having a large number of venting holes is prepared and a coating film of graphite is formed on the inside of the quartz ampule 1 and the surface of the holding fixture 3. A Cd-Te alloy containing excessive Te, having the molar ratio of Cd:Te of 40:60 having dissolved CdCl2 so as to contain about 300ppm chlorine in weight concentration based on melt, the holding fixture 3, the Cd-Te alloy containing excessive Te and a CdTe ingot are inserted in this order into the quartz ampule l from the bottom, the container is evacuated in vacuum, an Ar gas is introduced up to 100Torr pressure and the ampule 1 is sealed. The ampule is firstly heated by an electric furnace under a temperature distribution shown by the right figure to form a Cd-Te melt 4 containing excessive Te. The temperature distribution is maintained and the melt is cooled and solidified from a direction opposite to the direction wherein the Cd-Te melt 4 is in contact with CdTe raw materials 2 in terms of a stoichimetric composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCdTe結晶の製造方法
に関し、特に放射線検出素子として有用な塩素ド−プC
dTe結晶を生産性良く製造する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a CdTe crystal, and particularly to a chlorine doped C useful as a radiation detecting element.
The present invention relates to a method for producing dTe crystals with high productivity.

【0002】[0002]

【従来の技術】CdTeはSiやGeなどに比べて放射
線の吸収係数が高く、しかも常温でのエルギ−ギャップ
が大きい半導体であるため、これを放射線検出素子とし
て使用すると特性の良い素子を得ることができる。
2. Description of the Related Art CdTe is a semiconductor having a higher radiation absorption coefficient than Si and Ge and a large energy gap at room temperature. Therefore, when it is used as a radiation detecting element, an element having excellent characteristics can be obtained. You can

【0003】CdTe放射線検出素子は、結晶の相対す
る2面にバイアス電圧を印加するための電極を形成した
構造のものが一般的であり、CdTe結晶に放射線が照
射されたときに生じる正負のキャリア(電子−正孔対)
が電極に引き寄せられることによって生じる電流を検出
するものである。従って、使用されるCdTe結晶に
は、放射線が照射されていないときに電流が流れないよ
うに電気的に高抵抗であることと、放射線−電流変換効
率を高めるために放射線照射によって発生する正負のキ
ャリアの寿命が長いことが重要である。
A CdTe radiation detecting element generally has a structure in which electrodes for applying a bias voltage are formed on two opposite surfaces of a crystal, and positive and negative carriers generated when the CdTe crystal is irradiated with radiation. (Electron-hole pair)
Is to detect the electric current generated by being attracted to the electrode. Therefore, the CdTe crystal used has an electrically high resistance so that a current does not flow when it is not irradiated with radiation, and the positive / negative generated by radiation irradiation in order to increase the radiation-current conversion efficiency. It is important that the carrier has a long life.

【0004】上記要求を満たす高抵抗のCdTe結晶
は、高純度のCdとTeを原料とし、インクル−ジョン
と称する介在物が発生しないような条件で数ppm程度
の塩素をド−プしながら成長する方法で得られており、
最も一般的なものは、THM(トラベリングヒ−タ法)
である。
The high-resistance CdTe crystal satisfying the above requirements is grown from high-purity Cd and Te as raw materials while doping several ppm of chlorine under the condition that inclusions called "inclusion" are not generated. Is obtained by
The most common one is THM (Traveling Heater Method)
Is.

【0005】この方法では先ず、原料となる円柱状のC
dTe多結晶インゴットの下端に微量の塩素を含むTe
を溶媒として配置した石英アンプルを準備し、加熱幅の
狭いヒ−タを用いてアンプルの下端を加熱してTeを融
解することによって同時にその直上のCdTeをその温
度における溶解度だけ溶解したTe過剰のCd−Te融
帯を形成する。その加熱温度を保ったままアンプルを低
速で降下させると、Cd−Te融帯はその上方のCdT
e多結晶を溶解しながら組成を保ったまま上方に移動
し、下方には塩素がド−プされたCdTe結晶が成長す
る。Te過剰のCd−Te融液からCdTe結晶を析出
させる場合、融液からCdTe結晶への塩素の偏析係数
が0.003〜0.006と小さく、融液の量が結晶成
長中ほぼ一定であるために、成長方向に均一に塩素がド
−プされたCdTe結晶を得ることができる。
In this method, first, a cylindrical C that is a raw material is used.
Te containing a trace amount of chlorine at the lower end of the dTe polycrystalline ingot
A quartz ampoule in which is used as a solvent is prepared, and the lower end of the ampoule is heated by using a heater with a narrow heating width to melt Te, and at the same time, CdTe immediately above is melted by the solubility at that temperature. Form a Cd-Te zone. When the ampoule is lowered at a low speed while maintaining the heating temperature, the Cd-Te melt zone has CdT above it.
The e-polycrystal is melted and moves upward while maintaining its composition, and a chlorine-doped CdTe crystal grows downward. When a CdTe crystal is precipitated from a Te-excess Cd-Te melt, the segregation coefficient of chlorine from the melt to the CdTe crystal is small at 0.003 to 0.006, and the amount of the melt is almost constant during crystal growth. Therefore, a CdTe crystal in which chlorine is uniformly doped in the growth direction can be obtained.

【0006】さらに、THMで得られた塩素ド−プCd
Te結晶は、ブリッジマン法などの化学的量論組成のC
dTe融液から得られた塩素ド−プCdTe結晶に比べ
て、放射線検出素子として使用した場合に高エネルギ−
の放射線が照射された場合に検出性能の劣化が小さいと
いう点でも優れている。
Furthermore, the chlorine doped Cd obtained by THM
Te crystal is C having stoichiometric composition such as Bridgman method.
Compared with the chlorine-doped CdTe crystal obtained from the dTe melt, it has a higher energy when used as a radiation detection element.
It is also excellent in that the deterioration of the detection performance is small when the above radiation is irradiated.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
THMによって放射線検出素子用の塩素ド−プCdTe
結晶を製造する場合には、アンプルに隙間なく挿入でき
る円柱状の原料CdTe多結晶を調整する工程が別途に
必要であることに加えて、結晶の直径が30mm程度と
大きくなると狭い融帯幅で成長するために、成長速度を
3〜4mm/日(0.12〜0.17mm/Hr)程度
と低くしなければならず、生産性が低く、製造コストが
嵩むという問題があった。
However, according to the conventional THM, the chlorine doping CdTe for a radiation detecting element is used.
In the case of producing a crystal, in addition to the step of separately preparing a columnar raw material CdTe polycrystal that can be inserted into an ampoule without a gap, in addition to a narrow melting band width when the diameter of the crystal is increased to about 30 mm. In order to grow, the growth rate must be as low as about 3 to 4 mm / day (0.12 to 0.17 mm / Hr), and there is a problem that productivity is low and manufacturing cost is high.

【0008】[0008]

【課題を解決するための手段および作用】本発明は上記
問題点を解決したものであって、結晶成長容器内にTe
過剰のCd−Te融液と化学的量論組成のCdTe原料
とを互いに接触する状態に保持した後、該Te過剰Cd
−Te融液を該化学的量論組成のCdTe原料が接触し
ている方向と反対の方向から冷却凝固させることを特徴
とするCdTe結晶の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has solved the above-mentioned problems, and is characterized in that Te is contained in a crystal growth container.
After maintaining the excess Cd-Te melt and the stoichiometric CdTe raw material in contact with each other, the Te excess Cd
A method for producing a CdTe crystal, which comprises cooling and solidifying a Te melt from a direction opposite to a direction in which the CdTe raw material having the stoichiometric composition is in contact.

【0009】さらに、上記のTe過剰Cd−Te融液に
塩素を溶解させておくことを特徴とするCdTe結晶の
製造方法を提供するものである。先ず、本発明者は、前
述のようにTHMで製造した塩素ド−プCdTe結晶を
放射線検出素子として使用した場合にその性能がブリッ
ジマン法などで得られる結晶より優れていることから、
放射線検出素子用のCdTe結晶の製造においては化学
的量論組成よりもTeが過剰な組成のCd−Te融液即
ちTeを溶媒としてCdを溶解した状態の溶液からCd
Te結晶が析出するという機構が重要であると考えた。
Further, the present invention provides a method for producing a CdTe crystal, characterized in that chlorine is dissolved in the above Te-excessive Cd-Te melt. First, the inventor of the present invention, as described above, when the chlorine-doped CdTe crystal produced by THM is used as a radiation detection element, its performance is superior to that obtained by the Bridgman method or the like.
In the production of CdTe crystals for a radiation detection element, a Cd-Te melt having a composition in which Te is in excess of the stoichiometric composition, that is, a solution in which Cd is dissolved using Te as a solvent is Cd
We thought that the mechanism of Te crystal precipitation was important.

【0010】ところが、THMのように連続的に原料と
なるCdTeを供給することなく簡単にTe過剰のCd
−Te溶液から結晶が得られる方法として、たとえば3
5モル%Cd−65モル%Teの融液を一端から冷却す
ることによって化学的量論組成のCdTe結晶を析出さ
せようとすると、Cd−Te2元系の状態図(T−x線
図)が示す液相線に従って最初の結晶は1000℃の融
液から析出するが、次第に融液中のCdの濃度が小さく
なるに従って結晶の析出温度が下がってくる。即ち、結
晶成長とともに結晶成長境界面付近の融液が構造的過冷
却の状態になり易くなるため、時間とともにアンプルの
降下速度を徐々に遅くするかアンプルの加熱温度分布を
変化させるかしなければ結晶に融液が取り込まれてイン
クル−ジョンが発生するなどして著しく品質の劣る結晶
しか得られないようになる。
However, unlike the THM, it is possible to easily supply Cd with excess Te without supplying CdTe as a raw material continuously.
As a method of obtaining crystals from a Te solution, for example, 3
When a CdTe crystal having a stoichiometric composition is to be precipitated by cooling a melt of 5 mol% Cd-65 mol% Te from one end, a phase diagram (T-x diagram) of a Cd-Te binary system is obtained. According to the liquidus line shown, the first crystal precipitates from the melt at 1000 ° C., but as the concentration of Cd in the melt gradually decreases, the crystal precipitation temperature decreases. That is, since the melt near the crystal growth boundary surface is likely to be in a structurally supercooled state as the crystal grows, it is necessary to gradually slow the descending speed of the ampoule or change the heating temperature distribution of the ampoule with time. Only the crystal of extremely poor quality can be obtained because the melt is taken into the crystal and the ink is generated.

【0011】また、上記の方法では、融液に塩素を溶解
させておくことによって放射線検出素子用の塩素ド−プ
CdTe結晶を得ようとした場合、結晶の析出が進行す
るにつれて結晶中への塩素のド−プ量が増加するため
に、高性能の放射線検出素子用に使用できる結晶の歩留
まりが低くなる。因みに、35モル%Cd−65モル%
TeにTeに対する濃度で約600ppmの塩素を溶解
した融液を一端から一定速度で冷却することによって得
られた結晶中の塩素のド−プ量は、最初2ppm程度で
あるものが後半には10ppm以上にまで増加してしま
い、この結晶を用いて放射線検出素子を作製し、その性
能を調べた結果、満足できる特性を示したのは最初に成
長した約30%の部分にしかすぎなかった。
Further, in the above method, when chlorine-doped CdTe crystals for a radiation detecting element are to be obtained by dissolving chlorine in the melt, the crystals are deposited in the crystals as the precipitation of the crystals progresses. The increase in chlorine doping reduces the yield of crystals that can be used for high performance radiation detection elements. By the way, 35 mol% Cd-65 mol%
The amount of chlorine doping in the crystal obtained by cooling the melt in which Te has a chlorine concentration of about 600 ppm with respect to Te at a constant rate from one end is about 2 ppm at the beginning, but 10 ppm in the latter half. As a result of making a radiation detecting element using this crystal and examining its performance, only about 30% of the first grown portion showed satisfactory characteristics.

【0012】以上の考察から本発明者は、Te過剰のC
d−Te融液に化学的量論組成のCdTe原料が浸され
た状態からCdTe結晶を成長することによって、結晶
中への塩素ド−プ量の増加を抑え、かつ融液組成の変化
による構造的過冷却を抑えることができると考え、本発
明をなした。
From the above consideration, the present inventor found that Te-excessive C
By growing a CdTe crystal from a state in which a CdTe raw material having a stoichiometric composition is immersed in a d-Te melt, an increase in the amount of chlorine doping in the crystal is suppressed, and a structure caused by a change in the melt composition The present invention has been made on the idea that it is possible to suppress overcooling.

【0013】本発明方法では、Te過剰のCd−Te融
液はCdTe結晶が成長することによってTe濃度が上
昇するのを化学的量論組成のCdTe原料が融液中に融
解されることによって防止されて、CdTe原料がすべ
て融解されるまでは融液組成が加熱温度における液相線
上の組成に保たれる。また、THMのように融帯幅を狭
くする必要がないので、結晶を大型化でき、成長速度を
大きくすることができる。なお、CdTe原料の化学的
量論組成は厳密なものではなく、±1at%程度の範囲
内であれば、特に問題はない。
In the method of the present invention, the Te-excessive Cd-Te melt is prevented from increasing the Te concentration due to the growth of CdTe crystals by melting the CdTe raw material having a stoichiometric composition into the melt. The melt composition is maintained at the composition on the liquidus line at the heating temperature until all the CdTe raw materials are melted. Moreover, since it is not necessary to narrow the zone width as in THM, the crystal can be upsized and the growth rate can be increased. The stoichiometric composition of the CdTe raw material is not strict, and there is no particular problem as long as it is within a range of about ± 1 at%.

【0014】[0014]

【実施例】図1に示したような形状(下部内径30mm
長さ170mm、上部内径35mm長さ160mm)の
石英アンプルと、そのアンプルの内径が狭くなる部分で
支えられる構造で直径3mmの通液孔を多数有する石英
製保持具を準備し、石英アンプルの内面および石英製保
持具の表面に黒鉛皮膜を形成した。
EXAMPLE A shape as shown in FIG. 1 (lower inner diameter 30 mm
A quartz ampoule having a length of 170 mm, an upper inner diameter of 35 mm and a length of 160 mm) and a quartz holder having a large number of liquid passage holes with a diameter of 3 mm supported by a portion where the inner diameter of the ampoule is narrowed are prepared. A graphite film was formed on the surface of the quartz holder.

【0015】石英アンプルに下から、融液に対する重量
濃度で約300ppmの塩素を含むように塩化カドミウ
ムを溶解させたCd:Teのモル比で40:60のTe
過剰のCd−Te合金のインゴット500g、石英製保
持具、Te過剰のCd−Te合金のインゴット250
g、280gのCdTeインゴットの順で挿入し、真空
排気した後Arガスを100Torrの圧力まで導入し
た状態でアンプルを封入した。
From the bottom of the quartz ampoule, cadmium chloride was dissolved so as to contain chlorine of about 300 ppm by weight with respect to the melt, and the molar ratio of Cd: Te was 40:60 Te.
Excess Cd-Te alloy ingot 500 g, quartz holder, Te excess Cd-Te alloy ingot 250
g and 280 g of CdTe ingots were inserted in that order, and after evacuation, an ampoule was sealed while Ar gas was introduced up to a pressure of 100 Torr.

【0016】このアンプル全体を電気炉で先ず、図1に
示したような温度分布の下に加熱してTe過剰のCd−
Te融液を形成し、その温度分布を保ったまま0.5m
m/Hrの速度でアンプルを200mm降下させ、その
後全体を20℃/Hrの速度で室温まで冷却した。取り
出したアンプルを内容物ごと先端から130mmの位置
で切断し、下部の結晶を抜き出した。結晶の先端から1
10mm以上の部分には少量のインクル−ジョンが認め
られたので、その部分は切断し、先端から100mm、
約450gのCdTe結晶について塩素ド−プ量の分布
を調べたところ、はぼ全体にわたって2.5±0.5p
pmの範囲内にあり均一であった。
The entire ampoule was first heated in an electric furnace under the temperature distribution as shown in FIG.
Forming a Te melt, 0.5m while maintaining its temperature distribution
The ampoule was lowered by 200 mm at a speed of m / Hr, and then the whole was cooled to room temperature at a speed of 20 ° C./Hr. The taken out ampoule was cut together with the contents at a position 130 mm from the tip, and the lower crystal was extracted. 1 from the tip of the crystal
A small amount of ink was observed in the area of 10 mm or more, so that area was cut and 100 mm from the tip,
When the distribution of chlorine doping amount was examined for about 450 g of CdTe crystal, it was 2.5 ± 0.5 p over the entire cavity.
It was within the range of pm and was uniform.

【0017】この塩素ド−プCdTe結晶から放射線検
出素子を作製して、その放射線検出性能をTHMで得ら
れた結晶と比較したところ、全長100mmのいずれの
位置から切り出した結晶ともTHM結晶と同等の性能を
示した。実施例では、Te過剰のCd−Te融液作製の
ために、Te過剰組成のCd−Te合金を用いたが、こ
れに限定されずTeが過剰となる比率でCdとTeを入
れておくようにしても良い。
A radiation detecting element was produced from this chlorine-doped CdTe crystal, and its radiation detecting performance was compared with that of the crystal obtained by THM. As a result, any crystal cut from any position with a total length of 100 mm was equivalent to a THM crystal. Showed the performance of. In the examples, a Cd-Te alloy having a Te-rich composition was used to prepare a Te-rich Cd-Te melt, but the present invention is not limited to this, and Cd and Te should be added in such a proportion that Te becomes excessive. You can

【0018】また、Te過剰のCd−Te融液組成とし
てCdのモル濃度で35%の例を示したが、20%以上
45%以下、つまり結晶の析出温度として800℃以上
1050℃以下であれば本発明が適用できることはいう
までもない。なお、Cdのモル濃度20%以下の融液即
ち結晶析出温度800℃未満の融液からインクルル−ジ
ョンを含まないCdTeを実用的な速度で成長させるこ
とは困難であり、Cdのモル濃度50%即ち結晶析出温
度1092℃の化学的量論組成の融液から成長させた結
晶からは高性能のCdTe放射線検出素子が得られない
ためである。
Further, an example in which the molar concentration of Cd is 35% as the Te-excess Cd-Te melt composition is shown, but it should be 20% or more and 45% or less, that is, the crystal precipitation temperature should be 800 ° C or more and 1050 ° C or less. Needless to say, the present invention can be applied. In addition, it is difficult to grow CdTe containing no inclusions at a practical rate from a melt having a Cd molar concentration of 20% or less, that is, a melt having a crystal precipitation temperature of less than 800 ° C., and a Cd molar concentration of 50%. That is, a high-performance CdTe radiation detecting element cannot be obtained from a crystal grown from a melt having a stoichiometric composition with a crystal precipitation temperature of 1092 ° C.

【0019】さらに、結晶の析出速度を0.5mm/H
rとしているが、1mm/Hr以下の範囲で選択可能で
ある。なお、1mm/Hrを超えるとインクル−ジョン
が発生するからである。さらに、融液中にCdTe原料
を接触保持する方法として通液孔を有する石英性保持具
を示したが、適宜材質や形状を変形したものが使用可能
なことは自明である。
Further, the crystal precipitation rate is set to 0.5 mm / H.
Although r is used, it can be selected within a range of 1 mm / Hr or less. It should be noted that, if it exceeds 1 mm / Hr, the ink droplets will be generated. Further, as the method for contact-holding the CdTe raw material in the melt, the quartz holder having the liquid passage hole is shown, but it is obvious that a material having a proper material or shape can be used.

【0020】さらに、実施例ではアンプルを移動させた
が、ヒ−タを移動させても良く、また温度制御で温度分
布を変えていっても良い。さらに、実施例では融液上面
からCdTe原料を接触させ、融液下面から冷却凝固さ
せたが、逆に融液下面からCdTe原料を接触させ、融
液上面から冷却凝固させても良い。
Further, although the ampoule is moved in the embodiment, the heater may be moved and the temperature distribution may be changed by temperature control. Further, in the embodiment, the CdTe raw material is contacted from the upper surface of the melt and cooled and solidified from the lower surface of the melt, but conversely, the CdTe raw material is contacted from the lower surface of the melt and cooled and solidified from the upper surface of the melt.

【0021】[0021]

【発明の効果】以上説明したように、本発明は、結晶成
長容器内にTe過剰のCd−Te融液と化学的量論組成
のCdTe原料とを互いに接触する状態に保持した後、
該Te過剰Cd−Te融液を該化学的量論組成のCdT
e原料が接触している方向と反対の方向から冷却凝固さ
せるアンプル中でTe過剰組成のCd−Teの融液を一
方から冷却してCdTe結晶を成長させるようにしたの
で、THMより生産性良く同等の品質の結晶が製造でき
るという効果がある。
As described above, according to the present invention, after the Te-excessive Cd-Te melt and the stoichiometric CdTe raw material are kept in contact with each other in the crystal growth container,
The Te-rich Cd-Te melt was added to the stoichiometric composition of CdT.
Since the melt of Te-rich Cd-Te is cooled from one side in an ampoule that is cooled and solidified from the direction opposite to the direction in which the e raw material is in contact with the CdTe crystal to grow, it is more productive than THM. The effect is that crystals of equivalent quality can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるCdTe結晶の製造方法を示す概
略図である。
FIG. 1 is a schematic view showing a method for producing a CdTe crystal according to the present invention.

【符号の説明】[Explanation of symbols]

1 石英アンプル 2 化学的量論組成のCdTe原料 3 保持具 4 Te過剰のCd−Te融液 5 CdTe結晶 1 Quartz Ampoule 2 Stoichiometric CdTe Raw Material 3 Holder 4 Te Excess Cd-Te Melt 5 CdTe Crystal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結晶成長容器内にTe過剰のCd−Te
融液と化学的量論組成のCdTe原料とを互いに接触す
る状態に保持した後、該Te過剰Cd−Te融液を該化
学的量論組成のCdTe原料が接触している方向と反対
の方向から冷却凝固させることを特徴とするCdTe結
晶の製造方法。
1. An excess of Cd—Te in a crystal growth container in a Te growth chamber.
After maintaining the melt and the stoichiometric CdTe raw material in contact with each other, the Te-excessive Cd-Te melt is in a direction opposite to the direction in which the stoichiometric CdTe raw material is in contact. A method for producing a CdTe crystal, which comprises cooling and solidifying from.
【請求項2】 上記のTe過剰Cd−Te融液に塩素を
溶解させておくことを特徴とする請求項1記載のCdT
e結晶の製造方法。
2. The CdT according to claim 1, wherein chlorine is dissolved in the Te-excessive Cd-Te melt.
e Crystal manufacturing method.
JP24621693A 1993-09-07 1993-09-07 Production of cdte crystal Pending JPH0769798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24621693A JPH0769798A (en) 1993-09-07 1993-09-07 Production of cdte crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24621693A JPH0769798A (en) 1993-09-07 1993-09-07 Production of cdte crystal

Publications (1)

Publication Number Publication Date
JPH0769798A true JPH0769798A (en) 1995-03-14

Family

ID=17145246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24621693A Pending JPH0769798A (en) 1993-09-07 1993-09-07 Production of cdte crystal

Country Status (1)

Country Link
JP (1) JPH0769798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101670A1 (en) * 2008-02-12 2009-08-20 Shimadzu Corporation Method for manufacturing radiation detector, radiation detector, and radiation image pickup device
CN103114335A (en) * 2011-11-17 2013-05-22 通用电气公司 Method for producing cadmium telluride or cadmium zinc telluride single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101670A1 (en) * 2008-02-12 2009-08-20 Shimadzu Corporation Method for manufacturing radiation detector, radiation detector, and radiation image pickup device
US8405037B2 (en) 2008-02-12 2013-03-26 Shimadzu Corporation Radiation detector manufacturing method, a radiation detector, and a radiographic apparatus
CN103114335A (en) * 2011-11-17 2013-05-22 通用电气公司 Method for producing cadmium telluride or cadmium zinc telluride single crystal

Similar Documents

Publication Publication Date Title
Ravi The growth of EFG silicon ribbons
EP2319963B1 (en) Manufacturing method for silicon carbide monocrystals
EP1634981B1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
US5871580A (en) Method of growing a bulk crystal
Ciszek et al. Growth and characterization of silicon ribbons produced by a capillary action shaping technique
US4469552A (en) Process and apparatus for growing a crystal ribbon
JPH0788274B2 (en) Method for growing SiC single crystal
US4619811A (en) Apparatus for growing GaAs single crystal by using floating zone
JPH0769798A (en) Production of cdte crystal
US5667585A (en) Method for the preparation of wire-formed silicon crystal
JP2000256091A (en) LIQUID PHASE GROWTH METHOD FOR SINGLE CRYSTAL SiC
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JPH11147785A (en) Production of single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JP4778150B2 (en) Manufacturing method of ZnTe-based compound semiconductor single crystal and ZnTe-based compound semiconductor single crystal
JPS59102891A (en) Preparation of silicon single crystal
JP2537322B2 (en) Semiconductor crystal growth method
JPH0867593A (en) Method for growing single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPS59182292A (en) Production of silicon crystal band
JP3633212B2 (en) Single crystal growth method
CA1062588A (en) Making a continuous crystalline tape of semiconductor material
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPS57129896A (en) Liquid phase epitaxial growing apparatus