JPS5917241A - Liquid phase growth method - Google Patents

Liquid phase growth method

Info

Publication number
JPS5917241A
JPS5917241A JP12693682A JP12693682A JPS5917241A JP S5917241 A JPS5917241 A JP S5917241A JP 12693682 A JP12693682 A JP 12693682A JP 12693682 A JP12693682 A JP 12693682A JP S5917241 A JPS5917241 A JP S5917241A
Authority
JP
Japan
Prior art keywords
solution
substrate
boat
liquid phase
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12693682A
Other languages
Japanese (ja)
Inventor
Takashi Sugino
隆 杉野
Masaru Kazumura
数村 勝
Kazunari Oota
一成 太田
Akio Yoshikawa
昭男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12693682A priority Critical patent/JPS5917241A/en
Publication of JPS5917241A publication Critical patent/JPS5917241A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To grow a crystal of uniform film thickness stably at all times by giving a solution the predetermined difference of height at all times even when the quantity of the solution changes. CONSTITUTION:A GaAs substrate 3 is set up to a carbon boat proper 1, Ga is entered in a solution reservoir, GaAS polycrystals divided into small pieces are added, and a cover 5 in carbon is placed on the polycrystals. Difference between the end section of the cover and a central section is made some value such as 2mm., and the quantity of the solution 4 is determined so that the height of the solution 4 at the central section reaches 4mm.. The crystal is grown for ten min at a growth temperature of 850 deg.C and cooling velocity of 0.5 deg.C/min. The film thickness of a growth layer at the central section of the substrate 3 is 5mum, and film thickness at the end sections of the substrate 3 is 8-10mum. Carbon and quartz used normally as a boat material and materials having the same characteristics as these materials are proper as materials used for the cover at that time.

Description

【発明の詳細な説明】 本発明は液相成長方法に関する。[Detailed description of the invention] The present invention relates to a liquid phase growth method.

近年、液相エピタキシャル法により発光ダイオードや半
導体レーザー等の作製が広く行なわれるようになった。
In recent years, light emitting diodes, semiconductor lasers, and the like have become widely manufactured using liquid phase epitaxial methods.

第1図は従来の液相成長を行なうためのスライドボード
の断面図を示す。同図において1はボート本体、2はス
ライドボート、3は基板、4は溶液、6は石英棒である
。同図において基板3と溶液4を装着し、一定時間、成
長温度に保った後徐々に冷却し、溶液4を基板上にスラ
イドさせて結晶成長を行なう。従来のこの液相成長方法
では、基板3上に得られた成長層の膜厚は基板3表面の
中央部で均一になるが、端部においては中央部より厚く
なる。このため、成長結晶を使用して素子等を作製する
場合、フォトマスク工程での密着が一様とならず、基板
が割れたり均一なフォトエツチングができない。そのた
め素P特性にばらつきが生じる欠点があった。
FIG. 1 shows a cross-sectional view of a slide board for performing conventional liquid phase growth. In the figure, 1 is a boat body, 2 is a slide boat, 3 is a substrate, 4 is a solution, and 6 is a quartz rod. In the figure, a substrate 3 and a solution 4 are mounted, kept at a growth temperature for a certain period of time, and then gradually cooled, and the solution 4 is slid onto the substrate to perform crystal growth. In this conventional liquid phase growth method, the thickness of the grown layer obtained on the substrate 3 is uniform at the center of the surface of the substrate 3, but is thicker at the edges than at the center. For this reason, when a device or the like is manufactured using a grown crystal, the adhesion during the photomask process is not uniform, resulting in cracking of the substrate and failure to achieve uniform photoetching. Therefore, there was a drawback that variations occurred in the elementary P characteristics.

このような現象の生じる原因は結晶成長時の冷却の際、
装着されている溶液がボートの壁と接している部分から
冷却され、局部的に成長結晶元素の過飽和度が高くなる
ためである。この成長層厚を均一化する方法は従来にお
いても考えられている。第2図にはその従来の方法の一
例を示す。ボートの構造は溶液4が基板3上にスライド
した時、基板3の端部の表面」二にある溶液4の高さ−
を中央部の高さh2より低くなるようにし、端部で溶液
の過飽和度による中央部との濃度勾配を小さくし、結晶
成長が端部で促進するのを防止している。
The reason for this phenomenon is that during cooling during crystal growth,
This is because the installed solution is cooled from the part where it is in contact with the wall of the boat, and the degree of supersaturation of the growing crystal elements locally becomes high. Methods for making the thickness of the grown layer uniform have been considered in the past. FIG. 2 shows an example of the conventional method. The structure of the boat is such that when the solution 4 slides onto the substrate 3, the height of the solution 4 at the edge surface of the substrate 3 is -
is set to be lower than the height h2 of the central portion, thereby reducing the concentration gradient between the central portion and the central portion due to the degree of supersaturation of the solution at the ends, thereby preventing crystal growth from being promoted at the ends.

すなわち、スライドボートの溶液だめの内面付近で溶液
の高さを低くすることにより前記問題は解決される。
That is, the above problem is solved by lowering the height of the solution near the inner surface of the solution reservoir of the slide boat.

しかし、第2図のようにスライドボートに細工する構造
では、溶液中で完全にとけきらないソース結晶等が細し
部にひっかかり、溶液のスライドが困難となったり、ス
ライドボートの掃除が困難で、特に端部等に溶液が付着
して残ることがある。
However, with the structure of the slide boat as shown in Figure 2, source crystals that are not completely dissolved in the solution get caught in the narrow parts, making it difficult to slide the solution and making it difficult to clean the slide boat. , the solution may adhere and remain, especially at the edges.

又、溶液だめに入れる溶液量の違いによって中央部と端
部において溶液の高さの差が一定しない。
Furthermore, due to the difference in the amount of solution put into the solution reservoir, the difference in height of the solution between the center and the ends is not constant.

この鯖宋、同一スライドボートで溶液量を少なくして成
長を行なう場合、溶液の高さに中央部と端部で差が和分
に付かず、成長層は端部で厚くなる。
In this case, when growth is performed with a smaller amount of solution in the same slide boat, the difference in the height of the solution between the center and the edges is not balanced out, and the growth layer becomes thicker at the edges.

本発明の液相成長方法は上記のように溶液量が変化して
も常に一定の高さの差を溶液にもたせて成長を行なう方
法を提供するものである。
The liquid phase growth method of the present invention provides a method for performing growth while always maintaining a constant height difference in the solution even when the amount of the solution changes as described above.

以ド、図面をもとにして本発明の液相成長方法の実施例
を説明する。第3図に示すスライドボートの形状−一第
1図に示す従来のボートと同一の形状とし、第1図と共
通部分には同一番号を付している。ここでは溶液4に端
部と中央部で高さの差を設ける方法として溶液の上に置
くふた5の形状に工夫をこらしている。すなわち2ふた
5の溶液に接する面は端部より中央部をくほませろ形状
になっている。ふた5を溶液4の上に1′6″けは、溶
液4はふたの底面(溶液と接する而)の形状に従って整
形される。第3図は溶液4上にふた5を置いた状、態を
示している。
Hereinafter, embodiments of the liquid phase growth method of the present invention will be described based on the drawings. Shape of the slide boat shown in FIG. 3 - The shape is the same as the conventional boat shown in FIG. 1, and parts common to those in FIG. 1 are given the same numbers. Here, in order to create a height difference between the ends and the center of the solution 4, the shape of the lid 5 placed over the solution is devised. That is, the surfaces of the two lids 5 that come into contact with the solution are shaped so that the center part is more rounded than the ends. When the lid 5 is placed 1'6" above the solution 4, the solution 4 is shaped according to the shape of the bottom surface of the lid (the part that contacts the solution). Figure 3 shows the state in which the lid 5 is placed on the solution 4. It shows.

第3図に示すふたの底面の形状においては溶液4の川が
ふた5のくはんだ部分の体積より多い限り、溶液4の高
さに常に端部と中央部で一定の差を付けることが+11
能となる。
In the shape of the bottom of the lid shown in Fig. 3, as long as the volume of the solution 4 is larger than the volume of the soldered part of the lid 5, it is necessary to always maintain a certain difference in the height of the solution 4 between the edges and the center.
Becomes Noh.

々に変化させるような形状もとれる。It can also take on shapes that change from time to time.

ふたにする材料としては、通常ボート桐料として用いら
れるカーボンや石英、そしてこれらと同様な特性を有す
るものが適当である。又、溶液中′\とかず成長用元素
のソースとなる結晶を用いてふたの底面と同様の整形を
行ない、ふたとして使用することも可能である。上記結
晶が溶液をおさえるのに十分な性情をもっていない場合
は、結晶の−ににカーボンや石矢のブロックを置くこと
もできる。
Suitable materials for the lid include carbon and quartz, which are commonly used as boat material, and materials having similar properties. Furthermore, it is also possible to use a crystal as a source of elements for crystal growth in solution to perform the same shaping as the bottom of the lid and use it as a lid. If the above-mentioned crystal does not have sufficient properties to suppress the solution, a block of carbon or stone arrow can be placed between the crystals.

以下にG a A sの結晶成長を例にとり第3図をも
とに本発明の液相成長方法をさらに具体的に述べる。
The liquid phase growth method of the present invention will be described in more detail below with reference to FIG. 3, taking crystal growth of GaAs as an example.

カーボンボート本体1にGa A s基板3を装着し、
溶液/こめにGaを入れ、小さく割ったG a A s
多結晶を加え、第3図に示す形状のカーボンのふた5を
その」二におく。ここでふたの端i!’l<と中央部の
高さの差を2陥とした。中央部での溶液の高さは4mm
となるように溶液の量を決定した。成長温度を850℃
、冷却速度0.5上乃)として成長を10分間行なった
。基板3の中央部での成長層の膜厚ばs itmであり
、基板3の端部においての膜厚は8〜101上mであっ
た。
Attach the GaAs substrate 3 to the carbon boat body 1,
Solution/Put Ga into rice and break it into small pieces Ga A s
Add the polycrystal and place a carbon lid 5 having the shape shown in FIG. Here is the edge of the lid! The difference between the height of 'l< and the center part was defined as 2 defects. The height of the solution at the center is 4 mm
The amount of solution was determined so that Growth temperature 850℃
Growth was carried out for 10 minutes at a cooling rate of 0.5 or higher. The thickness of the grown layer at the center of the substrate 3 was sitm, and the thickness at the edges of the substrate 3 was 8 to 101 m.

比較のため第1図で示した構造のボートにより同一の溶
液量と成長条件で成長を試みた。基板中央部下の成長層
の膜厚は前記の成長膜厚とほぼ同等で51上mであった
が、端部においては15〜201上mとなった。
For comparison, growth was attempted using a boat with the structure shown in Figure 1 using the same solution volume and growth conditions. The film thickness of the grown layer under the center of the substrate was approximately the same as the above-mentioned grown film thickness, which was 51 m, but at the edges it was 15 to 201 m.

この両結果は再現性よく得られ、本発明の優位性を顕著
に示している。上記のG a A s以外の1Il−V
族、■−M族等の結晶の液相成長においても本発明の方
法を用いれは同様の効果を示すことがわかった。
Both results were obtained with good reproducibility and clearly demonstrate the superiority of the present invention. 1Il-V other than the above Ga As
It has been found that the method of the present invention exhibits similar effects in the liquid phase growth of crystals of the group 3, group 1-M, etc.

以上説明した本発明の液相成長方法は、溶液の屑にかか
わらず、溶液の端部と中央部での高さの差が一定となり
常に安定して均一な膜厚の結晶を成長させることができ
る。さらに、ストライドボードの溶液だめ部の側面に凹
部等を設けないので従来のように掃除に手間がかかるこ
ともない。
The liquid phase growth method of the present invention described above has a constant height difference between the edges and the center of the solution, regardless of the presence of debris in the solution, making it possible to grow crystals with a stable and uniform thickness at all times. can. Furthermore, since no recesses or the like are provided on the side surface of the solution reservoir of the stride board, cleaning does not take much time as in the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液相成長方法を説明するためのボートの
断面図、第2図は溶液だめの形状を変化させた他の従来
の液相成長方法を説明するためのボートの断面図、第3
図は溶液−ににふたを装置した本発明の実施例における
液相成長方法を説明するためのボートの断面図、第4図
、第5図はそれぞれ本発明の方法に用いるふたの実施例
を示す図である。 1・・・・・ボート本体、2・・−・スライドボート、
3・・・・基板、4・・・・溶液、5・・・・・・ふた
、6・・・・・石英棒。
FIG. 1 is a sectional view of a boat for explaining a conventional liquid phase growth method, and FIG. 2 is a sectional view of a boat for explaining another conventional liquid phase growth method in which the shape of the solution reservoir is changed. Third
The figure is a cross-sectional view of a boat for explaining the liquid phase growth method in an embodiment of the present invention in which a lid is installed on the solution. FIG. 1...Boat body, 2...Slide boat,
3...Substrate, 4...Solution, 5...Lid, 6...Quartz rod.

Claims (1)

【特許請求の範囲】[Claims] ・ト坦でない端面を有する物体を、前記端面が基板と相
対向するように配置し、前記端面と前記基板との間に溶
液を介在させることにより、前記溶液のjgさを前記基
板上で変化させる液相成長方法。
・By arranging an object having an uneven end surface so that the end surface faces the substrate and interposing a solution between the end surface and the substrate, the jg of the solution is changed on the substrate. liquid phase growth method.
JP12693682A 1982-07-20 1982-07-20 Liquid phase growth method Pending JPS5917241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12693682A JPS5917241A (en) 1982-07-20 1982-07-20 Liquid phase growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12693682A JPS5917241A (en) 1982-07-20 1982-07-20 Liquid phase growth method

Publications (1)

Publication Number Publication Date
JPS5917241A true JPS5917241A (en) 1984-01-28

Family

ID=14947563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12693682A Pending JPS5917241A (en) 1982-07-20 1982-07-20 Liquid phase growth method

Country Status (1)

Country Link
JP (1) JPS5917241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626305A (en) * 1992-07-10 1994-02-01 Hitachi Ltd Turbine control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626305A (en) * 1992-07-10 1994-02-01 Hitachi Ltd Turbine control device

Similar Documents

Publication Publication Date Title
US4689109A (en) String stabilized ribbon growth a method for seeding same
JPS5917241A (en) Liquid phase growth method
KR0165847B1 (en) Method of preparation for semiconductor wafer
JPH04193798A (en) Production of sic single crystal
JPS6129121A (en) Gaas liquid phase epitaxial growth method
JPS5941959B2 (en) Liquid phase epitaxial growth equipment
JPS6129122A (en) Gaas liquid phase epitaxial growth method
van Oirschot et al. LPE growth of DH laser structures with the double source method
JPH0571558B2 (en)
JPH0243723A (en) Solution growth device
JPH0338831Y2 (en)
JPH0454371B2 (en)
JPH08316586A (en) Method for measuring dislocation density of ii-vi compound semiconductor single crystal
JPH0247435B2 (en) GAASEKISOEPITAKISHARUSEICHOHO
JPS57129895A (en) Liquid phase epitaxial growing apparatus
JPS60118696A (en) Method for growing indium phosphide single crystal
JPH04321593A (en) Liquid phase epitaxial growth
JPS5816524A (en) Liquid phase epitaxial growth
JPS599912A (en) Liquid phase crystal growth method
JPS52109866A (en) Liquid epitaxial growing method
JPS63151698A (en) Method for liquid epitaxy
JPH03183691A (en) Growing method for single crystal
JPS57184274A (en) Semiconductor laser and manufacture thereof
JPS5375176A (en) Liquid phase epotaxial growth method of compound semiconductor
JPH10291890A (en) Production of compound semiconductor single crystal