JPS5991673A - Button type alkaline manganese battery - Google Patents

Button type alkaline manganese battery

Info

Publication number
JPS5991673A
JPS5991673A JP20256182A JP20256182A JPS5991673A JP S5991673 A JPS5991673 A JP S5991673A JP 20256182 A JP20256182 A JP 20256182A JP 20256182 A JP20256182 A JP 20256182A JP S5991673 A JPS5991673 A JP S5991673A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
type alkaline
alkaline manganese
button type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20256182A
Other languages
Japanese (ja)
Inventor
Takakazu Fukuchi
高和 福地
Kazutoshi Takeda
和俊 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP20256182A priority Critical patent/JPS5991673A/en
Publication of JPS5991673A publication Critical patent/JPS5991673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/12Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To increase battery performance by specifying the total amount of electrolyte in a button type alkaline manganese battery. CONSTITUTION:In a button type alkaline manganese battery, a pellet of a positive mix 2 containing MnO2 and a negative material 6 containing amalgamated zinc are placed in a positive can 1 and a negative can 7 respectively. An alkali hydroxide electrolyte is impregnated in the electrode materials 2 and 6. The ratio of the total electrolyte quantity A in the battery to the theoretical capacity B mAh of zinc active material is specified to meet the following indefinite equation; 0.8<A/B<1.1. Thereby, discharge capacity and leakage resistance of the battery is increased.

Description

【発明の詳細な説明】 本発明は、ボタン型アルカリマンガン電池に関するもの
で、総電解液量を適切に規制することにより、電池性能
を向上させることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a button-type alkaline manganese battery, and aims to improve battery performance by appropriately regulating the total amount of electrolyte.

近年、電卓、カメラ、ゲームウォッチ等、多数の電子機
器製品に使用されているボタン型アルカリマンガン電池
は、従来の高価な銀電池に比べて廉価な原料である二酸
化マンガンを使用しているため、急速に使用数量が増大
してきている。しかし、安定な放電電圧を有する銀電池
に比べ、アルカリマンガン電池は、放電が進行するにつ
れて電圧が下降するため、放電容量が小さくなるという
弱点があった。これは、使用機器が作動する最低電圧が
1.2vのとき、銀電池の約60チの容量しか得られな
いという性能からも示されている。
In recent years, button-type alkaline manganese batteries, which are used in many electronic products such as calculators, cameras, and game watches, use manganese dioxide, a cheaper raw material than conventional expensive silver batteries. The quantity used is rapidly increasing. However, compared to a silver battery which has a stable discharge voltage, an alkaline manganese battery has a disadvantage in that the voltage decreases as discharge progresses, resulting in a smaller discharge capacity. This is also shown by the performance of a silver battery, which can only provide a capacity of about 60 cm when the lowest voltage at which the equipment is operated is 1.2V.

従来のボタン型アルカリ電池は、放電容量をできうるか
ぎり大きくしたいために、正・負極活物質を最大限充填
した設計となり、その結果として電池内部に注入する電
解液jIiを少なくせざるをえなかった。アルカリマン
ガン電池は、銀電池と異なシミ池反応により水を消耗す
る( M n 02 +’、4Zn+V2H*o−+M
nooa+14zno)ため、電解液量と活物質の利用
率とは、密接な関係があることは知られている。
Conventional button-type alkaline batteries are designed to be filled with the maximum amount of positive and negative electrode active materials in order to maximize the discharge capacity, and as a result, it is necessary to reduce the amount of electrolyte jIi injected into the battery. Ta. Alkaline manganese batteries consume water due to a stain pond reaction, which is different from silver batteries (M n 02 +', 4Zn + V2H * o - + M
Therefore, it is known that there is a close relationship between the amount of electrolytic solution and the utilization rate of the active material.

また一方で、アルカリ液濃度の検討では、電池反応によ
る水の消耗で電解液が濃縮され、約55チ以上になると
KOH固形物が生じて、電池性能に悪影響を及ぼすこと
が指摘され、電池反応が終了する時点にお諭て、KOH
固形物が生じない電解液量と亜鉛の理論容量に対する電
解液量が提唱されてきた。これらの指摘に基づき設計さ
れた従来のボタン型アルカリ電池の活物質利用率は90
チ以下という欠点があった。
On the other hand, in a study of alkaline solution concentration, it was pointed out that the electrolyte becomes concentrated due to water consumption due to battery reaction, and when the concentration exceeds about 55%, KOH solids are generated, which has an adverse effect on battery performance. Please advise at the end of the KOH
The amount of electrolyte that does not produce solids and the amount of electrolyte that corresponds to the theoretical capacity of zinc have been proposed. The active material utilization rate of conventional button-type alkaline batteries designed based on these findings is 90%.
It had the disadvantage of being below 1.

本発明は、このような従来の欠点を除去し、電解液量を
適正に規制することにより、活物質の利用率を向上させ
電池性能を改善するものである。
The present invention eliminates such conventional drawbacks and appropriately regulates the amount of electrolyte, thereby improving the utilization rate of active materials and improving battery performance.

以下、本発明を実施例により説明する。The present invention will be explained below with reference to Examples.

第1図は実施例に基づく電池の断面図である。FIG. 1 is a cross-sectional view of a battery based on an example.

直径11.6m、’高さ5.4116のボタン型電池で
あり、1は正極缶、2はグラファイト、テフロン樹脂を
含む二酸化マンガン正極合剤、3はセパレータ、4は含
浸材、5はバッキング、6は1oチ水銀を含む氷化亜鉛
のゲル化合剤、7は負椿缶である。
It is a button type battery with a diameter of 11.6 m and a height of 5.4116 m, 1 is a positive electrode can, 2 is a manganese dioxide positive electrode mixture containing graphite and Teflon resin, 3 is a separator, 4 is an impregnating material, 5 is a backing, 6 is a gel compound of frozen zinc containing 10% mercury, and 7 is a camellia can.

正極合剤2は、650qを4t/、d  の圧力で成形
したベレン)t−用いた。負極合剤6は165qで亜鉛
の理論容量120mAhとした。電解液は、あらかじめ
正極合剤2に一部含浸させ、一部を負極合剤側に注入す
る方式を採用し、総電解液敬を90.10o;110,
120,150,140 μ2の6水準で電池を製作し
た。使用した電解液は9 M/ItKOH溶液に5チZ
nOを電解させたものである。
As the positive electrode mixture 2, 650q was used (Belen) which was molded at a pressure of 4t/d. The negative electrode mixture 6 was 165q and had a theoretical zinc capacity of 120 mAh. The electrolytic solution is partially impregnated into the positive electrode mixture 2 in advance, and a part is injected into the negative electrode mixture side, so that the total electrolytic solution is 90.10°C; 110°C.
Batteries were manufactured at six levels: 120, 150, and 140 μ2. The electrolyte used was 9 M/ItKOH solution with 5
It is made by electrolyzing nO.

放電容iih、負荷抵抗7.5 KΩで放電し、終止電
圧を1.2vにしたときの放電時間を測定した。
The battery was discharged with a discharge capacity iih and a load resistance of 7.5 KΩ, and the discharge time was measured when the final voltage was set to 1.2V.

表−1及び図−24C,放電容量の亜鉛理論容量に対す
る百分率(利用率)と40℃、90%RHの恒温槽に2
000時間放置したときの漏液不良発生率を示した。
Table 1 and Figure 24C, percentage of discharge capacity (utilization rate) of zinc theoretical capacity and 2
The rate of occurrence of leakage defects after being left for 000 hours is shown.

この結果から、電池内に注入する電解液量が増加するに
したがい、負極亜鉛の利用率が上昇していくことが判っ
た。しかし、耐漏液性については、電解液量が130μ
[以上になると、悪化していくことが確認され、負極亜
鉛の利用率と耐漏液性とを考慮した電解、液量に規制す
ることで、優れた電池特性が得られる仁とが判明した。
From this result, it was found that as the amount of electrolyte injected into the battery increased, the utilization rate of negative electrode zinc increased. However, regarding leakage resistance, the amount of electrolyte is 130μ
[It was confirmed that the battery deteriorates when the battery is exceeded, and it was found that excellent battery characteristics could be obtained by regulating the electrolysis and liquid volume in consideration of the utilization rate of negative electrode zinc and leakage resistance.

電解液量を増加させた場合に耐漏液性が悪化する原因は
、限られた電池容積以上に充填物質を詰め込むことによ
り、電池形状が変形して、電池封口部のシール性が弱ま
ることにある。これは、漏液した電池の寸法を測定する
ことから容易に判断できる、また、前記の電池について
は、放電容量、耐漏液性のみならず、電気特性、自己放
電率等、他の電池特性を評価した結果、従来のレベルと
差がなかったことを確認している。
The reason why leakage resistance worsens when the amount of electrolyte is increased is that filling material beyond the limited battery capacity deforms the battery shape and weakens the sealing performance of the battery seal. . This can be easily determined by measuring the dimensions of the leaking battery.In addition, for the above-mentioned batteries, other battery characteristics such as electrical characteristics and self-discharge rate, as well as discharge capacity and leakage resistance, can be determined. The evaluation results confirmed that there was no difference from the previous level.

以上のように、本発明によれば、負極亜鉛理論容量に対
する電解液量を適正に規制することによシ、高性能のボ
タン型アルカリマンガン電池の製造が可能になる。また
、ボタン型アルカリマンガン電池を使用する電子機器に
おいては、電池使用寿命を延長させ、ユーザーにとって
煩雑な電池交換を減少させる等の効果がある。
As described above, according to the present invention, a high-performance button-type alkaline manganese battery can be manufactured by appropriately regulating the amount of electrolyte relative to the theoretical capacity of negative electrode zinc. Furthermore, in electronic devices using button-type alkaline manganese batteries, there are effects such as extending the battery life and reducing the troublesome battery replacement for the user.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例のボタン型アルカリマンガン電池を示
す断面図、第2図は、実施例に基づく電解液量変化に対
する負極亜鉛の利用率及び漏液発生率を示すグラフであ
る。 2・・・・・・正 極 3・・・・・・セパレータ 6・・・・・・負 極 以   上 出願人 株式会社 第二精工舎
FIG. 1 is a cross-sectional view showing a button-type alkaline manganese battery according to an example, and FIG. 2 is a graph showing the utilization rate of negative electrode zinc and leakage rate with respect to changes in the amount of electrolyte based on the example. 2...Positive electrode 3...Separator 6...Negative electrode and above Applicant Daini Seikosha Co., Ltd.

Claims (1)

【特許請求の範囲】 正極に二酸化マンガン、負極に氷化亜鉛、電解液に水酸
化アルカリ溶液を用いるボタン型アルカリ電池において
、下記の不等式を満足するように電解液を規制したこと
を特徴とするボタン型アルカリマンガン電池。 0.8<A/B<1.1 A:電池e1の総電解液量(μμ) B:亜鉛活物質の理論容量(mAh)
[Claims] A button-type alkaline battery using manganese dioxide as a positive electrode, frozen zinc as a negative electrode, and an alkaline hydroxide solution as an electrolyte, characterized in that the electrolyte is regulated so as to satisfy the following inequality: Button type alkaline manganese battery. 0.8<A/B<1.1 A: Total electrolyte amount of battery e1 (μμ) B: Theoretical capacity of zinc active material (mAh)
JP20256182A 1982-11-18 1982-11-18 Button type alkaline manganese battery Pending JPS5991673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20256182A JPS5991673A (en) 1982-11-18 1982-11-18 Button type alkaline manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20256182A JPS5991673A (en) 1982-11-18 1982-11-18 Button type alkaline manganese battery

Publications (1)

Publication Number Publication Date
JPS5991673A true JPS5991673A (en) 1984-05-26

Family

ID=16459530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20256182A Pending JPS5991673A (en) 1982-11-18 1982-11-18 Button type alkaline manganese battery

Country Status (1)

Country Link
JP (1) JPS5991673A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579068A (en) * 1980-06-17 1982-01-18 Matsushita Electric Ind Co Ltd Button-type alkaline battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579068A (en) * 1980-06-17 1982-01-18 Matsushita Electric Ind Co Ltd Button-type alkaline battery

Similar Documents

Publication Publication Date Title
US3765943A (en) Fabrication of lead-acid batteries
US4209574A (en) Long-life alkaline primary cell having low water content
KR900702588A (en) Rechargeable alkaline manganese dioxide-zinc cell with improved measuring capacity
EP1667257A1 (en) Alkaline battery
JPS6241381B2 (en)
JPS5991673A (en) Button type alkaline manganese battery
JP2002075354A (en) Alkaline battery and method for manufacturing its positive electrode active material
JP3505823B2 (en) Flat alkaline battery
JP2019160672A (en) Flat type alkaline primary battery
JP2002117859A (en) Alkaline battery
JP3011243B2 (en) Positive electrode mixture for manganese dry battery and manganese dry battery using the same
JPH11345613A (en) Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery using the same and alkaline storage battery
JPH04171665A (en) Button type alkaline battery
JP2001297775A (en) Alkali cell
JP2006179429A (en) Alkaline dry battery
JPH07335227A (en) Alkaline battery
JPH05166540A (en) Method for charging secondary battery
JP2003123745A (en) Alkaline zinc battery
JP3622354B2 (en) Alkaline battery
JPS59205156A (en) Alkaline manganese battery
JPS6178064A (en) Silver oxide battery
JP2006024447A (en) Alkaline battery and electronic device mounting the same
JP2000357511A (en) Sealed alkaline storage battery
JP2001297776A (en) Alkali cell
JPS59175567A (en) Button type alkaline manganese battery