JPH05166540A - Method for charging secondary battery - Google Patents

Method for charging secondary battery

Info

Publication number
JPH05166540A
JPH05166540A JP3332140A JP33214091A JPH05166540A JP H05166540 A JPH05166540 A JP H05166540A JP 3332140 A JP3332140 A JP 3332140A JP 33214091 A JP33214091 A JP 33214091A JP H05166540 A JPH05166540 A JP H05166540A
Authority
JP
Japan
Prior art keywords
charging
battery
secondary battery
zinc
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3332140A
Other languages
Japanese (ja)
Inventor
Takayuki Shoji
孝之 庄司
Kenichi Takahashi
健一 高橋
Masanori Ichida
正典 市田
Shintaro Suzuki
信太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Tosoh Corp filed Critical Toshiba Battery Co Ltd
Priority to JP3332140A priority Critical patent/JPH05166540A/en
Publication of JPH05166540A publication Critical patent/JPH05166540A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To provide a safe method for charging a sealed secondary battery having a long charge and discharge cycle life whereby generation of gas during charging can be restrained together with swelling of the battery due to sealing during charging. CONSTITUTION:An aqueous solution type secondary battery having manganese- dioxide-zinc as active materials and zinc sulfate as main electrolyte is charged at a properly set charging voltage of 1.55 to 1.95V per single cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正極活物質として二酸
化マンガン、負極活物質として亜鉛、電解液として硫酸
亜鉛を主電解質とする水溶液を用いる水溶液系二次電池
の充電方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging an aqueous secondary battery using manganese dioxide as a positive electrode active material, zinc as a negative electrode active material, and an aqueous solution containing zinc sulfate as a main electrolyte as an electrolyte.

【0002】[0002]

【従来の技術】従来から、電池は、電子機器や電気機器
の電源として広く用いられている。最近、各種電子機器
及び電気機器の小型高性能化、ポータブル化、パーソナ
ル化に伴い、長時間使用でき、しかも経済的な二次電池
の需要が急増している。
2. Description of the Related Art Conventionally, batteries have been widely used as a power source for electronic devices and electric devices. 2. Description of the Related Art Recently, demand for secondary batteries that can be used for a long time and that is economical is rapidly increasing with miniaturization and high performance of various electronic devices and electric devices, making them portable, and personalization.

【0003】このような観点から、特に経済性に優れて
いる、正極活物質に二酸化マンガン、負極活物質に亜鉛
を用いる二酸化マンガン−亜鉛電池が二次電池として研
究されている(特開昭61−248370号)。
From this point of view, a manganese dioxide-zinc battery using manganese dioxide as the positive electrode active material and zinc as the negative electrode active material, which is particularly economical, has been studied as a secondary battery (Japanese Patent Laid-Open No. Sho 61-61). -248370).

【0004】ところが、水溶液を電解液として用いる二
次電池は、一般に、充電末期あるいは過充電時に、系内
に存在する水の電気分解が起こり、発生したガスにより
密閉された電池の内部圧力が上昇し、破裂や液漏れなど
の問題が起きるものであり、電池密閉化および内部圧力
上昇防止に対して様々な方法が図られてきた。
However, in a secondary battery using an aqueous solution as an electrolytic solution, water present in the system is generally electrolyzed at the end of charging or overcharge, and the internal pressure of the battery sealed by the generated gas rises. However, problems such as rupture and liquid leakage occur, and various methods have been attempted for sealing the battery and preventing internal pressure rise.

【0005】すなわち、その方法は、正極の電気容量を
負極の電気容量より小さく設計し、発生するガスを正極
からの酸素のみとし、この酸素ガスを負極で吸収させ
る、いわゆるノイマン方式である。
That is, the method is a so-called Neumann method in which the electric capacity of the positive electrode is designed to be smaller than the electric capacity of the negative electrode, the only gas generated is oxygen from the positive electrode, and this oxygen gas is absorbed by the negative electrode.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、例え
ば、Ni−Cd二次電池を例にとればわかるように、ノ
イマン方式を適用するためには負極容量を正極容量の2
倍以上に設計する必要があるため電池の放電容量を大き
く設計できないという問題を有しており、また充電終了
の検出が難しいために複雑な充電器を必要とするという
欠点を有している。また、電池には正極と負極の内部短
絡を防ぐセパレータが不可欠であり、そのセパレータが
酸素ガスの拡散に影響を与え、酸素ガス吸収が効率よく
行われ難くし、急速充電において内部圧力の上昇防止が
十分になされないという欠点を有していた。
However, for example, as can be seen from the Ni-Cd secondary battery, the negative electrode capacity is set equal to the positive electrode capacity 2 in order to apply the Neumann method.
There is a problem that the discharge capacity of the battery cannot be designed to be large because it needs to be designed more than twice, and it has a drawback that a complicated charger is required because it is difficult to detect the end of charging. In addition, a separator that prevents an internal short circuit between the positive electrode and the negative electrode is indispensable for the battery, and that separator affects the diffusion of oxygen gas, making it difficult to absorb oxygen gas efficiently and preventing the internal pressure from rising during rapid charging. Had the drawback that it was not done enough.

【0007】二酸化マンガン−亜鉛二次電池も水溶液を
電解液として用いる二次電池であるため、以上のような
問題が生じていたが、これを解決する方法はまだ行われ
ていないのが現状であった。
Since the manganese dioxide-zinc secondary battery is also a secondary battery which uses an aqueous solution as an electrolytic solution, the above problems have occurred, but the method for solving this problem has not yet been implemented. there were.

【0008】本発明は以上の課題に鑑みてなされたもの
であり、その目的は、正極活物質に二酸化マンガン、負
極活物質に亜鉛、電解液に硫酸亜鉛を主電解質とする水
溶液を用いる水溶液系二次電池において、充電時のガス
発生を防止することにより、充電による電池の内部圧力
上昇を抑制し、安全性の高い二次電池の充電方法を提供
することにある。
The present invention has been made in view of the above problems, and an object thereof is an aqueous solution system using an aqueous solution containing manganese dioxide as a positive electrode active material, zinc as a negative electrode active material, and zinc sulfate as a main electrolyte as an electrolytic solution. It is an object of the present invention to provide a highly safe secondary battery charging method by preventing gas generation during charging in a secondary battery, thereby suppressing an increase in internal pressure of the battery due to charging.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために、正極活物質に二酸化マンガン、負
極活物質に亜鉛、電解質に硫酸亜鉛を主電解質とする水
溶液を用いる水溶液系二次電池の充電方法について鋭意
検討を行った結果、適切な充電電圧を設定することによ
り、上記の問題点を解決できることを見出し本発明を完
成した。
In order to solve the above problems, the present inventors have used an aqueous solution containing manganese dioxide as a positive electrode active material, zinc as a negative electrode active material, and zinc sulfate as a main electrolyte as an electrolyte. As a result of earnestly studying the method of charging the secondary battery, the inventors have found that the above problems can be solved by setting an appropriate charging voltage, and completed the present invention.

【0010】すなわち、本発明は、正極活物質に二酸化
マンガン、負極活物質に亜鉛、電解液に硫酸亜鉛を主電
解質とする水溶液を用いる水溶液系二次電池について、
充電設定電圧を単セル当たり1.55〜1.95とする
充電方法である。
That is, the present invention relates to an aqueous secondary battery using manganese dioxide as a positive electrode active material, zinc as a negative electrode active material, and an aqueous solution containing zinc sulfate as a main electrolyte as an electrolyte.
This is a charging method in which the charging set voltage is 1.55 to 1.95 per unit cell.

【0011】以下、本発明についてさらに詳細に説明す
る。
The present invention will be described in more detail below.

【0012】本発明は、二酸化マンガン‐亜鉛の二次電
池の充電において、充電設定電圧の範囲が単セル当たり
1.55〜1.95Vとすることを特徴とするものであ
り、充電設定電圧が1.55未満であると充電完了まで
長時間を要し、また、充電設定電圧が1.95Vを越え
ると過電圧を含む水の電気分解電圧を越えるために正極
の充電効率が低下するおそれがある。なお、本発明で
は、充電時のガス発生をより防止し、電池の内部圧力上
昇を抑制するため、充電設定電圧が単セル当たり1.6
0〜1.75Vであることが特に好ましい。
The present invention is characterized in that when charging a manganese dioxide-zinc secondary battery, the charge set voltage range is 1.55 to 1.95 V per unit cell. If it is less than 1.55, it takes a long time to complete the charging, and if the charging set voltage exceeds 1.95V, it may exceed the electrolysis voltage of water including overvoltage and the charging efficiency of the positive electrode may decrease. . In the present invention, in order to further prevent gas generation during charging and suppress an increase in internal pressure of the battery, the charge setting voltage is 1.6 per unit cell.
It is particularly preferable that the voltage is 0 to 1.75V.

【0013】本発明においては、充電設定電圧が1.5
5〜1.95Vの範囲内になるものであれば、充電用の
電源は、定電圧電源、定電流電源、定電力電源のいずれ
であっても良く、また、充電方式は、定電圧充電方式、
定電流充電方式、これらの組合わせからなる充電方式の
いずれであっても良い。なお、短時間でかつ効率よく充
電するために、設定電圧まで定電流充電を行い、設定電
圧到達以降は定電圧充電に切り替わる充電方式が特に好
ましい。
In the present invention, the charge setting voltage is 1.5.
The power supply for charging may be any of a constant voltage power supply, a constant current power supply, and a constant power power supply as long as it is in the range of 5 to 1.95 V, and the charging method is a constant voltage charging method. ,
Either a constant current charging method or a charging method composed of a combination thereof may be used. In addition, in order to charge efficiently in a short time, a charging method in which constant current charging is performed up to a set voltage and switching to constant voltage charging after reaching the set voltage is particularly preferable.

【0014】本発明の二次電池の電解液は、主電解質と
して硫酸亜鉛を用いるものであるが、その濃度は、イオ
ン伝導度が大きく、正極の利用率を損なわず可逆性を保
たせるなどの理由から硫酸亜鉛を0.5〜2mol/l
含む水溶液が望ましい。
The electrolytic solution of the secondary battery of the present invention uses zinc sulfate as the main electrolyte, and its concentration is such that the ionic conductivity is large and the reversibility is maintained without impairing the utilization factor of the positive electrode. 0.5 to 2 mol / l of zinc sulfate for the reason
An aqueous solution containing it is desirable.

【0015】また、本発明の二次電池の負極活物質とし
て用いられる亜鉛は特に限定されるものではなく、例え
ば、亜鉛板、亜鉛粉末、また他の材質で構成された電極
基板上にメッキや圧着等の方法で形成された亜鉛等があ
げられる。また、亜鉛粉末で電極を構成する際用いる粘
結剤、例えばポリアクリル酸ソーダ等の糊状物質を含ん
でいてもかまわない。
Further, the zinc used as the negative electrode active material of the secondary battery of the present invention is not particularly limited, and for example, zinc plate, zinc powder, or an electrode substrate composed of other materials may be plated or plated. Examples thereof include zinc formed by a method such as pressure bonding. Further, a binder used when forming the electrode with zinc powder, for example, a paste-like substance such as sodium polyacrylate may be contained.

【0016】さらに、本発明の二次電池の正極活物質と
して用いられる二酸化マンガンには、天然二酸化マンガ
ン、化学二酸化マンガン、電解二酸化マンガンなどが用
いられるが、このうち電池の正極活物質として活性が高
い電解二酸化マンガンを用いることが好ましい。また、
これら二酸化マンガンはそのままの状態で用いることも
できるが、アセチレンブラックなどの導電性炭素粉末を
混合して用いれば導電性の向上や電解液の保持性の向上
を図ることができるので好ましい。さらに、このような
正極活物質をネット状の集電基板にプレス成型して正極
としたり、スクリーン印刷などの方法により薄膜とし、
任意形状の正極とするために、これら正極活物質に粘結
剤などを混合し成型しても良い。
Further, as the manganese dioxide used as the positive electrode active material of the secondary battery of the present invention, natural manganese dioxide, chemical manganese dioxide, electrolytic manganese dioxide and the like are used. It is preferred to use high electrolytic manganese dioxide. Also,
These manganese dioxides can be used as they are, but it is preferable to use a mixture of conductive carbon powder such as acetylene black because the conductivity can be improved and the electrolyte retaining property can be improved. Further, such a positive electrode active material is press-molded on a net-shaped current collecting substrate to form a positive electrode, or a thin film is formed by a method such as screen printing,
In order to obtain a positive electrode having an arbitrary shape, a binder or the like may be mixed with these positive electrode active materials and molded.

【0017】[0017]

【実施例】本発明をさらに詳細に説明するために、以下
に実施例をあげるが、本発明はこれらに限定されるもの
ではない。
EXAMPLES In order to explain the present invention in more detail, examples will be given below, but the present invention is not limited thereto.

【0018】実施例1 表面積12cm2 、厚さ0.3mmのSUS430を水
洗及びアセトン脱脂した後、2mol/lの硫酸亜鉛電
解浴に入れ、対極に純度99.9%の亜鉛板を用いて6
0mA定電流で15時間電解し、SUS430電極基板
上に亜鉛を電析させ電池の負極とした。電解前後の重量
変化を測定し、亜鉛の電析効率を計算したところ、ほと
んど定量的に亜鉛が電析していることが確認された。こ
の負極の上に、ガラス繊維濾紙からなるセパレータ及
び、1gの電解二酸化マンガンと0.3gのアセチレン
プラックからなる正極合剤を置き、これに、3mlの2
mοl/l硫酸亜鉛水溶液を滴下含浸させた。さらに、
これらを圧力センサーを取り付けたアクリル樹脂製の密
閉容器にいれ、充電時の内部圧力変化測定用密閉型電池
とした。この電池の起電力は、1.55Vであり、測定
開始前の内部圧力は0kgf/cm2 であることを確認
した。
Example 1 SUS430 having a surface area of 12 cm 2 and a thickness of 0.3 mm was washed with water and degreased with acetone, then placed in a 2 mol / l zinc sulfate electrolytic bath, and a zinc plate having a purity of 99.9% was used as a counter electrode.
Electrolysis was carried out for 15 hours at a constant current of 0 mA, and zinc was electrodeposited on the SUS430 electrode substrate to give a negative electrode for the battery. When the weight change before and after electrolysis was measured and the zinc electrodeposition efficiency was calculated, it was confirmed that zinc was electrodeposited almost quantitatively. A separator made of glass fiber filter paper and a positive electrode mixture made of 1 g of electrolytic manganese dioxide and 0.3 g of acetylene plaque were placed on the negative electrode, and 3 ml of
A mol / l zinc sulfate aqueous solution was dropped and impregnated. further,
These were placed in an acrylic resin airtight container equipped with a pressure sensor to obtain a sealed battery for measuring internal pressure change during charging. It was confirmed that the electromotive force of this battery was 1.55 V and the internal pressure before the start of measurement was 0 kgf / cm 2 .

【0019】この電池を50mA定電流で放電終止電圧
0.3Vまで放電させた後、設定電圧1.6Vで10時
間の定電圧充電を行い電池の内部圧力変化及び充電電流
の変化を測定した。さらに充電終了後50mA定電流で
放電終止電圧0.3Vまで放電させて充電後の放電容量
を測定し充電効率を求めた。充電終了時の電池内部圧力
は0kgf/cm2 であり、このときの充電効率は95
%であった。電池内部圧力の上昇がみられず、充電効率
も高いことから、本発明の充電方法を用いることにより
充電による強制的なガス発生は起きていないものと考え
られる。
After discharging this battery at a constant current of 50 mA to a discharge end voltage of 0.3 V, constant voltage charging was performed at a set voltage of 1.6 V for 10 hours, and changes in the internal pressure of the battery and changes in the charging current were measured. Further, after the end of charging, the battery was discharged at a constant current of 50 mA to a discharge end voltage of 0.3 V, the discharge capacity after charging was measured, and the charging efficiency was obtained. At the end of charging, the internal pressure of the battery was 0 kgf / cm 2 , and the charging efficiency at this time was 95 kgf / cm 2.
%Met. Since the internal pressure of the battery did not rise and the charging efficiency was high, it is considered that forced gas generation due to charging did not occur by using the charging method of the present invention.

【0020】実施例2 実施例1と同様にして作製した電池を用いて、50mA
定電流で放電終止電圧0.3Vまで放電させた後、設定
電圧1.75Vで10時間の定電圧充電を行い電池の内
部圧力変化及び充電電流の変化を測定した。さらに充電
終了後50mA定電流で放電終止電圧0.3Vまで放電
させて充電後の放電容量を測定し充電効率を求めた。充
電終了時の電池内部圧力は0kgf/cm2 であり、こ
のときの充電効率は97%であった。電池内部圧力の上
昇がみられず、充電効率も高いことから、本発明の充電
方法を用いることにより充電による強制的なガス発生は
起きていないものと考えられる。
Example 2 Using a battery manufactured in the same manner as in Example 1, 50 mA was used.
After discharging at a constant current to a discharge end voltage of 0.3 V, constant voltage charging was performed at a set voltage of 1.75 V for 10 hours, and changes in the internal pressure of the battery and changes in the charging current were measured. Further, after the end of charging, the battery was discharged at a constant current of 50 mA to a discharge end voltage of 0.3 V, the discharge capacity after charging was measured, and the charging efficiency was obtained. The internal pressure of the battery at the end of charging was 0 kgf / cm 2 , and the charging efficiency at this time was 97%. Since the internal pressure of the battery did not rise and the charging efficiency was high, it is considered that forced gas generation due to charging did not occur by using the charging method of the present invention.

【0021】実施例3 実施例1と同様にして作製した電池を用いて、50mA
定電流で放電終止電圧0.3Vまで放電させた後、設定
電圧1.9Vで10時間の定電圧充電を行い電池の内部
圧力変化及び充電電流の変化を測定した。さらに充電終
了後、50mA定電流で放電終止電圧0.ЗVまで放電
させて充電後の放電容量を測定し充電効率を求めた。充
電終了時の電池内部圧力は0.5kgf/cm2 であ
り、このときの充電効率は81%であった。
Example 3 A battery manufactured in the same manner as in Example 1 was used to obtain 50 mA.
After discharging at a constant current to a discharge end voltage of 0.3 V, constant voltage charging was performed at a set voltage of 1.9 V for 10 hours, and changes in the internal pressure of the battery and changes in the charging current were measured. Furthermore, after the end of charging, the discharge end voltage was 0. The discharge efficiency after charging was measured by discharging to V. The internal pressure of the battery at the end of charging was 0.5 kgf / cm 2 , and the charging efficiency at this time was 81%.

【0022】充電時の電流値の変化は、充電時間の経過
と共に徐々に減少し一旦0に近ずくが、充電末期に電流
値が若干上昇し定常電流を示した。また、電池内部圧力
の上昇は充電末期に観測されたことから、この充電方法
を用いることによる強制的なガス発生は起きず、充電末
期にのみ定常的な酸素発生による電池内部圧力の上昇が
起きるものと考えられる。
The change in the current value during charging gradually decreased with the passage of the charging time and once approached 0, but the current value slightly increased at the end of charging and showed a steady current. In addition, since the rise in the internal pressure of the battery was observed at the end of charging, forced gas generation did not occur by using this charging method, and the internal pressure of the battery increased due to steady oxygen generation only at the end of charging. Thought to be a thing.

【0023】実施例4 実施例1と同様にして作製した電池を用いて、50mA
定電流で放電終止電圧0.3Vまで放電させた後、電池
電圧が1.75Vに達するまで50mA定電流で、電池
電圧が1.75Vに達してからは1.75V定電で2時
間充電を行うという充電方法で、充放電サイクル試験を
行った。この充電方法での充電効率は、98%であり、
充電終了時の電池内部圧力は0kgf/cm2 であっ
た。充放電サイクル試験の放電容量変化を図1に示す。
その結果、充放電サイクル200回目でも電池容量及び
充電効率の低下は見られず、また、電池の内部圧力上昇
もほとんど見られなかった。
Example 4 A battery manufactured in the same manner as in Example 1 was used to obtain 50 mA.
After discharging at a constant current to a discharge end voltage of 0.3V, charge at 50mA constant current until the battery voltage reaches 1.75V, and then charge at 1.75V constant voltage for 2 hours after the battery voltage reaches 1.75V. The charging / discharging cycle test was performed by the charging method of performing. The charging efficiency with this charging method is 98%,
The internal pressure of the battery at the end of charging was 0 kgf / cm 2 . The change in discharge capacity in the charge / discharge cycle test is shown in FIG.
As a result, the battery capacity and charge efficiency were not decreased even after the 200th charge / discharge cycle, and the internal pressure of the battery was hardly increased.

【0024】比較例1 実施例1と同様にして作製した電池を用いて、50mA
定電流で放電終止電圧0.3Vまで放電させた後、設定
電圧2.1Vで10時間の定電圧充電を行い電池の内部
圧力変化、及び充電電流の変化を測定した。さらに充電
終了後、50mA定電流で放電終止電圧0.3Vまで放
電させて充電後の放電容量を測定し充電効率を求めた。
充電終了時の電池内部圧力は4.8kgf/cm2 であ
り、このときの充電効率は32%であった。充電初期か
ら顕著に電池内部圧力が上昇しており、充電電流の大部
分が電解液の電気分解に消費されたものと考えられる。
Comparative Example 1 A battery manufactured in the same manner as in Example 1 was used to obtain 50 mA.
After discharging at a constant current to a discharge end voltage of 0.3 V, constant voltage charging was performed at a set voltage of 2.1 V for 10 hours, and changes in the internal pressure of the battery and changes in the charging current were measured. Further, after completion of charging, the battery was discharged at a constant current of 50 mA to a discharge end voltage of 0.3 V, the discharge capacity after charging was measured, and the charging efficiency was obtained.
The internal pressure of the battery at the end of charging was 4.8 kgf / cm 2 , and the charging efficiency at this time was 32%. It is considered that the battery internal pressure increased remarkably from the beginning of charging, and most of the charging current was consumed for electrolysis of the electrolytic solution.

【0025】比較例2 実施例1と同様にして作製した電池を用いて、50mA
定電流で放電終止電圧0.ЗVまで放電させた後、50
mA定電流で初回放電電気量と同じ電気量を充電すると
いう充放電サイクル試験を行った。充電終了時の電池電
圧は2.3Vに達した。充電終了時の電池内部圧力は
0.6kgf/cm2 であり、充電効率は74%であっ
た。電池の内部圧力は、充放電サイクルを繰り返す度に
蓄積、上昇し、18サイクル目で10kgf/cm2
越えた。
Comparative Example 2 Using a battery prepared in the same manner as in Example 1, 50 mA was used.
Discharge end voltage is 0 at constant current. -50 after discharging to V
A charge / discharge cycle test was performed in which the same amount of electricity as the initial amount of electricity discharged was charged at a constant current of mA. The battery voltage at the end of charging reached 2.3V. At the end of charging, the internal pressure of the battery was 0.6 kgf / cm 2 , and the charging efficiency was 74%. The internal pressure of the battery accumulated and increased each time the charge / discharge cycle was repeated, and exceeded 10 kgf / cm 2 at the 18th cycle.

【0026】[0026]

【発明の効果】以上説明したように、本発明の充電方法
によれば、実質的に電池内部で水の電気分解が起こらな
いために電池の内部圧力の上昇が抑えられると考えられ
る。このように、二酸化マンガン−亜鉛二次電池は、適
切な充電電圧を設定して充電を行うことにより、充電時
におけるガス発生が抑制され、電池の密閉化に伴う充電
時の膨らみを抑制することができ、安全でかつ充放電サ
イクル寿命の長い密閉型二次電池として使用可能となる
効果を有するものである。
As described above, according to the charging method of the present invention, it is considered that the increase of the internal pressure of the battery can be suppressed because the electrolysis of water does not substantially occur inside the battery. As described above, the manganese dioxide-zinc secondary battery suppresses gas generation at the time of charging by setting an appropriate charging voltage and charging, and suppresses the bulge at the time of charging due to the sealing of the battery. In addition, it has an effect that it can be used as a sealed secondary battery which is safe and has a long charge / discharge cycle life.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例4における放電容量及び充電効率の充電
放電サイクル変化を示す図。
FIG. 1 is a diagram showing changes in discharge capacity and charge efficiency in a charging / discharging cycle in Example 4.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 信太郎 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shintaro Suzuki, 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質として二酸化マンガン、負極
活物質として亜鉛、電解液として硫酸亜鉛を主電解質と
する水溶液を用いる水溶液系二次電池について、充電設
定電圧を単セル当たり1.55〜1.95とすることを
特徴とする二次電池の充電方法。
1. An aqueous secondary battery using manganese dioxide as a positive electrode active material, zinc as a negative electrode active material, and an aqueous solution containing zinc sulfate as a main electrolyte as an electrolyte has a charge set voltage of 1.55 to 1 per unit cell. A charging method for a secondary battery, wherein the charging method is 0.95.
JP3332140A 1991-12-16 1991-12-16 Method for charging secondary battery Pending JPH05166540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3332140A JPH05166540A (en) 1991-12-16 1991-12-16 Method for charging secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3332140A JPH05166540A (en) 1991-12-16 1991-12-16 Method for charging secondary battery

Publications (1)

Publication Number Publication Date
JPH05166540A true JPH05166540A (en) 1993-07-02

Family

ID=18251588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3332140A Pending JPH05166540A (en) 1991-12-16 1991-12-16 Method for charging secondary battery

Country Status (1)

Country Link
JP (1) JPH05166540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187475B1 (en) 1998-08-31 2001-02-13 Finecell Co., Ltd. Aqueous zinc sulfate (II) rechargeable cell containing manganese (II) salt and carbon powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187475B1 (en) 1998-08-31 2001-02-13 Finecell Co., Ltd. Aqueous zinc sulfate (II) rechargeable cell containing manganese (II) salt and carbon powder

Similar Documents

Publication Publication Date Title
US3288642A (en) Rechargeable dry cell having gelled electrolyte
JPH0883596A (en) Thin card battery
JP4507483B2 (en) Control valve type lead acid battery
JPH05166540A (en) Method for charging secondary battery
CN1181589C (en) Ni-hydrogen accumulator for emergency power source
JP3653410B2 (en) Sealed alkaline zinc storage battery
JPS624828B2 (en)
JP2819201B2 (en) Lithium secondary battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS58131668A (en) Rechargeable silver oxide cell
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JPH0737609A (en) Alkaline storage battery
US3457111A (en) Alkaline storage battery with be(oh)2 in the electrolyte
JP2923946B2 (en) Sealed alkaline secondary battery and method of manufacturing the same
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
KR870001471B1 (en) Solid battery
JP3235360B2 (en) Sealed lead-acid battery
JP3622354B2 (en) Alkaline battery
KR100287123B1 (en) Alkali-zinc secondary battery
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH077678B2 (en) Cathode gas absorption type lead dioxide-zinc acid battery
JPH04160765A (en) Secondary battery
JPS6288280A (en) Alkaline-manganese secondary cell
JPS63124367A (en) Alkaline zinc storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery