JPS58131668A - Rechargeable silver oxide cell - Google Patents

Rechargeable silver oxide cell

Info

Publication number
JPS58131668A
JPS58131668A JP57013771A JP1377182A JPS58131668A JP S58131668 A JPS58131668 A JP S58131668A JP 57013771 A JP57013771 A JP 57013771A JP 1377182 A JP1377182 A JP 1377182A JP S58131668 A JPS58131668 A JP S58131668A
Authority
JP
Japan
Prior art keywords
weight
silver oxide
electric capacity
anode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57013771A
Other languages
Japanese (ja)
Inventor
Ryoichi Ito
伊東 良一
Keigo Momose
百瀬 敬吾
Tadashi Sawai
沢井 忠
Yoshio Okuzaki
奥崎 義男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57013771A priority Critical patent/JPS58131668A/en
Publication of JPS58131668A publication Critical patent/JPS58131668A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/32Silver accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress generation of O2 gas from a positive electrode at overcharge, prevent oxidation of a separator and suppress self discharge. CONSTITUTION:In a silver oxide cell in which zinc powder is used for a negative electrode and Ag2O is used as a main compound for a positive electrode while pulverized graphite mixed as necessary and molded is used as a conductive material further a caustic alkali solution is used as an electrolyte, negative electrode electric capacity (Ah) and positive electrode electric capacity (Ah) are obtained respectively from 0.820 X metal zinc weight (gr) + 0.659 X zinc oxide weight (gr) and 0.231 X silver oxide weight (gr) + 0.497 X metal silver weight (gr) +0.378 X manganese dioxide weight (gr), and its balance of electric capacity is established in a range such that negative electrode electric capacity/positive electrode electric capacity becomes 0.60-0.90.

Description

【発明の詳細な説明】 本発明は充電式酸化銀電池の改良に係り、過充電時にお
ける陽極からの0□ガスの発生の抑制と、その02ガス
による七ノ’?レータの酸化防止・自己放電の抑制を目
的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in rechargeable silver oxide batteries, and includes suppressing the generation of 0□ gas from the anode during overcharging and suppressing the generation of 0□ gas by the 02 gas. The purpose is to prevent oxidation and suppress self-discharge of the generator.

充電式酸化銀電池は、従来電気容量が大きく、自己放電
が少なく、電圧平坦性に優れているため電子式腕時計に
汎用されていた酸化銀電池の特徴を維持し、充電可能に
することによって太陽電池付き腕時計等の電源として開
発された。さらに太陽電池の電卓等への用途拡大によっ
てより高性能な小型充電式酸化銀電池の開発が期待され
ている。
Rechargeable silver oxide batteries maintain the characteristics of conventional silver oxide batteries commonly used in electronic wristwatches, such as large electrical capacity, low self-discharge, and excellent voltage flatness, and are rechargeable, allowing them to be recharged by sunlight. It was developed as a power source for battery-equipped wristwatches, etc. Furthermore, as the use of solar cells expands into calculators and other applications, it is expected that more high-performance, compact, rechargeable silver oxide batteries will be developed.

充電式酸化銀電池は通常人g20を主剤とし、AgとM
nO2と導電性物質として微粉黒鉛を混合し、圧縮成型
して陽極合剤を形成している。この陽極合剤は、一般に
鉄にニッケルメッキした陽極ケース底部に圧着され、電
解液を吸液させた後、その上に耐アルカリ性のセ、fレ
ータ、および含浸材層を設ける。その上部に陰極体とし
て水化亜鉛粉末を主剤とし酸化亜鉛と増粘剤を均一に分
散し、電解液を吸液させたものを用い、この陰極体は封
口を兼ねた陰極集電容器に入れられる。さらに陽極ケー
ス上部を、グラスチック製のガスケットを介して内方に
折り曲げ圧縮して電池を構成する。
Rechargeable silver oxide batteries usually use human G20 as the main ingredient, and Ag and M
The anode mixture is formed by mixing nO2 and fine graphite as a conductive material and compression molding the mixture. This anode mixture is generally pressed onto the bottom of an anode case made of nickel-plated iron, and after absorbing the electrolyte, an alkali-resistant separator, flayer, and impregnating material layer are provided thereon. On top of the cathode body, a cathode body made of zinc hydrate powder as the main ingredient, zinc oxide and a thickener uniformly dispersed, and an electrolyte absorbed, is used, and this cathode body is placed in a cathode current collector container that also serves as a seal. . The upper part of the anode case is then bent inward and compressed through a glass gasket to form a battery.

充電式酸化銀電池は、通常の酸化銀電池に要求される保
存性・耐漏液性などの緒特性のほかに、特に充電電圧制
御下での耐過充電性、充放電特性の向上が求められてい
る。そのため従来の充電式酸化銀電池では、陽極に添加
する黒鉛の種類や量を検討し、表面官能基を除去し充電
時における02ガス発生の過電圧を高くした黒鉛を使用
し、その添加鎗も少なくすることで過充電時におけるガ
ス発生を抑制し電池のふくらみを防止してきた。また、
その陽極からの02ガス発生の抑制によってセ・ぞレー
タや含浸材などの酸化反応を少なくして、自己放電や充
放電特性の改善が図られたOしかし、従来の製法による
ものでは、陽極からのOガス発生を充分に抑制できたと
はいえず、電池のふくらみや充放電特性の改良が必要と
されている。
Rechargeable silver oxide batteries are required to have improved overcharge resistance and charge/discharge characteristics, especially under charging voltage control, in addition to the storage properties and leakage resistance required of regular silver oxide batteries. ing. Therefore, in conventional rechargeable silver oxide batteries, we considered the type and amount of graphite added to the anode, and used graphite with surface functional groups removed to increase the overvoltage of 02 gas generation during charging. This suppresses gas generation during overcharging and prevents the battery from swelling. Also,
By suppressing the generation of 02 gas from the anode, the oxidation reaction of the separator and impregnating material is reduced, and self-discharge and charge/discharge characteristics are improved. It cannot be said that the generation of O gas has been sufficiently suppressed, and improvements are needed in the swelling and charge/discharge characteristics of the battery.

本発明は充電式酸化銀電池の過充電時における陽極から
の02ガスの発生の抑制と、その0□ガスによるセパレ
ータの酸化防止・自己放電の抑制についての検討結果に
基づき、陰極と陽極の′1L気谷量バランスを陰極電気
容量/陽極電気容量(吃水電気容量(Ah)=0.82
0X金属亜鉛重量(gr)十〇、659X酸化亜鉛重量
(gr)、陽極電気容址(Ah)=0.231X酸化銀
重量(gr) +〇、497 X金属銀電歇(gr) 
+0.378 X二酸化マンガン重i(gr))が0.
60〜0.90となる範囲で組み立てることを特徴とす
るものである。
The present invention was developed based on the results of studies on suppressing the generation of 02 gas from the anode during overcharging of rechargeable silver oxide batteries, and preventing oxidation of the separator due to the 0□ gas and suppressing self-discharge. 1L air volume balance is calculated as cathode capacitance/anode capacitance (hydration capacitance (Ah) = 0.82
0X metal zinc weight (gr) 10, 659X zinc oxide weight (gr), anode electric capacity (Ah) = 0.231X silver oxide weight (gr) + 0, 497 X metal silver electric switch (gr)
+0.378 X manganese dioxide weight i (gr)) is 0.
It is characterized by being assembled within a range of 60 to 0.90.

酸化銀電池を充電したとき、電池内で起こる反応は以下
のものが考えられるO 2Ag + 208− →Ag2O+ H2O+ 2e
−(1)Ag O+ 20H−→2Ago + H2O
+ 2e−(2)20I(−−+ I(20+ IAO
2+ 2e−(3)ZnOfHzO+2e−−+  Z
n + 20H−<4)2HzO+2a−−+  H2
+ 20H−(5)Ag20+H2→ 2Ag +H2
0(6)Zn  +IAO□−+  ZnO(7)過充
電したときに発生する02およびH2ガスのうち、0゜
ガスは式(7)により吸収されやすい力A、H2ガスは
式(6)の反応が遅いために電池内に蓄積されやすい。
When a silver oxide battery is charged, the following reaction can occur inside the battery: O 2Ag + 208- →Ag2O+ H2O+ 2e
-(1) Ag O+ 20H-→2Ago + H2O
+ 2e-(2) 20I(--+ I(20+ IAO
2+ 2e-(3)ZnOfHzO+2e--+ Z
n + 20H-<4) 2HzO+2a--+ H2
+ 20H-(5)Ag20+H2→ 2Ag +H2
0(6) Zn +IAO□-+ ZnO (7) Among the 02 and H2 gases generated when overcharging, 0° gas is easily absorbed by the force A according to equation (7), and H2 gas is absorbed by the force A in equation (6). Because it reacts slowly, it tends to accumulate inside the battery.

しかも従来の酸化銀電池では、同一体積中にいかに電気
容量が多く詰め込むかが重要であったため、上記の陰陽
極電気容量比はほぼ1.00へ近ずけられ、0.90以
上の比で電池設計がなされている。そのため陽極すなわ
ちAg2OやAgの量が相対的に少ないだめ、式(6)
の反応が進ますH2ガスが蓄遺されやすく、充電電流が
尺きくなると式(1)・(2)の反応が追いつかないた
め式(3)の反応によって0ガスの発生が見られる。第
1図、第2図は1.85V準定電圧で60℃において2
40h過充電した後の電池のふくらみと電池内に蓄積さ
れていたガス量を示したものである。電池のふくらみの
原因は発生するガスの敵によるものであるが、ガスの発
生数は陰陽、護電気容童比に依存している。
Moreover, in conventional silver oxide batteries, it was important to pack as much electrical capacity into the same volume, so the above cathode/anode electrical capacity ratio was pushed closer to 1.00, and a ratio of 0.90 or more The battery is designed. Therefore, since the amount of anode, ie, Ag2O and Ag, is relatively small, formula (6)
As the reaction progresses, H2 gas tends to accumulate, and as the charging current increases, the reactions of equations (1) and (2) cannot keep up, so zero gas is generated by the reaction of equation (3). Figures 1 and 2 show 2 at 60℃ with 1.85V quasi-constant voltage.
This figure shows the swelling of the battery and the amount of gas accumulated in the battery after 40 hours of overcharging. The cause of battery swelling is due to the gases generated, but the number of gases generated depends on yin and yang, protection and energy.

また、充放電可逆性についても陰陽極電気容量比の影響
は大きい。それは02ガスの発生による七ノ9レータの
酸化とそれに伴なう自己放電のためである。第3図は九
′直直圧1.85V、放電深度0.5チでのり逆性を示
したもので、充放電電流が大きくなると自己放電が大き
くなり、それは陰陽極電気容量比の影響がより大きいこ
とを示している。
Furthermore, the cathode-anode capacitance ratio has a large influence on charge-discharge reversibility. This is due to the oxidation of the 7-9 reactor due to the generation of 02 gas and the accompanying self-discharge. Figure 3 shows the reverse behavior at a 9' direct voltage of 1.85 V and a depth of discharge of 0.5 inches. As the charging/discharging current increases, self-discharge increases, and this is due to the influence of the cathode-anode capacitance ratio. It shows that it is larger.

このように陰陽極電気容量比を0.90以Fに抑えるこ
とが充電式酸化銀電池の充放電特性の改良に好ましいが
、また陰陽極電気容量比が小さくなると同一サイズの電
池における放電容量が小さくなりでいくため、0.60
以下にすることが好ましくないことは明らかである。
In this way, it is preferable to suppress the cathode-anode capacitance ratio to 0.90 F or less in order to improve the charging and discharging characteristics of rechargeable silver oxide batteries, but if the cathode-anode capacitance ratio becomes small, the discharge capacity of batteries of the same size will decrease. Since it becomes smaller, 0.60
It is clear that the following is not preferable.

以下、本発明の具体的な実施例を第4図を参照して説明
する。Ag2O99gに1− Mn0z O−4g 1
 さらにリン状黒鉛0.6gを混合し均一化した後、8
50■を秤増し12ゆ74zの圧力で金属容器(1窮極
集電体を兼ねる)中に直径10.9+m、厚さ1.6簡
に成型する。この陽極合剤に45重量%苛性アルカリ電
解液を30μL吸液させる。この合剤6上に、耐アルカ
リ性のモノ4レータ5と耐アルカ1ノ性の繊維からなる
含浸材4を置き、その上に永イヒ匝鉛粉末に酸化亜鉛を
必要量加え、電解液を注液しグル化してなる陰極2を設
置し、陰極端子を兼ねる封口板1をおく。この封口板1
の周辺に合成樹脂からなる弾性ガスケット3を設け、そ
のガスケット3を介して金属容器7上部を密閉する。8
は陽陰リングである。タイプはR44型(11,6xφ
Hereinafter, specific embodiments of the present invention will be described with reference to FIG. 1-Mn0z O-4g 1 to 99g Ag2O
Furthermore, after mixing and homogenizing 0.6 g of phosphorous graphite, 8
50 mm was weighed and molded into a metal container (also serving as an ultimate current collector) with a diameter of 10.9+ m and a thickness of 1.6 mm under a pressure of 12 mm and 74 mm. 30 μL of 45% by weight caustic alkaline electrolyte is absorbed into this anode mixture. On top of this mixture 6, an impregnating material 4 consisting of an alkali-resistant monolayer 5 and an alkali-resistant fiber is placed, and on top of that, the necessary amount of zinc oxide is added to the lead powder, and the electrolyte is poured. A cathode 2 made of liquid and glue is installed, and a sealing plate 1 which also serves as a cathode terminal is placed. This sealing plate 1
An elastic gasket 3 made of synthetic resin is provided around the periphery of the metal container 7, and the upper part of the metal container 7 is sealed via the gasket 3. 8
is a yang-yin ring. The type is R44 type (11,6xφ
.

5、4.1llb )である。5, 4.1llb).

この電池の1.85V準定電圧で60℃において240
h過充電した後の電池のふくらみと電池内に蓄積されて
いたガス量を第1図、第2図にそれぞれ牢印で示した。
240℃ at 60℃ with 1.85V quasi-constant voltage of this battery.
The swelling of the battery after overcharging and the amount of gas accumulated in the battery are shown in Figures 1 and 2 with dots, respectively.

また、充電電圧1.85V、放電深度0.5チでの可逆
性も第3図に同様に*印で示した。
Furthermore, the reversibility at a charging voltage of 1.85 V and a depth of discharge of 0.5 inches is also shown in FIG. 3 with an asterisk.

以上のように本発明によれば、過充電時における陽極か
らの0 ガスの発生の抑制と、その02ガスによるセ・
ンレータの酸化防止・自己放電の抑制がなされた充電式
酸化銀電池ができる。
As described above, according to the present invention, it is possible to suppress the generation of 0 gas from the anode during overcharging, and to suppress the generation of 0 gas by the 02 gas.
A rechargeable silver oxide battery is created that prevents oxidation of the inverter and suppresses self-discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は陰陽極電気容量比と電池ふくらみの関係を示す
図、第2図は陰陽種電気容量比とガス発生艙の関係を示
す図、第3図は微小充放電サイクル数と容量残存率の関
係を示す図、第4図は本発明で得られた充電式酸化銀電
池の半裁断面図であ1・・・封口板、2・・・陰極、3
・・・がスケット、4・−・含浸材、5・・・セ/IP
レータ、6・・・陽極合剤、7・・金属容器、8・・・
陽極リング。 第1図 0.5 06 0.7 0.8 0.9 1.0棟mm
+鬼シ(罠(鵡電(1為屓、o)第2図 0.5 0.6 0.7 08 0.9 10珍S極籠
外(g−(勅(川−68、) 第3図 Q12345 光値、(イ4フル秋 第4図
Figure 1 shows the relationship between the cathode and anode capacitance ratio and battery swelling, Figure 2 shows the relationship between the cathode and anode capacitance ratio and gas generation tank, and Figure 3 shows the number of minute charge/discharge cycles and capacity remaining rate. FIG. 4 is a half-cut cross-sectional view of a rechargeable silver oxide battery obtained by the present invention.
...is sket, 4...impregnating material, 5...ce/IP
Rator, 6... Anode mixture, 7... Metal container, 8...
anode ring. Fig. 1 0.5 06 0.7 0.8 0.9 1.0 mm
+ Onishi (Trap (Enden (1 Tame, o) Fig. 2 0.5 0.6 0.7 08 0.9 10 Chin S Gokugai (g - (Emperor (River -68,) 3rd Figure Q12345 Light value, (I4 full autumn Figure 4

Claims (1)

【特許請求の範囲】 陰極に亜鉛粉末、陽甑にAg2Oを主剤とし、導電性物
質として微粉黒鉛を必要量混合し成型したものを用い、
苛性アルカリ溶液を電解液として用いる酸化銀電池にお
いて、 陰極電気容量(Ah )を 0.820 X金属亜鉛重量(gr)+0.6594化
亜鉛重量(gr)陽極電気容量(Ah )を 0.231 X酸化銀重量(gr)+0.497 X金
属銀重量(gr)十〇、378X二酸化マンガン重量(
gr)でそれぞれ求め、その電気容量バランスを、陰原
電気容量/陽極電気容量が0.60〜0.90となる範
囲で組立ることを特徴とする充電式酸化銀電池。
[Claims] The negative electrode is made of zinc powder, the positive electrode is made of Ag2O as the main ingredient, and a necessary amount of finely powdered graphite is mixed as a conductive substance and then molded.
In a silver oxide battery using a caustic alkaline solution as the electrolyte, the cathode capacitance (Ah) is 0.820 x metal zinc weight (gr) + 0.659 zinc chloride weight (gr), and the anode capacitance (Ah) is 0.231 x Silver oxide weight (gr) + 0.497 x Metallic silver weight (gr) 10, 378 x Manganese dioxide weight (
A rechargeable silver oxide battery, characterized in that the capacitance balance is determined in the range of cathode capacitance/anode capacitance of 0.60 to 0.90.
JP57013771A 1982-01-30 1982-01-30 Rechargeable silver oxide cell Pending JPS58131668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57013771A JPS58131668A (en) 1982-01-30 1982-01-30 Rechargeable silver oxide cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57013771A JPS58131668A (en) 1982-01-30 1982-01-30 Rechargeable silver oxide cell

Publications (1)

Publication Number Publication Date
JPS58131668A true JPS58131668A (en) 1983-08-05

Family

ID=11842506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57013771A Pending JPS58131668A (en) 1982-01-30 1982-01-30 Rechargeable silver oxide cell

Country Status (1)

Country Link
JP (1) JPS58131668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287578A (en) * 1986-06-06 1987-12-14 Sanyo Electric Co Ltd Enclosed alkaline storage battery
WO2007074703A1 (en) * 2005-12-28 2007-07-05 Yukinobu Mori Lead-free battery and vehicle system using the same
WO2017047628A1 (en) * 2015-09-14 2017-03-23 日立マクセル株式会社 Alkali secondary cell
EP3742531A4 (en) * 2018-01-18 2021-11-10 Maxell Holdings, Ltd. Alkaline secondary cell, charging method of said alkaline secondary cell, and charging device of alkaline secondary cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287578A (en) * 1986-06-06 1987-12-14 Sanyo Electric Co Ltd Enclosed alkaline storage battery
WO2007074703A1 (en) * 2005-12-28 2007-07-05 Yukinobu Mori Lead-free battery and vehicle system using the same
JPWO2007074703A1 (en) * 2005-12-28 2009-06-04 森 幸信 Lead-free battery and vehicle system using the same
WO2017047628A1 (en) * 2015-09-14 2017-03-23 日立マクセル株式会社 Alkali secondary cell
JPWO2017047628A1 (en) * 2015-09-14 2017-09-21 日立マクセル株式会社 Alkaline secondary battery and manufacturing method thereof
US10541450B2 (en) 2015-09-14 2020-01-21 Maxell Holdings, Ltd. Alkaline secondary battery
EP3742531A4 (en) * 2018-01-18 2021-11-10 Maxell Holdings, Ltd. Alkaline secondary cell, charging method of said alkaline secondary cell, and charging device of alkaline secondary cell

Similar Documents

Publication Publication Date Title
RU2298264C2 (en) Bipolar electrochemical battery of stacked flat galvanic cells
JP3097347B2 (en) Nickel-metal hydride battery
Bullock Lead/acid batteries
US3980501A (en) Use of hydrogen-absorbing electrode in alkaline battery
JPS5928027B2 (en) Rechargeable chemical battery or storage battery
CN103337609A (en) Method for manufacturing ultra-high temperature overcharging-resistance long service life nickel-hydrogen battery
JPS58131668A (en) Rechargeable silver oxide cell
JP2677622B2 (en) Hermetically closed alkaline storage battery
KR101551700B1 (en) Zinc air cell, anode for zinc air cell and method of preparing the same
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JPS624828B2 (en)
Shukla et al. Electrochemical power sources: 1. Rechargeable batteries
JPS61165956A (en) Sealed type lead acid battery
KR100790563B1 (en) Structure of electrode group for large capacity nickel/metal hydryde secondary battery
JPH06150925A (en) Manufacture of nickel positive electrode for alkaline storage battery and alkaline storage battery equipped with electrode
JP3221040B2 (en) Alkaline storage battery
KR19980031966A (en) Active material for zinc electrode and alkaline secondary battery using same
JP3412161B2 (en) Sealed nickel-metal hydride storage battery
JP3412162B2 (en) Alkaline storage battery
JP3287386B2 (en) Nickel electrode for alkaline storage battery
JP2005166324A (en) Sealed storage battery
JP2553598B2 (en) Sealed lead acid battery
JPS59151776A (en) Sealed alkaline storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JP2004164863A (en) Sealed type nickel zinc primary cell