JPS5990467A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS5990467A
JPS5990467A JP57201297A JP20129782A JPS5990467A JP S5990467 A JPS5990467 A JP S5990467A JP 57201297 A JP57201297 A JP 57201297A JP 20129782 A JP20129782 A JP 20129782A JP S5990467 A JPS5990467 A JP S5990467A
Authority
JP
Japan
Prior art keywords
solid
photodiode
lens
state image
microlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57201297A
Other languages
Japanese (ja)
Inventor
Hideo Saeki
佐伯 英夫
Shigeyuki Uematsu
植松 滋幸
Hiroyasu Toyoda
豊田 裕康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57201297A priority Critical patent/JPS5990467A/en
Publication of JPS5990467A publication Critical patent/JPS5990467A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain the same effect as the extended aperture ratio apparently by providing a minute convex condensor lens on each picture element of a solid- state image pickup element. CONSTITUTION:The convex condensor lense is located on each photodiode, i.e., a picture element, the arrangement is made accurately coincident with each other, and the size of the lens is the same size or over the photodiode. In figure, 3 is a silicon substrate, 4 is a passivation film and 5 is an intermediate film. The radius of curvature of the lens 2 is selected suitably taking the thickness and size of the lens 2, the size of the photodiode 1, the distance between the lens 2 and the photodiode 1 and the refractive index of the lens 2 and its background layer into account.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、固体撮像素子、特にフォトダイオード等の
受光部の寸法を大きくすることなく、光入力の信号レベ
ルを高め、素子感度を向上させた固体撮像素子に関する
ものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention increases the signal level of optical input and improves the element sensitivity without increasing the dimensions of the light receiving part of a solid-state image sensor, especially a photodiode. It relates to solid-state image sensors.

〔従来技術〕[Prior art]

固体撮像素子は、いわゆる家庭用カラービデオカメラの
他放送用、業務用においても急速に使用される傾向にあ
シ、産業用イメージセンサとしてもその可能性が極めて
大きいと考えられる。そして、この固体撮像素子は、カ
ラー、モノクロを問わず、種々の方式、例えばMOS(
Metal 0xideSilicon)形やCCD(
Charge Copied Device)形やこれ
らの折中した方式のCPD(ChargePrimin
g Deviee)形などが開発されている。
Solid-state image sensing devices are rapidly being used in so-called home color video cameras as well as broadcasting and business uses, and it is thought that they have great potential as industrial image sensors as well. This solid-state image sensor can be used in various formats, such as MOS (MOS), regardless of color or monochrome.
Metal Oxide Silicon) and CCD (
CPD (Charge Copied Device) type and CPD (Charge Primin) type
g Devie) type etc. have been developed.

しかしながら、これらの方式による固体撮像素子の性能
としては、方式によ)一長一短があシ、例えばMOS形
では従来のMOS−LSIの製造技術による量産が可能
でかつ開口率、つまb撮像素子全体の中で占める受光面
積の割合が前記3方式中最大であるが、ノイズが大きい
こと、またCCD形ではノイズが少なく、低照度で使用
可能であるが、開口率が小さく残像が残るなどの問題が
ある。
However, the performance of solid-state image sensors using these methods has advantages and disadvantages depending on the method.For example, the MOS type can be mass-produced using conventional MOS-LSI manufacturing technology, and the aperture ratio and overall size of the image sensor are low. The ratio of the light-receiving area is the largest among the three methods, but the noise is large, and although the CCD type has less noise and can be used in low illumination, it has problems such as a small aperture ratio and residual image retention. be.

このため、いずれの方式においても短所をなくし、長所
をよシ一層高めるべき努力がなされているが、撮像素子
においては、光入力信号(S)は一般に量子効率と開口
率と被写体照度との積で決まるとされている。そこで、
種々の検討改良の結果、現在では量子効率(光電変換効
率)は既にほぼ1に達しておシ、このため開口率を大き
くして取シ出せる信号量を大きくすることと、雑音を小
さくすることが考えられている。このうち開口率を大き
くすることについては、例えば構造的に開口率を大きく
とれるMOS形においてもその開口率は既に50〜60
チ近傍に達しておシ、これ以上開口率を高めるには転送
用Al線の配線幅を現在の3μmルールから2μm 、
 1μmへと細くしなければならない。しかしながら、
配線幅を細くすることはプロセス上、極めて困難を伴な
い、まだ近い将来に実現する可能性の高い撮像素子その
ものの小形化、つまシ現在の74インチ形から72イン
チ形への小形化や高品質画像テレビに対応するだめの画
素自体の小形化・高密度化(画素数400X500程度
から1000x1000ないしそれ以上)等を考慮する
と、開口率のこれ以上の拡大は不可能と考えられ、むし
ろこの開口率は画素数が増大するにしたがって減少する
と考えられる。
For this reason, efforts are being made to eliminate the disadvantages and further enhance the advantages of both methods, but in image sensors, the optical input signal (S) is generally a product of quantum efficiency, aperture ratio, and object illuminance. It is said that it is determined by Therefore,
As a result of various studies and improvements, the quantum efficiency (photoelectric conversion efficiency) has now reached almost 1. Therefore, it is necessary to increase the aperture ratio to increase the amount of signal that can be extracted and to reduce noise. is considered. Regarding increasing the aperture ratio, for example, even in the MOS type, which can have a large aperture ratio structurally, the aperture ratio is already 50 to 60.
In order to further increase the aperture ratio, the wiring width of the transfer Al line must be increased from the current 3 μm rule to 2 μm.
The thickness must be reduced to 1 μm. however,
Reducing the wiring width is extremely difficult in terms of process, and it is expected that the size of the image sensor itself is likely to be realized in the near future. Considering the miniaturization and increase in density of the pixels themselves (from about 400 x 500 pixels to 1000 x 1000 or more) that correspond to quality image TVs, it is thought that it is impossible to further increase the aperture ratio; It is believed that the rate decreases as the number of pixels increases.

〔発明の概要〕[Summary of the invention]

仁の発明は、固体撮像素子の性能を向上させることを目
的として、前述のような困難なプロセスを避け、かつ高
密度化に対応するために固体撮像素子上の各画素上に微
小な凸形集光レンズ(以下単にマイクロレンズと称する
)を設けることによシ、各画素に入射する光信号を増大
させ、見掛は上、開口率を拡大したのと同等な効果を得
て光信号強度を高めることを可能にした固体撮像素子を
提供するものである。
Jin's invention aims to improve the performance of solid-state image sensors by creating a small convex shape on each pixel on the solid-state image sensor in order to avoid the difficult process described above and to cope with higher density. By providing a condensing lens (hereinafter simply referred to as a microlens), the optical signal incident on each pixel is increased, and the optical signal strength is increased by obtaining an effect equivalent to increasing the aperture ratio, although the appearance is better. The object of the present invention is to provide a solid-state imaging device that makes it possible to increase the image quality.

この発明によるマイクロレンズの固体撮像素子上への設
置は、例えばモノリシック形としては、固体撮像素子上
のパッシベーション膜上に直接的に設置する方法、この
パッシベーション膜そのものをレンズ状に加工する方法
、カラー固体撮像素子においてはカラーフィルタ上の表
面保護膜上に直接的に設置する方法およびこの保護膜そ
のものをレンズ状に加工する方法などがある。また、貼
シ合わせ方式も可能で光学的透明なガラス板やカラー固
体撮像素子用カラーフィルタの表面もしくは裏面にこの
マイクロレンズを形成した後、固体撮像素子と正確に貼
合せて適用できる。以上のようにこの発明によるマイク
ロレンズの設置は種々の方法が可能であるが、もとよシ
前述の方法のみに限定されるものではない。
The microlens according to the present invention can be installed on a solid-state image sensor, for example, as a monolithic type, by directly installing it on the passivation film on the solid-state image sensor, by processing the passivation film itself into a lens shape, by color For solid-state image sensing devices, there are two methods, including a method of directly installing a surface protective film on a color filter and a method of processing this protective film itself into a lens shape. In addition, a bonding method is also possible, and after forming the microlens on the front or back surface of an optically transparent glass plate or a color filter for a color solid-state image sensor, it can be applied by accurately bonding it to the solid-state image sensor. As described above, the microlens according to the present invention can be installed in various ways, but is not limited to the above-mentioned methods.

このようにこの発明によるマイクロレンズは各々のフォ
トダイオード、つまシ画素上にアシ、かつこのフォトダ
イオードの配列に正確に一致していることが必要である
。さらに、このマイクロレンズの大きさとしては、フォ
トダイオードと同等ないしはそれ以上大きいことが必須
であるが、その形状は第1図(、)〜(C)に平面図で
示すようにフォトダイオード(1)に対してマイクロレ
ンズQ)が同図(、)の如く円形状である必要はなく、
フォトダイオード(1)の形状によっては同図(b)の
如く矩形もしくは同図(c)の如く楕円形ででも良く、
あるいはフォトダイオード(1)と同等の形状でも良い
。まだ、このマイクロレンズ(2)の表面形状は例えば
第2図(、)に示す如く単一の曲率を有することが望ま
しいが、必ずしもこれに限定されるものではなく、第2
図(b)に示す如く中央部は平坦でその周辺部分がフォ
トダイオード(1)上に集光可能な所望の曲率を有して
おればこの発明の目的は十分に達成せられる。
As described above, the microlens according to the present invention requires a reed on each photodiode and border pixel, and that the arrangement of the photodiodes precisely matches. Furthermore, it is essential that the size of this microlens is equal to or larger than that of a photodiode, but its shape is similar to that of a photodiode (1 ), the microlens Q) does not need to be circular as shown in the figure (,);
Depending on the shape of the photodiode (1), it may be rectangular as shown in the figure (b) or oval as shown in the figure (c).
Alternatively, it may have the same shape as the photodiode (1). Although it is desirable that the surface shape of this microlens (2) has a single curvature, for example as shown in FIG.
As shown in Figure (b), the object of the present invention can be fully achieved if the center part is flat and the peripheral part has a desired curvature that allows light to be focused onto the photodiode (1).

さらに第2図(a) 、 (b、)の場合でも各マイク
ロレンズ(2)が完全に分離している必要はなく、第2
図(e)に示すよう人連続的な形状であってもこの発明
の目的は達せられる。なお、第2図(a) 、 (b)
 、 (C)において、(3)ハシリコン基L (4)
はパッシベーション膜、(5)は中間膜である。また、
このマイクロレンズ(2)の曲率半径はこのマイクロレ
ンズ(2)の厚さや大きさ、フォトダイオード(1)の
大きさ、マイクロレンズ(2)とフォトダイオード(1
)との間の距離さらにはマイクロレンズ(2)およびそ
の下地の屈折率等によって異なり、種々の場合に応じて
適切な値を定めることが必要である。例えばマイクロレ
ンズ(2)とフォトダイオード(1)との間の距離を約
5μm、フォトダイオード(1)の口径を約10μm、
マイクロレンズ(2)の口径を約16μm とすると、
好ましいマイクロレンズ(2)の厚さは約1.5〜3.
0μm、このマイクロレンズ(2)の屈折率n2ζ1.
5程度の場合の曲率半径は約15〜30μmが好ましい
。また、このマイクロレンズ(2)の諸次元はもとより
前記例にのみに限定されるものではなく、固体撮像素子
のフォトダイオード形状によっては前記例とは異なった
諸次元を有することも可能である。
Furthermore, even in the cases of Fig. 2 (a) and (b), it is not necessary that each microlens (2) be completely separated;
The object of the present invention can be achieved even with a continuous shape as shown in Figure (e). In addition, Fig. 2 (a) and (b)
, (C), (3) silicon group L (4)
is a passivation film, and (5) is an intermediate film. Also,
The radius of curvature of this microlens (2) depends on the thickness and size of this microlens (2), the size of photodiode (1), microlens (2) and photodiode (1).
) as well as the refractive index of the microlens (2) and its base, and it is necessary to determine an appropriate value depending on various cases. For example, the distance between the microlens (2) and the photodiode (1) is approximately 5 μm, the diameter of the photodiode (1) is approximately 10 μm,
Assuming that the diameter of the microlens (2) is approximately 16 μm,
The preferred thickness of the microlens (2) is about 1.5-3.
0 μm, the refractive index of this microlens (2) n2ζ1.
In the case of about 5, the radius of curvature is preferably about 15 to 30 μm. Further, the dimensions of this microlens (2) are not limited to the above example, and may have dimensions different from the above example depending on the shape of the photodiode of the solid-state image sensor.

さらに前記第1図、第2図においては、簡単のためマイ
クロレンズC2)の下地、すなわち中間膜(5)は平坦
かつマイクロレンズ(2)と同等の屈折率(n2)を有
するものとして説明したが、固よりかかる例のみに限定
されるものではなく、下地つt、b中間膜(5)を加工
することによシ、第3図(、)の如く凸形である場合や
第3図(b)の如く凹形であっても差支えない。なお、
図中同一符号は同一または相当部分を示す。
Furthermore, in FIGS. 1 and 2, for the sake of simplicity, it is assumed that the base of the microlens C2, that is, the intermediate film (5), is flat and has the same refractive index (n2) as the microlens (2). However, this is not limited to cases in which the base layer and the interlayer film (5) are formed into a convex shape as shown in FIG. It may be concave as shown in (b). In addition,
The same reference numerals in the figures indicate the same or corresponding parts.

以上のようにマイクロレンズ(2)の構成を簡単のため
第2図および第3図を用いて説明したが、カラー固体撮
像素子の場合においては中間膜(5)の部分に色フィル
タおよび分離膜が設けられる。また保護膜としてマイク
ロレンズ(2)上に有機おるいは無機の透明な薄膜を設
けることも可能である。
As mentioned above, the configuration of the microlens (2) was explained using FIGS. 2 and 3 for simplicity, but in the case of a color solid-state image sensor, a color filter and a separation film are used in the intermediate film (5). is provided. It is also possible to provide an organic or inorganic transparent thin film on the microlens (2) as a protective film.

また、この発明に係わるマイクロレンズ(2)の材質と
しては、光学的に無色透明かつ安定で、厚さ0.5〜5
. O11,m程度の薄膜形成および種々の微細加工技
術による成形が容易でアシ、かつこれらの加工プロセス
条件に耐えられるものであれば、無機材料または有機材
料を問わず適用可能である。
Furthermore, the material of the microlens (2) according to the present invention is optically colorless, transparent and stable, and has a thickness of 0.5 to 5.
.. Any material, inorganic or organic, can be used as long as it is easy to form a thin film of about O11,m and to be molded by various microfabrication techniques, and can withstand these processing conditions.

具体的には、無機材料としては透明な薄膜形成が可能な
酸化シリコン、酸化亜鉛、酸化アルミニウム、酸化ジル
コニウム、酸化インジウム、PSGおよびチツ化シリコ
ン等、あるいはこれらを組合せたもの等が挙げられる。
Specifically, examples of the inorganic material include silicon oxide, zinc oxide, aluminum oxide, zirconium oxide, indium oxide, PSG, and silicon oxide, which can form a transparent thin film, or a combination thereof.

また、有機材料とじては、ポリメチルメタクリレート、
ポリエチルメタクリレート、ポリイソプロピルメタクリ
レート。
In addition, examples of organic materials include polymethyl methacrylate,
Polyethyl methacrylate, polyisopropyl methacrylate.

ポリフェニルメタクリレート、ポリクリシジルメタクリ
レート等の光透過性の良いメタクリレート系ポリマーお
よびコポリマーさらにポリスチレン。
Methacrylate polymers and copolymers with good light transmittance such as polyphenyl methacrylate and polycricidyl methacrylate, as well as polystyrene.

ポリケイ皮酸ビニル、ポリイソプロペニルケトン等のポ
リマーおよびコポリマー並びにこれらのポリマーを主成
分としたコポリマーや側鎖もしくは主鎖の一部を塩素、
フッ素、ヨウ素等でハロゲン化したポリマーおよびコポ
リマー等が挙げられる。
Polymers and copolymers such as polyvinyl cinnamate and polyisopropenyl ketone, copolymers based on these polymers, and chlorine in the side chain or part of the main chain.
Examples include polymers and copolymers halogenated with fluorine, iodine, etc.

〔発明の実施例〕[Embodiments of the invention]

実施例1 画素数384X485を有するMO8形固体撮像素子の
パッシベーション膜上にPSGを約2μm程度成膜し、
これを加工してレンズ厚約1.5μm。
Example 1 PSG was deposited to a thickness of approximately 2 μm on the passivation film of an MO8 solid-state image sensor having 384×485 pixels.
This was processed to a lens thickness of approximately 1.5 μm.

曲率半径30μm程度の第2図(b)に示すようなマイ
クロレンズ(2)の配列を形成した。そして、各々のフ
ォトダイオード(1)よシ得られる光入力信号は、マイ
クロレンズ(2)を設置しない場合よシ20〜30チ程
度増加し、また画像の質もマイクロレンズ(2)の設置
前よシ向上させることができた。
An array of microlenses (2) as shown in FIG. 2(b) with a radius of curvature of about 30 μm was formed. The optical input signal obtained from each photodiode (1) increases by about 20 to 30 cm compared to when the microlens (2) is not installed, and the quality of the image is also lower than before the microlens (2) is installed. I was able to improve it.

実施例2 画素数384X485を有するMO8形カラー固体撮像
素子(モノリシック形)の保護膜上に屈折率1.48程
度の有機材料によシレンズ厚さ約3μm。
Example 2 A lens made of an organic material having a refractive index of about 1.48 and having a thickness of about 3 μm is placed on the protective film of an MO8 type color solid-state image sensor (monolithic type) having a pixel count of 384×485.

曲率半径2011m  程度の第2図(、)に示すよう
な形状を有するマイクロレンズ(2)の配列を形成した
An array of microlenses (2) having a radius of curvature of about 2011 m and a shape as shown in FIG. 2 (,) was formed.

このような構成によると、各々のフォトダイオード(1
)より得られる光入力信号は、マイクロレンズQ)を設
置しない場合に比べて15〜20%程度向上した。また
色再現性や画質もマイクロレンズ(2)の設置前に比べ
て優れたものであった。
According to such a configuration, each photodiode (1
) was improved by about 15 to 20% compared to the case where the microlens Q) was not installed. Furthermore, color reproducibility and image quality were also superior compared to before the microlens (2) was installed.

実施例3 カラー固体撮像素子用色フィルタを有するガラス基板の
裏面に屈折率1.50程度の有機材料によシレンズ厚約
5μm、曲率半径15μm程度の第2図(C)に示すよ
う匁マイクロレンズ(2)の配列を形成した。そして、
このマイクロレンズ(2)を有する色フィルタを、レン
ズ面を表に向けてMO8形固体撮像素子のフォトダイオ
ード(1)列に一致するように貼シ付けしていわゆる貼
シ合せ形カラー固体撮像素子を形成した。そして各々の
フォトダイオード(1)よシ得られる光入力信号はマイ
クロレンズ(2)を設置しない場合に比べ、約20%程
度向上し、かっ色再現性や画質はマイクロレンズQ)の
設置前に比べて優れたものであった。
Example 3 On the back side of a glass substrate having a color filter for a color solid-state image sensor, a microlens made of an organic material with a refractive index of about 1.50 was formed, as shown in FIG. 2(C), with a lens thickness of about 5 μm and a radius of curvature of about 15 μm. The array (2) was formed. and,
The color filter having the microlens (2) is pasted with the lens surface facing up so as to match the photodiode (1) row of the MO8 type solid-state image sensor to form a so-called pasted color solid-state image sensor. was formed. The optical input signal obtained from each photodiode (1) is improved by about 20% compared to when no microlens (2) is installed, and the brown color reproducibility and image quality are better than before installing the microlens (Q). It was excellent in comparison.

なお、前記実施例においては、MO8形固体撮像素子に
限って説明したが、この発明によるマイクロレンズa>
は前述の如く、他の方式の固体撮像素子にも適用可能で
ある。すなわち、この発明によるマイクロレンズ(2)
はいわゆる二次元のカラー固体撮像素子のみに限らず、
モノクロの固体撮像素子やさらには一次元の固体撮像素
子等にも設置可能である。またMOS形の固体撮像素子
の他、COD、CPD、BBD(Bucket Bri
gade Device)お喧CID(Charge 
Injection Device)形等の固体撮像素
子や赤外線固体撮像素子等にも適用できて前述と同等の
効果が得られる。
In addition, in the above embodiment, the explanation was limited to the MO8 type solid-state image sensor, but the microlens a> according to the present invention
As mentioned above, it is also applicable to other types of solid-state imaging devices. That is, the microlens (2) according to the present invention
is not limited to so-called two-dimensional color solid-state image sensors;
It can be installed in a monochrome solid-state image sensor or even a one-dimensional solid-state image sensor. In addition to MOS solid-state image sensors, COD, CPD, and BBD (Bucket Bri
gade Device) CID (Charge)
The present invention can also be applied to solid-state imaging devices such as injection devices, infrared solid-state imaging devices, etc., and the same effects as described above can be obtained.

〔発明の効果〕〔Effect of the invention〕

1 以上のように固体撮像素子中の各々のフォトダイオ
ード上に無機もしくは有機材料からなる微小な凸形集光
レンズ(マイクロレンズ)をそれぞれ設けることによっ
て、開口率を増大したものと同等の効果、すなわちフォ
トダイオードに対する光入力信号を増大させる効果を、
固体撮像素子の構成寸法を変えることなく、実現でき感
度および色再現性を向上させる効果が得られる。
1. As mentioned above, by providing a minute convex condensing lens (microlens) made of an inorganic or organic material on each photodiode in a solid-state image sensor, an effect equivalent to that of increasing the aperture ratio, In other words, the effect of increasing the optical input signal to the photodiode is
This can be achieved without changing the structural dimensions of the solid-state image sensor, and the effect of improving sensitivity and color reproducibility can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)・〜(C)はこの発明による固体撮像素子
の一例を示す要部平面図、第2図(&)〜(C)は第1
図の要部断面図、第3図(a) 、 (b)はこの発明
による固体撮像素子の他の実施例を示す要部断面図であ
る。 (1)・・・・フォトダイオード、(2)・・・・マイ
クロレンズ、(3)・・e11シリコン基板、<4)−
・・・パッシベーション膜、(5)・・・・中間膜。 代理人   葛 野 信 − 手続補正書(自発) 特許庁長官殿 1、事件の表示    特願昭 57−201297号
2、発明の名称 固体撮像素子 3、補正をする者 事件との関係   特許出願人 住 所     東京都千代田区丸の内二丁[12番3
号名 称(601)   三菱電機株式会社代表者片由
仁八部 4、代理人 住 所     東京都千代田区丸の内二J十12番3
翼・5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書第2頁第15行目の[CCD (Char
geCopled Device ) Jを[CCD 
(Charge CupledDevice ) Jと
補正する。 (2)同書第5頁第8行目の「光学的透明な」を「光学
的に透明な」と補正する。 以  上
FIGS. 1(a) to (C) are plan views of essential parts showing an example of a solid-state image sensor according to the present invention, and FIGS.
FIGS. 3(a) and 3(b) are sectional views of essential parts showing other embodiments of the solid-state imaging device according to the present invention. (1)...Photodiode, (2)...Microlens, (3)...e11 silicon substrate, <4)-
... Passivation film, (5) ... Intermediate film. Agent Makoto Kuzuno - Procedural amendment (spontaneous) Commissioner of the Japan Patent Office1, Indication of case Japanese Patent Application No. 57-2012972, Name of invention Solid-state image sensor3, Person making the amendment Relationship to the case Patent applicant residence Address: 2-chome Marunouchi, Chiyoda-ku, Tokyo [12-3
Name (601) Mitsubishi Electric Co., Ltd. Representative: Katayuni Hachibe 4, Agent address: 2J-112-3, Marunouchi 2, Chiyoda-ku, Tokyo
Wing 5, Detailed explanation of the invention column 6 of the specification subject to amendment, Contents of amendment (1) [CCD (Char
geCoppled Device) J [CCD
(Charge CoupledDevice) J. (2) "Optically transparent" on page 5, line 8 of the same book is corrected to "optically transparent."that's all

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板の表面に複数のフォトダイオードを設
けてなる固体撮像素子において、前記各フォトダイオー
ド上に微小な凸形集光レンズを設けたことを特徴とする
固体撮像素子。
(1) A solid-state image sensor comprising a plurality of photodiodes provided on the surface of a semiconductor substrate, characterized in that a minute convex condenser lens is provided on each of the photodiodes.
(2)前記凸形集光レンズを、光学的に透明な無機材料
もしくは有機材料で形成したことを特徴とする特許請求
の範囲第1項記載の固体撮像素子。
(2) The solid-state imaging device according to claim 1, wherein the convex condenser lens is made of an optically transparent inorganic or organic material.
(3)前記凸形集光レンズを、フォトダイオード上にガ
ラス板を介して設けたことを特徴とする特許請求の範囲
第1項記載の固体撮像素子。
(3) The solid-state imaging device according to claim 1, wherein the convex condenser lens is provided on a photodiode with a glass plate interposed therebetween.
(4)前記凸形集光レンズを、フォトダイオード上に設
けられたフィルタの一部に形成したことを特徴とする特
許請求の範囲第1項記載の固体撮像素子。
(4) The solid-state imaging device according to claim 1, wherein the convex condenser lens is formed as a part of a filter provided on a photodiode.
(5)前記凸形集光レンズを、フォトダイオード上に直
接的に設けたことを特徴とする特許請求の範囲第1項ま
たは第2項記載の固体撮像素子。
(5) The solid-state imaging device according to claim 1 or 2, wherein the convex condensing lens is provided directly on a photodiode.
JP57201297A 1982-11-15 1982-11-15 Solid-state image pickup element Pending JPS5990467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57201297A JPS5990467A (en) 1982-11-15 1982-11-15 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57201297A JPS5990467A (en) 1982-11-15 1982-11-15 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS5990467A true JPS5990467A (en) 1984-05-24

Family

ID=16438648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57201297A Pending JPS5990467A (en) 1982-11-15 1982-11-15 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS5990467A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134974A (en) * 1983-01-24 1984-08-02 Hitachi Ltd Photoelectric converting device
JPS6060756A (en) * 1983-09-14 1985-04-08 Hitachi Ltd Solid-state image pickup element with microlens and manufacture thereof
JPS6060757A (en) * 1983-09-14 1985-04-08 Hitachi Ltd Image pickup element with microlens and manufacture thereof
JPS6149568A (en) * 1984-08-17 1986-03-11 Matsushita Electronics Corp Solid-state image pickup device
JPS61111578A (en) * 1984-11-05 1986-05-29 Sumitomo Electric Ind Ltd Optical reception ic
WO1990013146A1 (en) * 1989-04-20 1990-11-01 Eastman Kodak Company Lens arrays for light sensitive devices
WO1992009105A1 (en) * 1990-11-16 1992-05-29 Kabushiki Kaisha Toshiba Solid-state imaging device and method of manufacturing the same
JPH04252579A (en) * 1991-01-28 1992-09-08 Sony Corp Solid-state image pickup device
JP2009218341A (en) * 2008-03-10 2009-09-24 Panasonic Corp Solid-state imaging device, and manufacturing method of the same
US8208052B2 (en) 2008-12-19 2012-06-26 Panasonic Corporation Image capture device
US8289422B2 (en) 2009-01-14 2012-10-16 Panasonic Corporation Image capture device
US8314872B2 (en) 2008-11-19 2012-11-20 Panasonic Corporation Imaging device
US8384818B2 (en) 2008-06-18 2013-02-26 Panasonic Corporation Solid-state imaging device including arrays of optical elements and photosensitive cells
US8520126B2 (en) 2010-07-12 2013-08-27 Panasonic Corporation Solid-state image capturing element, image capturing device and signal processing method
US8767114B2 (en) 2010-08-24 2014-07-01 Panasonic Corporation Solid-state imaging element and imaging device
US8860855B2 (en) 2011-10-31 2014-10-14 Panasonic Intellectual Property Corporation Of America Solid-state image sensor with dispersing element that disperses light according to color component, image capture device and signal processing method
US8902339B2 (en) 2011-06-16 2014-12-02 Panasonic Intellectual Property Corporation Of America Solid-state imaging element and dispersing element array for improved color imaging
US8902338B2 (en) 2011-06-06 2014-12-02 Panasonic Intellectual Property Corporation Of America Color separation filter array, solid-state imaging element, imaging device, and display device
US9071722B2 (en) 2011-12-26 2015-06-30 Panasonic Intellectual Property Corporation Of America Solid-state imaging element, imaging device, and signal processing method
US9099369B2 (en) 2012-05-02 2015-08-04 Panasonic Intellectual Property Corporation Of America Solid-state image sensor
US9179114B2 (en) 2012-05-02 2015-11-03 Panasonic Intellectual Property Corporation Of America Solid-state image sensor
US9425229B2 (en) 2012-09-03 2016-08-23 Panasonic Intellectual Property Corporation Of America Solid-state imaging element, imaging device, and signal processing method including a dispersing element array and microlens array

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134974A (en) * 1983-01-24 1984-08-02 Hitachi Ltd Photoelectric converting device
JPS6060756A (en) * 1983-09-14 1985-04-08 Hitachi Ltd Solid-state image pickup element with microlens and manufacture thereof
JPS6060757A (en) * 1983-09-14 1985-04-08 Hitachi Ltd Image pickup element with microlens and manufacture thereof
JPH0570944B2 (en) * 1983-09-14 1993-10-06 Hitachi Ltd
JPS6149568A (en) * 1984-08-17 1986-03-11 Matsushita Electronics Corp Solid-state image pickup device
JPS61111578A (en) * 1984-11-05 1986-05-29 Sumitomo Electric Ind Ltd Optical reception ic
WO1990013146A1 (en) * 1989-04-20 1990-11-01 Eastman Kodak Company Lens arrays for light sensitive devices
WO1992009105A1 (en) * 1990-11-16 1992-05-29 Kabushiki Kaisha Toshiba Solid-state imaging device and method of manufacturing the same
JPH04252579A (en) * 1991-01-28 1992-09-08 Sony Corp Solid-state image pickup device
JP2009218341A (en) * 2008-03-10 2009-09-24 Panasonic Corp Solid-state imaging device, and manufacturing method of the same
US8384818B2 (en) 2008-06-18 2013-02-26 Panasonic Corporation Solid-state imaging device including arrays of optical elements and photosensitive cells
US8314872B2 (en) 2008-11-19 2012-11-20 Panasonic Corporation Imaging device
US8208052B2 (en) 2008-12-19 2012-06-26 Panasonic Corporation Image capture device
US8289422B2 (en) 2009-01-14 2012-10-16 Panasonic Corporation Image capture device
US8520126B2 (en) 2010-07-12 2013-08-27 Panasonic Corporation Solid-state image capturing element, image capturing device and signal processing method
US8767114B2 (en) 2010-08-24 2014-07-01 Panasonic Corporation Solid-state imaging element and imaging device
US8902338B2 (en) 2011-06-06 2014-12-02 Panasonic Intellectual Property Corporation Of America Color separation filter array, solid-state imaging element, imaging device, and display device
US8902339B2 (en) 2011-06-16 2014-12-02 Panasonic Intellectual Property Corporation Of America Solid-state imaging element and dispersing element array for improved color imaging
US8860855B2 (en) 2011-10-31 2014-10-14 Panasonic Intellectual Property Corporation Of America Solid-state image sensor with dispersing element that disperses light according to color component, image capture device and signal processing method
US9071722B2 (en) 2011-12-26 2015-06-30 Panasonic Intellectual Property Corporation Of America Solid-state imaging element, imaging device, and signal processing method
US9099369B2 (en) 2012-05-02 2015-08-04 Panasonic Intellectual Property Corporation Of America Solid-state image sensor
US9179114B2 (en) 2012-05-02 2015-11-03 Panasonic Intellectual Property Corporation Of America Solid-state image sensor
US9425229B2 (en) 2012-09-03 2016-08-23 Panasonic Intellectual Property Corporation Of America Solid-state imaging element, imaging device, and signal processing method including a dispersing element array and microlens array

Similar Documents

Publication Publication Date Title
JPS5990467A (en) Solid-state image pickup element
US20220352229A1 (en) Color filter array, imagers and systems having same, and methods of fabrication and use thereof
US6495813B1 (en) Multi-microlens design for semiconductor imaging devices to increase light collection efficiency in the color filter process
US20060169870A1 (en) Image sensor with embedded optical element
JP2009260445A (en) Solid-state image capturing device, its method for manufacturing, and electronic information device
JPH11103041A (en) Photoelectric converter and manufacture thereof
JPH10229180A (en) Solid-state image sensor
JP3571982B2 (en) Solid-state imaging device and solid-state imaging system having the same
JP2742185B2 (en) Solid-state imaging device
JPH04223371A (en) Solid-state image sensing device
TWI292960B (en) Image sensor with improved uniformity of effective incident light
JPH03283572A (en) Solid-state image pick up element
JPH04199874A (en) Solid state image sensing device
JPH06163863A (en) Solid-state image pickup device
JP2956132B2 (en) Solid-state imaging device
CN103715215B (en) A kind of image pixel elements to angular-sensitive
JP2876838B2 (en) Solid-state imaging device
JPH04259256A (en) Solid state image sensor
JPH0653458A (en) Solid state image sensor
JPH0265386A (en) Solid-state image pickup element
JPH06163864A (en) Solid-state image pickup device
JPS61154283A (en) Solid image pick-up element
JPH08321595A (en) Solid state image sensor
JP3049856B2 (en) Solid-state imaging device
JP2638885B2 (en) Solid-state imaging device