JPH04223371A - Solid-state image sensing device - Google Patents

Solid-state image sensing device

Info

Publication number
JPH04223371A
JPH04223371A JP2414312A JP41431290A JPH04223371A JP H04223371 A JPH04223371 A JP H04223371A JP 2414312 A JP2414312 A JP 2414312A JP 41431290 A JP41431290 A JP 41431290A JP H04223371 A JPH04223371 A JP H04223371A
Authority
JP
Japan
Prior art keywords
solid
microlens
lens
micro
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2414312A
Other languages
Japanese (ja)
Inventor
Kazuya Yonemoto
和也 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2414312A priority Critical patent/JPH04223371A/en
Publication of JPH04223371A publication Critical patent/JPH04223371A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a solid-state image sensing device to be protected against flare caused by the reflected light by a method wherein a single-layer or a multilayer antireflection film is provided to the outer surface of a micro-lens. CONSTITUTION:An antireflection film 20 of two-layered structure is provided to the outer surface of a micro-lens 19. The antireflection film 20 is so formed as to be smaller than the micro-lens 19 in refractive index, and an outer film 20a is set smaller than an inner film 20b in refractive index. As mentioned above, the antireflection film 20 is provided to the outer surface of the micro- lens 19, whereby a refractive index change can be made small between air and the micro-lens 19 to prevent incident light from being reflected. Therefore, a solid-state image sensing device of this design can be improved in utilization factor of incident light and sensitivity holding down flares caused by the reflected light.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は固体撮像装置に関し、特
に単位画素毎にマイクロレンズを配した構成の撮像部を
具備する固体撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device having an imaging section in which a microlens is arranged for each unit pixel.

【0002】0002

【従来の技術】固体撮像装置の一例として、例えばイン
ターライン転送方式のCCD固体撮像装置の構成を図2
に示す。同図において、垂直及び水平方向に画素単位で
2次元配列されて入射光量に応じた信号電荷を蓄積する
複数個の感光部1と、これら感光部1から垂直列毎に読
み出された信号電荷を垂直方向に転送する垂直シフトレ
ジスタ(垂直転送部)2とによって撮像部3が構成され
ている。感光部1で光電変換された全画素の信号電荷は
垂直列毎に、垂直ブランキング期間の一部で瞬時に垂直
シフトレジスタ2に読み出される。垂直シフトレジスタ
2に移された信号電荷は、水平ブランキング期間の一部
にて1走査線に相当する部分ずつ順に水平シフトレジス
タ(水平転送部)4へ移される。1走査線分の信号電荷
は、水平シフトレジスタ4によって順次水平方向に転送
される。水平シフトレジスタ4の最終端には、FDA(
Floating Diffusion Amplif
ier)等からなる出力回路部5が設けられている。こ
の出力回路部5は、感光部1で光電変換して得られた信
号電荷を電圧に変換して出力する。
2. Description of the Related Art As an example of a solid-state imaging device, FIG.
Shown below. In the figure, a plurality of photosensitive sections 1 are arranged two-dimensionally in pixel units in the vertical and horizontal directions and accumulate signal charges according to the amount of incident light, and signal charges read out from these photosensitive sections 1 in each vertical column. An imaging section 3 includes a vertical shift register (vertical transfer section) 2 that transfers the data in the vertical direction. The signal charges of all pixels photoelectrically converted in the photosensitive section 1 are instantaneously read out to the vertical shift register 2 for each vertical column during a part of the vertical blanking period. The signal charges transferred to the vertical shift register 2 are sequentially transferred to the horizontal shift register (horizontal transfer section) 4 in portions corresponding to one scanning line during a part of the horizontal blanking period. The signal charges for one scanning line are sequentially transferred in the horizontal direction by the horizontal shift register 4. At the final end of the horizontal shift register 4, FDA (
Floating Diffusion Amplif
An output circuit section 5 is provided, which is made up of a circuit such as a driver. This output circuit section 5 converts the signal charge obtained by photoelectric conversion in the photosensitive section 1 into a voltage and outputs the voltage.

【0003】この種のCCD固体撮像装置において、各
画素における感光部(センサ部)の占める割合、すなわ
ち開口率が一般的に20〜50〔%〕程度であるため、
撮像部3の素子面に入射した光の利用効率が悪い。この
撮像部3の素子面への入射光の利用効率を向上し、感度
の向上を図るために、各画素毎にマイクロレンズをオン
チップマイクロレンズとして設けた構成の撮像部を具備
する固体撮像装置が既に知られている。
[0003] In this type of CCD solid-state imaging device, the proportion occupied by the photosensitive part (sensor part) in each pixel, that is, the aperture ratio, is generally about 20 to 50%.
The utilization efficiency of light incident on the element surface of the imaging section 3 is poor. In order to improve the utilization efficiency of light incident on the element surface of the imaging section 3 and improve the sensitivity, a solid-state imaging device includes an imaging section in which a microlens is provided as an on-chip microlens for each pixel. is already known.

【0004】0004

【発明が解決しようとする課題】上述したように、撮像
部の各単位画素毎にマイクロレンズを形成したCCD固
体撮像装置では、マイクロレンズの集光作用によって入
射光の利用効率に関しては向上できるものの、周期的に
配列されているマイクロレンズによる副作用の発生も無
視できない。このマイクロレンズによる副作用としては
、マイクロレンズに入射する光の一部が、空気媒体とマ
イクロレンズとの間での屈折率の変化に起因してレンズ
の表面によって反射を受け、結像に無関係な光となって
受光面に到達することにより、有害な光として撮像画像
中の高輝度被写体の周りにでる「セル・ゴースト」と称
されるフレア(flare) の発生が挙げられる。
[Problems to be Solved by the Invention] As mentioned above, in a CCD solid-state imaging device in which a microlens is formed for each unit pixel of the imaging section, although it is possible to improve the utilization efficiency of incident light due to the light condensing action of the microlens. The occurrence of side effects due to periodically arranged microlenses cannot be ignored. A side effect of this microlens is that some of the light incident on the microlens is reflected by the surface of the lens due to the change in refractive index between the air medium and the microlens, which is unrelated to imaging. When the light reaches the light-receiving surface in the form of light, it causes harmful light called "cell ghost" that appears around high-brightness objects in the captured image.

【0005】そこで、本発明は、撮像部の各画素毎に配
されているマイクロレンズの表面での反射光に起因する
フレア(セル・ゴースト)の抑制を可能とした固体撮像
装置を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a solid-state imaging device that is capable of suppressing flare (cell ghost) caused by reflected light on the surface of a microlens arranged for each pixel of an imaging section. With the goal.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明にあっては、垂直及び水平方向に画素単位で
2次元配列された複数個の感光部の各々に対して、入射
光を集光するマイクロレンズを配した構成の撮像部を具
備する固体撮像装置において、マイクロレンズの外表面
に単層又は多層の反射防止膜を設けた構成を採っている
[Means for Solving the Problems] In order to achieve the above object, in the present invention, incident light is In a solid-state imaging device including an imaging section configured with a microlens for condensing light, a single-layer or multilayer anti-reflection film is provided on the outer surface of the microlens.

【0007】[0007]

【作用】本発明による固体撮像装置では、マイクロレン
ズの外表面に配された反射防止膜が、マイクロレンズよ
りも屈折率が小さいものであることから、空気媒体とマ
イクロレンズとの間での屈折率の変化が小さくなって反
射率が低下し、反射防止が図れる。これにより、反射光
に起因するフレア(セル・ゴースト)を抑制しつつ入射
光の利用効率の向上が図れる。また、反射防止膜の多層
化により、反射防止の有効な波長域を広げることができ
る。
[Operation] In the solid-state imaging device according to the present invention, since the antireflection film disposed on the outer surface of the microlens has a smaller refractive index than the microlens, refraction between the air medium and the microlens is The change in the reflectance becomes smaller, the reflectance decreases, and reflection prevention can be achieved. Thereby, it is possible to improve the utilization efficiency of incident light while suppressing flare (cell ghost) caused by reflected light. In addition, by multilayering the antireflection film, the effective wavelength range for antireflection can be expanded.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。図1は、本発明に係るCCD固体撮像装置
の撮像部における単位画素の構造を示す断面図である。 図において、シリコン基板11の表面側にN+ 型領域
による信号電荷蓄積領域12を形成することにより、N
P接合のフォトダイオードによる感光部1が構成されて
いる。この信号電荷蓄積領域12に隣接してチャネルス
トップ部13が形成されている。また、シリコン基板1
1の表面側に、チャネルストップ部13に隣接してN+
 型領域による信号電荷転送領域12を形成すると共に
、この信号電荷転送領域12上にシリコン酸化膜SiO
2よりなる絶縁層15を介してポリシリコンよりなる転
送電極16を形成することによって垂直シフトレジスタ
(垂直CCD)2が構成されている。感光部1と垂直シ
フトレジスタ2との間は、感光部1で光電変換された信
号電荷を垂直シフトレジスタ2へ読み出すための読出し
ゲート部17となる。本例では、読出しゲート部17の
ゲート電極は転送電極16と共通にポリシリコンにて形
成されている。感光部1を除く、垂直シフトレジスタ2
及び読出しゲート部17上には、絶縁層15を介してア
ルミニウムによりなる遮光層18が設けられている。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of a unit pixel in an imaging section of a CCD solid-state imaging device according to the present invention. In the figure, by forming a signal charge accumulation region 12 as an N+ type region on the surface side of a silicon substrate 11, an N
A photosensitive section 1 is constituted by a P-junction photodiode. A channel stop portion 13 is formed adjacent to this signal charge storage region 12 . In addition, silicon substrate 1
1, adjacent to the channel stop part 13, N+
A signal charge transfer region 12 is formed by the mold region, and a silicon oxide film SiO is formed on this signal charge transfer region 12.
A vertical shift register (vertical CCD) 2 is constructed by forming a transfer electrode 16 made of polysilicon through an insulating layer 15 made of 2. Between the photosensitive section 1 and the vertical shift register 2 is a readout gate section 17 for reading out signal charges photoelectrically converted in the photosensitive section 1 to the vertical shift register 2. In this example, the gate electrode of the read gate section 17 and the transfer electrode 16 are made of polysilicon. Vertical shift register 2 excluding photosensitive section 1
A light shielding layer 18 made of aluminum is provided on the read gate portion 17 with an insulating layer 15 interposed therebetween.

【0009】また、各感光部1の上方には単位画素毎に
、入射光を感光部1に集光させるマイクロレンズ19が
配されている。このマイクロレンズ19は、開口率が一
般的に低い撮像部1において、入射光を感光部1に集光
させることにより、入射光の利用効率を向上し、感度の
向上を図るために設けられたものである。マイクロレン
ズ19の外表面には、例えば2層構造の反射防止膜20
が設けられている。この反射防止膜20においては、そ
の屈折率がマイクロレンズ19の屈折率よりも小さくな
るように、さらに外側の膜2aが内側の膜2bよりも屈
折率が小さくなるように材料の選定がなされる。
Further, above each photosensitive section 1, a microlens 19 is arranged for each unit pixel to condense incident light onto the photosensitive section 1. This microlens 19 is provided in order to improve the utilization efficiency of incident light and improve sensitivity by focusing incident light on the photosensitive section 1 in the imaging section 1, which generally has a low aperture ratio. It is something. For example, a two-layer antireflection film 20 is provided on the outer surface of the microlens 19.
is provided. In this antireflection film 20, the material is selected so that its refractive index is smaller than that of the microlens 19, and further, the refractive index of the outer film 2a is smaller than that of the inner film 2b. .

【0010】このように、マイクロレンズ19の外表面
に反射防止膜20を配することにより、空気媒体とマイ
クロレンズ19との間での屈折率の変化が小さくなって
入射光の反射を防止できるため、反射光に起因するフレ
ア(セル・ゴースト)を抑制しつつ入射光の利用効率の
向上、それに伴う感度の向上を図ることができる。
[0010] By disposing the antireflection film 20 on the outer surface of the microlens 19 in this manner, the change in refractive index between the air medium and the microlens 19 is reduced, and reflection of incident light can be prevented. Therefore, while suppressing flare (cell ghost) caused by reflected light, it is possible to improve the utilization efficiency of incident light and improve sensitivity accordingly.

【0011】なお、上記実施例では、反射防止膜20を
2層構造とした場合について説明したが、単層又は3層
以上の層構造であっても良く、特に反射防止膜20の多
層化により、反射防止の有効な波長域を広げることがで
きることになる。また、本発明は、インターライン転送
方式のCCD固体撮像装置への適用に限定されるもので
はなく、撮像部において入射光の有効利用を図るべく各
画素毎にマイクロレンズを配した構成の固体撮像装置全
般に適用可能である。
[0011] In the above embodiment, the antireflection film 20 has a two-layer structure, but it may have a single layer structure or a three or more layer structure. This means that the effective wavelength range for antireflection can be expanded. Further, the present invention is not limited to application to a CCD solid-state imaging device using an interline transfer method, but is also applicable to a solid-state imaging device in which a microlens is arranged for each pixel in order to effectively utilize incident light in the imaging section. Applicable to all devices.

【0012】0012

【発明の効果】以上説明したように、本発明による固体
撮像装置においては、単位画素毎に配されたマイクロレ
ンズの外表面に反射防止膜を設けたことにより、空気媒
体とマイクロレンズとの間での屈折率の変化が小さくな
って入射光の反射を防止できるため、反射光に起因する
フレア(セル・ゴースト)を抑制できる効果がある。
As explained above, in the solid-state imaging device according to the present invention, by providing an anti-reflection film on the outer surface of the microlens arranged for each unit pixel, the gap between the air medium and the microlens is reduced. Since the change in the refractive index is reduced and reflection of incident light can be prevented, flare (cell ghost) caused by reflected light can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係るCCD固体撮像装置の撮像部にお
ける単位画素の構造を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of a unit pixel in an imaging section of a CCD solid-state imaging device according to the present invention.

【図2】インターライン転送方式のCCD固体撮像装置
の概略構成図である。
FIG. 2 is a schematic configuration diagram of a CCD solid-state imaging device using an interline transfer method.

【符号の説明】[Explanation of symbols]

1  感光部 2  垂直シフトレジスタ 3  撮像部 12  信号電荷蓄積領域 14  信号電荷転送領域 16  転送電極 19  マイクロレンズ 20  反射防止膜 1 Photosensitive part 2 Vertical shift register 3 Imaging section 12 Signal charge accumulation region 14 Signal charge transfer area 16 Transfer electrode 19 Micro lens 20 Anti-reflection film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  垂直及び水平方向に画素単位で2次元
配列された複数個の感光部の各々に対して、入射光を集
光するマイクロレンズを配した構成の撮像部を具備する
固体撮像装置において、前記マイクロレンズの外表面に
単層又は多層の反射防止膜を設けたことを特徴とする固
体撮像装置。
1. A solid-state imaging device comprising an imaging section configured such that a microlens for condensing incident light is arranged for each of a plurality of photosensitive sections two-dimensionally arranged in pixel units in the vertical and horizontal directions. 2. A solid-state imaging device according to claim 1, wherein a single-layer or multi-layer anti-reflection film is provided on the outer surface of the microlens.
JP2414312A 1990-12-25 1990-12-25 Solid-state image sensing device Pending JPH04223371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2414312A JPH04223371A (en) 1990-12-25 1990-12-25 Solid-state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2414312A JPH04223371A (en) 1990-12-25 1990-12-25 Solid-state image sensing device

Publications (1)

Publication Number Publication Date
JPH04223371A true JPH04223371A (en) 1992-08-13

Family

ID=18522806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2414312A Pending JPH04223371A (en) 1990-12-25 1990-12-25 Solid-state image sensing device

Country Status (1)

Country Link
JP (1) JPH04223371A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396090A (en) * 1993-02-17 1995-03-07 Sharp Kabushiki Kaisha Solid state imaging device having partition wall for partitioning bottom portions of micro lenses
US6583438B1 (en) * 1999-04-12 2003-06-24 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device
KR100410613B1 (en) * 2001-06-28 2003-12-18 주식회사 하이닉스반도체 Image sensor with IR filter
JP2005268643A (en) * 2004-03-19 2005-09-29 Sony Corp Solid-state image pickup element, camera module, and electronic equipment module
KR100623344B1 (en) * 2000-06-30 2006-09-11 매그나칩 반도체 유한회사 Chip Scale Package of Image Sensor
WO2007071657A1 (en) * 2005-12-22 2007-06-28 Thomson Licensing Microlens array, screen, backprojector and corresponding manufacturing method
JP2007181209A (en) * 2005-12-26 2007-07-12 Magnachip Semiconductor Ltd Image sensor and manufacturing method thereof
JP2009177079A (en) * 2008-01-28 2009-08-06 Sharp Corp Solid-state imaging device, method of mounting the solid-state imaging device, method of manufacturing the solid-state imaging device, and electronic information device
JP2010268099A (en) * 2009-05-13 2010-11-25 Honda Motor Co Ltd Imaging apparatus for vehicle,and vehicle periphery monitoring apparatus
US8004020B2 (en) 2007-10-17 2011-08-23 Sharp Kabushiki Kaisha Solid-state image capturing device, camera module and electronic information device
US20120050599A1 (en) * 2010-08-25 2012-03-01 Pixart Imaging Inc. Image sensing device
CN102403322A (en) * 2010-09-07 2012-04-04 原相科技股份有限公司 Image detecting element
JP2012182433A (en) * 2011-02-09 2012-09-20 Canon Inc Photoelectric conversion element and photoelectric conversion device using the same, and imaging system
JP2013140330A (en) * 2011-12-29 2013-07-18 Visera Technologies Co Ltd Microlens structure and fabrication method thereof
US9087761B2 (en) 2010-10-07 2015-07-21 Sony Corporation Solid-state imaging device including an on-chip lens with two inorganic films thereon
WO2015186512A1 (en) * 2014-06-03 2015-12-10 ソニー株式会社 Solid-state image pickup device, manufacturing method therefor, and electronic apparatus
WO2022091576A1 (en) * 2020-10-28 2022-05-05 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396090A (en) * 1993-02-17 1995-03-07 Sharp Kabushiki Kaisha Solid state imaging device having partition wall for partitioning bottom portions of micro lenses
US6583438B1 (en) * 1999-04-12 2003-06-24 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device
US6831311B2 (en) 1999-04-12 2004-12-14 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device
KR100623344B1 (en) * 2000-06-30 2006-09-11 매그나칩 반도체 유한회사 Chip Scale Package of Image Sensor
KR100410613B1 (en) * 2001-06-28 2003-12-18 주식회사 하이닉스반도체 Image sensor with IR filter
JP2005268643A (en) * 2004-03-19 2005-09-29 Sony Corp Solid-state image pickup element, camera module, and electronic equipment module
WO2007071657A1 (en) * 2005-12-22 2007-06-28 Thomson Licensing Microlens array, screen, backprojector and corresponding manufacturing method
US8846433B2 (en) 2005-12-26 2014-09-30 Intellectual Ventures Ii Llc Image sensor and method for manufacturing the same
US8287948B2 (en) 2005-12-26 2012-10-16 Intellectual Ventures Ii Llc Image sensor and method for manufacturing the same
JP2007181209A (en) * 2005-12-26 2007-07-12 Magnachip Semiconductor Ltd Image sensor and manufacturing method thereof
US8344469B2 (en) 2005-12-26 2013-01-01 Intellectual Ventures Ii Llc Image sensor and method for manufacturing the same
US8004020B2 (en) 2007-10-17 2011-08-23 Sharp Kabushiki Kaisha Solid-state image capturing device, camera module and electronic information device
US8130314B2 (en) 2008-01-28 2012-03-06 Sharp Kabushiki Kaisha Solid-state image capturing apparatus, mounting method of solid-state image capturing apparatus, manufacturing method of solid-state image capturing apparatus, and electronic information device
JP2009177079A (en) * 2008-01-28 2009-08-06 Sharp Corp Solid-state imaging device, method of mounting the solid-state imaging device, method of manufacturing the solid-state imaging device, and electronic information device
JP2010268099A (en) * 2009-05-13 2010-11-25 Honda Motor Co Ltd Imaging apparatus for vehicle,and vehicle periphery monitoring apparatus
US20120050599A1 (en) * 2010-08-25 2012-03-01 Pixart Imaging Inc. Image sensing device
CN102403322A (en) * 2010-09-07 2012-04-04 原相科技股份有限公司 Image detecting element
US9087761B2 (en) 2010-10-07 2015-07-21 Sony Corporation Solid-state imaging device including an on-chip lens with two inorganic films thereon
JP2012182433A (en) * 2011-02-09 2012-09-20 Canon Inc Photoelectric conversion element and photoelectric conversion device using the same, and imaging system
US8878115B2 (en) 2011-02-09 2014-11-04 Canon Kabushiki Kaisha Photoelectric conversion element, and photoelectric conversion apparatus and imaging system having a light guide
JP2013140330A (en) * 2011-12-29 2013-07-18 Visera Technologies Co Ltd Microlens structure and fabrication method thereof
US9128218B2 (en) 2011-12-29 2015-09-08 Visera Technologies Company Limited Microlens structure and fabrication method thereof
WO2015186512A1 (en) * 2014-06-03 2015-12-10 ソニー株式会社 Solid-state image pickup device, manufacturing method therefor, and electronic apparatus
US10451775B2 (en) 2014-06-03 2019-10-22 Sony Corporation Solid-state imaging device, production method, and electronic apparatus
WO2022091576A1 (en) * 2020-10-28 2022-05-05 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic apparatus

Similar Documents

Publication Publication Date Title
JP2621767B2 (en) Solid-state imaging device
JP4457326B2 (en) Solid-state imaging device
JPH04223371A (en) Solid-state image sensing device
JP2010067774A (en) Photoelectric conversion device and imaging system
JP3571982B2 (en) Solid-state imaging device and solid-state imaging system having the same
JP2006278539A (en) Mos solid state imaging device
JP2009099817A (en) Solid-state imaging device
JP4779304B2 (en) Solid-state image sensor, camera module, and electronic device module
JP2011142330A (en) Solid-state image sensor, camera module and electronic equipment module
JPWO2013046972A1 (en) Solid-state imaging device and imaging apparatus
JP2000164839A (en) Solid camera device
JP4495949B2 (en) Two-plate color solid-state imaging device and digital camera
JP2003209235A (en) Solid-state imaging device and method of manufacturing the same
KR100848945B1 (en) Microlens Array Compensating Chief Ray and Image Sensor Assembly Having the Same
JPH06163863A (en) Solid-state image pickup device
JP2011023455A (en) Solid-state image-capture device
JPH0653451A (en) Solid state image sensor
WO2010090133A1 (en) Solid-state image pickup device
JPH03276677A (en) Solid-state image sensing element
JPS61154283A (en) Solid image pick-up element
JP5544912B2 (en) Solid-state image sensor
JP3018782B2 (en) Solid-state imaging device
WO2008088878A2 (en) Image sensor with three sets of microlenses
JP2016158151A (en) Photoelectric conversion element, image reading device, and image forming apparatus
JP2006324810A (en) Optical module