JP3018782B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP3018782B2
JP3018782B2 JP4270059A JP27005992A JP3018782B2 JP 3018782 B2 JP3018782 B2 JP 3018782B2 JP 4270059 A JP4270059 A JP 4270059A JP 27005992 A JP27005992 A JP 27005992A JP 3018782 B2 JP3018782 B2 JP 3018782B2
Authority
JP
Japan
Prior art keywords
lens
solid
imaging device
state imaging
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4270059A
Other languages
Japanese (ja)
Other versions
JPH06120466A (en
Inventor
智浩 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4270059A priority Critical patent/JP3018782B2/en
Publication of JPH06120466A publication Critical patent/JPH06120466A/en
Application granted granted Critical
Publication of JP3018782B2 publication Critical patent/JP3018782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体撮像素子に関し、特
に個々の光ダイオード上にレンズを有する固体撮像素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image sensor, and more particularly, to a solid-state image sensor having a lens on each photodiode.

【0002】[0002]

【従来の技術】従来の固体撮像素子のインター・ライン
型においては、光ダイオードと隣接する光ダイオードの
間に転送レジスタが構成されるため、開口率は20〜3
0%しかなく十分な感度が得られなかった。前記の必要
性を満たすものとして、従来発明された技術が図3に示
すレンズ・パターニング技術である。
2. Description of the Related Art In a conventional inter-line solid-state imaging device, a transfer register is formed between a photodiode and an adjacent photodiode.
Sufficient sensitivity could not be obtained with only 0%. As a technique that satisfies the above-mentioned need, a technique invented conventionally is a lens patterning technique shown in FIG.

【0003】図3に示す固体撮像素子では、N型基板1
上にP型層2を形成し、P型層2とN型拡散層3とで光
ダイオードを構成している。N型層5は転送レジスタと
して動作し、P+ 型拡散層4はN型層5に蓄積された電
荷が隣接するN型拡散層3に入らないようにするための
チャネル・ストップとして動作する。ゲート6はポリシ
リコンの電極であり、その上に層間膜7を形成し、更に
感光領域を規定する遮光膜8(例えばAl)が構成され
る。そして平坦化層9によって遮光膜8による凹凸を平
坦化し、その上にレンズ10を形成する。平坦化層9の
屈折率n0 (例えばフェノール・ノボラック樹脂n0
1.61)とレンズ10の屈折率n1 (例えばフェノー
ル・ノボラック樹脂n1 =1.61)はn0 =n1 のた
め、両者の境界でレンズ10より入射した光の光路が化
えられることはなく、正規の場合、光路11のように光
ダイオードに集光する。この従来技術において光ダイオ
ード上にレンズをパターン化したため、等価的に開口率
が上がり、感度が2倍に向上した(1984年,テレビ
全大3−17,石原,谷垣,「樹脂レンズ・アレイを用
いた高感度CCDイメージセンサ参照)。
[0003] In the solid-state imaging device shown in FIG.
A P-type layer 2 is formed thereon, and the P-type layer 2 and the N-type diffusion layer 3 constitute a photodiode. The N-type layer 5 operates as a transfer register, and the P + -type diffusion layer 4 operates as a channel stop for preventing charges accumulated in the N-type layer 5 from entering the adjacent N-type diffusion layer 3. The gate 6 is a polysilicon electrode, on which an interlayer film 7 is formed, and further, a light-shielding film 8 (for example, Al) for defining a photosensitive region is formed. Then, the unevenness due to the light shielding film 8 is flattened by the flattening layer 9, and the lens 10 is formed thereon. The refractive index n 0 of the flattening layer 9 (for example, phenol novolak resin n 0 =
1.61) and the refractive index n 1 of the lens 10 (for example, phenol-novolak resin n 1 = 1.61) is n 0 = n 1 , so that the optical path of the light incident from the lens 10 is changed at the boundary between the two. In the normal case, the light is condensed on the photodiode as in the optical path 11. In this prior art, since the lens is patterned on the photodiode, the aperture ratio is equivalently increased, and the sensitivity is doubled (1984, 3-17, Television Zendai, Ishihara, Tanigaki, "Resin lens array. High sensitivity CCD image sensor used).

【0004】[0004]

【発明が解決しようとする課題】しかし、図3の光路1
2,すなわち隣接画素のレンズの反射光12が画素Aの
光ダイオードに入射するような場合は、画素CとAの間
で信号のクロストークとなりMTFが劣化するほか、モ
ザイク型カラーフィルタを用いた固体撮像素子では色変
調度が低下するといった問題がある。
However, the optical path 1 shown in FIG.
2, when the reflected light 12 of the lens of the adjacent pixel is incident on the photodiode of the pixel A, signal crosstalk occurs between the pixels C and A, MTF is deteriorated, and a mosaic type color filter is used. The solid-state imaging device has a problem that the degree of color modulation is reduced.

【0005】また、図3の光路13や14すなわちレン
ズの製造上の正規の光軸からずれた欠陥等による光路の
場合および図3の光路15による光電変換に寄与しない
光路の場合、遮光膜8の表面での凹凸により散乱された
光はフレア成分の増加や同反射光の隣接画素BまたはC
の光ダイオードへの再入射によりスミア成分が増大する
といった問題があり、高輝度被写体を撮像したときに画
質が著しく劣化するという欠点がある。さらに、レンズ
の端においてはレンズの収差のため図3の光路16のよ
うに光ダイオードの表面以外で結像するといった欠点が
ある。
In the case of the optical paths 13 and 14 shown in FIG. 3, that is, an optical path due to a defect deviated from the normal optical axis in manufacturing the lens, and an optical path which does not contribute to the photoelectric conversion by the optical path 15 shown in FIG. The light scattered due to the unevenness on the surface of the surface increases the flare component and the adjacent pixel B or C of the reflected light.
However, there is a problem that the smear component increases due to re-injection into the photodiode, and there is a disadvantage that the image quality is significantly deteriorated when a high-luminance subject is imaged. Further, at the end of the lens, there is a disadvantage that an image is formed on a portion other than the surface of the photodiode as shown by the optical path 16 in FIG. 3 due to aberration of the lens.

【0006】[0006]

【課題を解決するための手段】本発明は、複数の画素を
有し、各画素上にレンズを配設した固体撮像素子におい
て、前記レンズ上に、レンズと等しい屈折率を有し厚さ
が中央部より端部で大きくなる非球面レンズ表被層を設
け、隣接するレンズ間の距離を小さくしたことを特徴と
する。
According to the present invention, a plurality of pixels are provided.
A solid-state imaging device having a lens disposed on each pixel , the lens having a refractive index equal to that of the lens and having a thickness on the lens.
Has an aspheric lens surface layer that is larger at the end than at the center.
In addition, the distance between adjacent lenses is reduced .

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の第1の実施例を示す断面図である。
なお、前述した従来例と同一部分には同一符号を付し、
重複する説明は省略する。本実施例では、図3の従来例
に対しレンズ10上に屈折率n2 (例えばフェノール・
ノボラック樹脂で屈折率1.61)からなるレンズ表被
層17を積層してある。このため、単位画素上のレンズ
は、最終的にレンズ10とレンズ表被層17によって構
成されることになる。ここで図1において、Xは隣接レ
ンズ間の距離、tはレンズ表被層17の厚さを表すが、
tが元のレンズ10の中央と端とで端の方が大きくなる
ため、レンズの形状としては非球面レンズとなり、レン
ズ中央とレンズ端とで曲率が異なるので、光路18の場
合でも、球面レンズのように収差を生じることなく光ダ
イオード上に結像する。また、隣接レンズ間の距離Xが
小さくなるため光電変換に寄与しない光路19の光量が
減るので、光ダイオードの開口率が等価的に向上し、感
度やS/Nが向上し、隣接画素間での信号のクロス・ト
ークは大幅に減少させることができる。このためMTF
は向上し、モザイク型カラーフィルタを用いた固体撮像
素子でも色変調度が向上する。また、光路19の光量の
減少に伴い、遮光膜8の表面での散乱光が減少するので
フレア成分、スミア成分を低減でき、高輝度被写体を撮
像した時でも画質の劣化を防ぐことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a first embodiment of the present invention.
The same parts as those in the conventional example described above are denoted by the same reference numerals,
Duplicate description will be omitted. In this embodiment, the refractive index n 2 (for example, phenol
A lens cover layer 17 made of novolak resin and having a refractive index of 1.61) is laminated. Therefore, the lens on the unit pixel is ultimately constituted by the lens 10 and the lens surface layer 17. Here, in FIG. 1, X represents the distance between adjacent lenses, and t represents the thickness of the lens surface layer 17,
Since t is larger at the end between the center and the end of the original lens 10, the lens shape is an aspherical lens, and the curvature is different between the center of the lens and the end of the lens. The image is formed on the photodiode without causing aberration as shown in FIG. In addition, since the distance X between adjacent lenses is reduced, the amount of light in the optical path 19 that does not contribute to photoelectric conversion is reduced, so that the aperture ratio of the photodiode is equivalently improved, sensitivity and S / N are improved, and the distance between adjacent pixels is reduced. Signal can be significantly reduced. Therefore, MTF
And the degree of color modulation is improved even in a solid-state imaging device using a mosaic type color filter. Further, as the amount of light in the optical path 19 decreases, scattered light on the surface of the light-shielding film 8 decreases, so that a flare component and a smear component can be reduced.

【0008】図2は本発明の第2の実施例でレンズ部分
のみを示している。図1の第1の実施例においてはレン
ズはレンズ10の上にレンズ表被膜17を積層した後に
形成されているが図2に示すように基本的なレンズ・パ
ターン20上にすぐにレンズ表皮層17を積層してレン
ズを形成しても、同様な非球面レンズが得られる。この
場合、レンズ・パターン20の高さhとレンズ表被層の
厚さtにより平坦化層9からのレンズ高さ(この場合、
h+t)を自由に変えられる。また、レンズ・パターン
20の上辺W2と下辺W1が等しい場合、この幅とレン
ズ表被層17の関係で隣接レンズ間の距離Xを決めるこ
とができる。図2においてレンズ・パターン20はW1
=W2の場合を示してあるが、W1とW2はレンズの形
状を決めるのでW1≧W2≧h>0のような高さhの低
い台形が好ましい。
FIG. 2 shows only a lens portion according to a second embodiment of the present invention. In the first embodiment of FIG. 1, the lens is formed after laminating the lens surface coating 17 on the lens 10, but as shown in FIG. A similar aspheric lens can be obtained by forming a lens by laminating 17. In this case, the lens height from the flattening layer 9 (in this case, the height h of the lens pattern 20 and the thickness t of the lens surface layer)
h + t) can be changed freely. When the upper side W2 and the lower side W1 of the lens pattern 20 are equal, the distance X between adjacent lenses can be determined by the relationship between the width and the lens surface layer 17. In FIG. 2, the lens pattern 20 is W1
= W2 is shown, but since W1 and W2 determine the shape of the lens, a trapezoid with a low height h such as W1 ≧ W2 ≧ h> 0 is preferable.

【0009】本発明はインター・ライン型固体撮像素子
のみならず単位画素上にレンズを有する全ての固体撮像
素子に適用できることは言うまでもない。また、上記の
実施例では、レンズ10またはレンズ・パターン20上
にレンズ表被層17と一層だけ積層してレンズと形成し
た例を示したが、本発明はこれに限定されず、レンズ表
被層17を何層でも積層し、必要な光を光ダイオートに
効果的に導く収差のない非球面レンズを形成するように
すればいい。
It is needless to say that the present invention can be applied not only to an inter-line solid-state image pickup device but also to all solid-state image pickup devices having a lens on a unit pixel. Further, in the above-described embodiment, an example is shown in which the lens is formed by laminating only one layer of the lens cover layer 17 on the lens 10 or the lens pattern 20, but the present invention is not limited to this. Any number of layers 17 may be laminated to form an aberration-free aspheric lens that effectively guides necessary light to an optical die.

【0010】[0010]

【発明の効果】以上説明したように本発明は光ダイオー
ドへの集光率を高めたので固体素子の感度が向上し、フ
レア成分、スミア成分は低減する。この結果モザイク型
カラーフィルタを用いた固体撮像素子でも色変調度が向
上する。また、高輝被写体を撮像した場合でも画質は劣
化しない。
As described above, according to the present invention, since the light collection rate on the photodiode is increased, the sensitivity of the solid-state device is improved, and the flare component and the smear component are reduced. As a result, even in a solid-state imaging device using a mosaic type color filter, the degree of color modulation is improved. Further, the image quality does not deteriorate even when a bright object is imaged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の固体撮像素子の断面図
である。
FIG. 1 is a sectional view of a solid-state imaging device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例のレンズ部分の断面図で
ある。
FIG. 2 is a sectional view of a lens portion according to a second embodiment of the present invention.

【図3】従来の固体撮像素子の断面図である。FIG. 3 is a cross-sectional view of a conventional solid-state imaging device.

【符号の説明】[Explanation of symbols]

1 N型基板2 P型層 3 N型拡散層 4 P+ 型拡散層 5 N型層 6 ゲート 7 層間膜 8 遮光膜 9 平坦化層 10 レンズ 11〜16 光路 17 レンズ表被層 20 レンズパターン REFERENCE SIGNS LIST 1 N-type substrate 2 P-type layer 3 N-type diffusion layer 4 P + -type diffusion layer 5 N-type layer 6 Gate 7 Interlayer film 8 Light-shielding film 9 Flattening layer 10 Lens 11 to 16 Optical path 17 Lens covering layer 20 Lens pattern

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の画素を有し、各画素上にレンズを
配設した固体撮像素子において、前記レンズ上に、レン
ズと等しい屈折率を有し厚さが中央部より端部で大きく
なる非球面レンズ表被層を設け、隣接するレンズ間の距
離を小さくしたことを特徴とする固体撮像素子。
1. A method comprising: a plurality of pixels; a lens on each pixel;
In the arranged solid-state imaging device, on the lens, the refractive index is equal to that of the lens, and the thickness is larger at the end than at the center.
Aspherical lens surface layer, and the distance between adjacent lenses.
A solid-state imaging device characterized in that separation is reduced .
JP4270059A 1992-10-08 1992-10-08 Solid-state imaging device Expired - Lifetime JP3018782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4270059A JP3018782B2 (en) 1992-10-08 1992-10-08 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4270059A JP3018782B2 (en) 1992-10-08 1992-10-08 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH06120466A JPH06120466A (en) 1994-04-28
JP3018782B2 true JP3018782B2 (en) 2000-03-13

Family

ID=17480953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4270059A Expired - Lifetime JP3018782B2 (en) 1992-10-08 1992-10-08 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3018782B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306897A (en) * 1995-05-09 1996-11-22 Matsushita Electron Corp Solid-state image sensor
KR100310102B1 (en) * 1998-03-05 2001-12-17 윤종용 Solid-state color imaging device and method for fabricating the same
JP2007157743A (en) * 2005-11-30 2007-06-21 Fujifilm Corp Solid state imaging device and method of manufacturing same
JP4915135B2 (en) * 2006-04-27 2012-04-11 ソニー株式会社 Method for manufacturing solid-state imaging device

Also Published As

Publication number Publication date
JPH06120466A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
US8829579B2 (en) Solid-state imaging device, electronic apparatus, and method for manufacturing the same
US9261769B2 (en) Imaging apparatus and imaging system
US8969776B2 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus having an on-chip micro lens with rectangular shaped convex portions
US8072007B2 (en) Backside-illuminated imaging device
JPH10270672A (en) Solid-state image pickup element
US9337364B2 (en) Solid-state imaging element and electronic apparatus
JP3571982B2 (en) Solid-state imaging device and solid-state imaging system having the same
JP2004047682A (en) Solid-state image pickup device
US7414232B2 (en) Image sensor and method for fabricating the same
JP2742185B2 (en) Solid-state imaging device
JPH0645569A (en) Solid-state image pick-up device and its manufacturing method
JPH04223371A (en) Solid-state image sensing device
CN108550597B (en) Imaging device and electronic apparatus
JPH0750401A (en) Solid state image pick-up device and manufacturing method thereof
JP3166220B2 (en) Solid-state imaging device
KR100848945B1 (en) Microlens Array Compensating Chief Ray and Image Sensor Assembly Having the Same
JP3018782B2 (en) Solid-state imaging device
JPH04199874A (en) Solid state image sensing device
JP3033242B2 (en) Solid-state imaging device
JPH08148665A (en) Solid image pickup element
JPH03276677A (en) Solid-state image sensing element
JP3138502B2 (en) Solid-state imaging device
JPH0945884A (en) Solid-state image pickup device and manufacture thereof
JP2006196626A (en) Solid-state imaging device, its manufacturing method and camera
JP2876838B2 (en) Solid-state imaging device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991130