JP2876838B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2876838B2
JP2876838B2 JP3209047A JP20904791A JP2876838B2 JP 2876838 B2 JP2876838 B2 JP 2876838B2 JP 3209047 A JP3209047 A JP 3209047A JP 20904791 A JP20904791 A JP 20904791A JP 2876838 B2 JP2876838 B2 JP 2876838B2
Authority
JP
Japan
Prior art keywords
lens
solid
dimensional
state imaging
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3209047A
Other languages
Japanese (ja)
Other versions
JPH0548980A (en
Inventor
行夫 谷治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3209047A priority Critical patent/JP2876838B2/en
Publication of JPH0548980A publication Critical patent/JPH0548980A/en
Application granted granted Critical
Publication of JP2876838B2 publication Critical patent/JP2876838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明の固体撮像素子に関し、特
に固体撮像素子の感度向上の方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device of the present invention, and more particularly to a method for improving the sensitivity of a solid-state imaging device.

【0002】[0002]

【従来の技術】固体撮像素子は近年の技術の進歩により
諸特性が改善され、解像度の向上から民生用はもとより
放送、業務用カメラにおいても採用されつつある。しか
しチップ収率の向上を目的としたチップ面積の縮小等か
ら単位セルの面積が小さくなるため感度が低下する。こ
の対策として浮遊拡散層を用いた電荷検出を行う場合は
その浮遊拡散層の容量を減少させる等の方法が一般に取
られる。
2. Description of the Related Art Various characteristics of solid-state imaging devices have been improved due to recent advances in technology, and due to improvements in resolution, they have been adopted in cameras for broadcast and business use as well as for consumer use. However, since the area of the unit cell is reduced due to the reduction of the chip area for the purpose of improving the chip yield, the sensitivity is reduced. As a countermeasure against this, when performing charge detection using a floating diffusion layer, a method such as reducing the capacitance of the floating diffusion layer is generally adopted.

【0003】図4(a)はオンチップマイクロレンズを
搭載したインターライン型固体撮像素子の水平方向セル
断面図である。p型基板1に拡散されたn型の拡散層か
らなるフォトダイオード2はチャネルストップ4と垂直
転送レジスタ3とをはさみ形成される。また垂直転送レ
ジスタ3の転送電極5の上に絶縁膜を介して積層された
遮断膜6によりフォトダイオード2の開口は規定される
ため水平方向の開口率は通常40%程度である。このた
め、みかけ上の開口率向上のためベース層7を介してレ
ンズ8をその光軸がフォトダイオード2の開口の中心と
一致し、かつベース層7の厚さdにその焦点距離がほぼ
一致するように形成している。
FIG. 4A is a cross-sectional view of a horizontal cell of an interline solid-state imaging device equipped with an on-chip microlens. A photodiode 2 composed of an n-type diffusion layer diffused in a p-type substrate 1 is formed with a channel stop 4 and a vertical transfer register 3 interposed therebetween. Further, since the opening of the photodiode 2 is defined by the blocking film 6 laminated on the transfer electrode 5 of the vertical transfer register 3 via an insulating film, the aperture ratio in the horizontal direction is usually about 40%. Therefore, the optical axis of the lens 8 is aligned with the center of the opening of the photodiode 2 through the base layer 7 to improve the apparent aperture ratio, and the focal length of the lens 8 substantially matches the thickness d of the base layer 7. It is formed so that.

【0004】隣接するフォトダイオード2間の距離aが
垂直、水平方向で共通の場合のレンズの平面構成図を図
4(b)に示す。レンズ8が円形に形成され収差なく入
射光9がフォトダイオード2に集光されたとしても斜線
のように不感光領域10が存在する。
FIG. 4B is a plan view showing the configuration of a lens when the distance a between adjacent photodiodes 2 is common in the vertical and horizontal directions. Even if the lens 8 is formed in a circular shape and the incident light 9 is condensed on the photodiode 2 without aberration, the non-photosensitive area 10 exists as shown by oblique lines.

【0005】一般にはフォトダイオード2間の距離は垂
直、水平方向で異なるためレンズは図5(b)に示すよ
うに楕円状になる。したがってA−A′断面は図4
(a)のように入射光9はフォトダイオード2に集光し
ても、B−B′断面ではレンズ11は図5(a)のよう
に非球面になり入射光13は完全にフォトダイオード2
に集光しなくなる。このため図5(b)に示すように不
感光領域12は更に拡大する可能性がある。
Generally, the distance between the photodiodes 2 is different in the vertical and horizontal directions, so that the lens has an elliptical shape as shown in FIG. Accordingly, FIG.
Even if the incident light 9 is condensed on the photodiode 2 as shown in FIG. 5A, the lens 11 becomes an aspherical surface as shown in FIG.
Will not collect light. For this reason, as shown in FIG. 5B, the non-photosensitive area 12 may be further enlarged.

【0006】[0006]

【発明が解決しようとする課題】このように従来の固体
撮像素子の積層レンズは入射光を必ずしも効率よく集光
しているとは言えず、不感光領域が25〜30%程度存
在すると言い欠点があった。
As described above, the conventional laminated lens of the solid-state imaging device cannot always say that the incident light is condensed efficiently, and has a drawback that the non-photosensitive region exists at about 25 to 30%. was there.

【0007】[0007]

【課題を解決するための手段】本発明の固体撮像素子は
転送レジスタと、垂直及び、水平方向に2次元配置され
た光電変換素子と、前記光電変換素子の表面近傍に焦点
を持つ積層型の第1の1次元マイクロレンズと前記第1
の1次元マイクロレンズの形成された方向に対し直角方
向に形成され、同じく前記光電変換素子の表面近傍に焦
点を持ち前記第1の1次元マイクロレンズ上に更に積層
される、もしけは貼り合わせフィルター上に設けられた
第2の1次元マイクロレンズとをそなえている。
According to the present invention, there is provided a solid-state image pickup device comprising a transfer register, a photoelectric conversion device arranged two-dimensionally in a vertical direction and a horizontal direction, and a stacked type having a focus near a surface of the photoelectric conversion device. A first one-dimensional microlens and the first
Is formed in a direction perpendicular to the direction in which the one-dimensional microlens is formed, has a focal point near the surface of the photoelectric conversion element, and is further laminated on the first one-dimensional microlens. It has a second one-dimensional microlens provided on the filter.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例の部分構成図で、フォトダ
イオード、転送レジスタが形成されたチップ15は水平
方向(x方向)に第1の1次元レンズが積層されてお
り、一方第2の1次元レンズは垂直方向(y方向)にフ
ィルター14の下面に構成され、チップ15とフィルタ
ー14をそれぞれのレンズが各フォトダイオードの開口
の中心に焦点が結ぶように貼り合わされる。なお、フォ
トダイオード、転送レジスタ等、レンズ以外の部分は従
来と同じであるので説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a partial configuration diagram of one embodiment of the present invention. A chip 15 on which a photodiode and a transfer register are formed has a first one-dimensional lens stacked in a horizontal direction (x direction), while a second one is formed. The one-dimensional lens is formed on the lower surface of the filter 14 in the vertical direction (y direction), and the chip 15 and the filter 14 are bonded together such that each lens is focused on the center of the opening of each photodiode. Note that parts other than the lens, such as the photodiode and the transfer register, are the same as those in the related art, and a description thereof will be omitted.

【0009】図2(a)は水平方向のビットの断面図,
図2(b)は垂直方向のビットの断面図である。図2
(a)で入射光19は水平方向に関しては、フィルタベ
ース16,第2の1次元レンズ17に対して垂直に入射
するため集光作用を示さず、第1の1次元レンズ18に
より、その曲率とフィルターチップ間の間隙の屈折率の
差により決定される焦点距離dxをもってフォトダイオ
ード2の表面に集光する。また、図2(b)に示すよう
に、入射光19は垂直方向に関して、第1の1次元レン
ズ18とフィルター、チップの間隙の曲率を含め、フィ
ルターベース16上に設けられた第2の1次元レンズ1
7により、別個の焦点距離dyをもっ集光される。
FIG. 2A is a sectional view of a bit in a horizontal direction,
FIG. 2B is a sectional view of the bit in the vertical direction. FIG.
3A, the incident light 19 is vertically incident on the filter base 16 and the second one-dimensional lens 17 in the horizontal direction, and thus does not exhibit a light condensing action. The light is condensed on the surface of the photodiode 2 with a focal length dx determined by the difference in the refractive index of the gap between the filter chip and the filter chip. In addition, as shown in FIG. 2B, the incident light 19 includes the first one-dimensional lens 18 and the second light source provided on the filter base 16 including the curvature of the gap between the filter and the chip in the vertical direction. Dimensional lens 1
7, the light is collected with a different focal length dy.

【0010】したがて入射光19はx方向,y方向それ
ぞれ独立に焦点距離dx,dyをもって集光できるた
め、理想的なレンズ形状をとることができ、各セル面積
に対しほぼ100%近い集光作用が得られ、従来比3割
程度の感度向上が可能となる。
Accordingly, since the incident light 19 can be condensed with the focal lengths dx and dy independently of each other in the x and y directions, an ideal lens shape can be obtained, and the collection of light nearly 100% with respect to each cell area. A light effect is obtained, and the sensitivity can be improved by about 30% as compared with the related art.

【0011】またフォトダイオード2は一般に開口率が
x方向がy方向と比較して低く、この場合撮像するレン
ズのF値が小さい場合、すなわち、入射光の入射角が広
い場合ケラレを生ずる。このケラレを少なくするために
はレンズの焦点距離(=dx)を短くする必要がある
が、2次元状のレンスでは収差が大きくなる欠点があ
り、1次元レンズを積層することによりdx,dyを別
個に設定できるため、設計のマージンが広がるといった
利点もある。
The photodiode 2 generally has a lower aperture ratio in the x direction than in the y direction. In this case, when the F value of the lens to be imaged is small, that is, when the incident angle of the incident light is wide, vignetting occurs. In order to reduce the vignetting, it is necessary to shorten the focal length (= dx) of the lens. However, the two-dimensional lens has a drawback that the aberration increases. By stacking the one-dimensional lens, dx and dy are reduced. Since they can be set separately, there is an advantage that the design margin is widened.

【0012】図3は本発明の他の実施例のビット斜断面
図である。第1の1次元レンズ18第2の1次元レンズ
21はフォトダイオード2の配列方向に対し、前列同様
に水平,垂直方向にそれぞれ構成されている。ただし前
例に対し第2の1次元レンズ21は第1の1次元レンズ
18が形成された後、平坦化するためのベース層20を
積層し、この上に設けている。本例は、ベース層20と
第1の1次元レンズ18の屈折率の差により集光される
ため、一般的な材質(樹脂等)では1.4〜1.6程度
で大きくとれない欠点があるものの、プロセス的な目合
せにより2層のレンズが形成可能であり、精度の向上が
見込め、またフィルター貼りつけと比較し、ベース層の
厚さによる吸収や、反射面の数が少なく、感度の減少の
割合が少ないといった利点がある。
FIG. 3 is an oblique sectional view of a bit according to another embodiment of the present invention. The first one-dimensional lens 18 and the second one-dimensional lens 21 are respectively formed in the horizontal and vertical directions with respect to the arrangement direction of the photodiodes 2 as in the front row. However, in contrast to the previous example, the second one-dimensional lens 21 is formed by forming a first one-dimensional lens 18 and then stacking a base layer 20 for flattening and providing the base layer 20 thereon. In this example, since light is condensed due to the difference in the refractive index between the base layer 20 and the first one-dimensional lens 18, there is a disadvantage that a general material (eg, resin) is not large because it is about 1.4 to 1.6. Despite this, it is possible to form a two-layer lens by process matching, which is expected to improve the accuracy. Also, compared to the case of attaching a filter, the absorption due to the thickness of the base layer and the number of reflective surfaces are small, and the sensitivity is high. There is an advantage that the rate of decrease is small.

【0013】[0013]

【発明の効果】以上説明したように本発明は固体撮像素
子の積層レンズを2層、もしくは貼り合わせフィルター
上のレンズと合わせて2層とし、それぞれを1次元状の
レンズで直交するように構成することにより、各々の方
向に対し独立に焦点距離が設定できるため、セル当たり
の面積に対する集光力が向上し感度を改善できるといっ
た効果を有する。
As described above, according to the present invention, the solid-state image pickup device has two laminated lenses or two layers including a lens on a bonding filter, each of which is made orthogonal by a one-dimensional lens. By doing so, since the focal length can be set independently for each direction, the light condensing power per cell area can be improved and the sensitivity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の部分構成図。FIG. 1 is a partial configuration diagram of an embodiment of the present invention.

【図2】水平,垂直方向のビット断面図。FIG. 2 is a sectional view of a bit in horizontal and vertical directions.

【図3】本発明の他の実施例のビット斜断面図。FIG. 3 is a cross-sectional view of a bit according to another embodiment of the present invention.

【図4】(a)は従来例の水平方向セル断面図、(b)
はセルピッチが同じ場合の平面構成図。
FIG. 4A is a cross-sectional view of a conventional cell in the horizontal direction, and FIG.
2 is a plan view showing the configuration when the cell pitch is the same.

【図5】(a)は図5(b)のB−B′断面図,(b)
はセルピッチが垂直,水平で異なる場合の従来例の平面
構成図。
5A is a cross-sectional view taken along the line BB ′ of FIG. 5B, FIG.
2 is a plan view of a conventional example in which the cell pitch is different between vertical and horizontal.

【符号の説明】[Explanation of symbols]

1 P型基板 2 フォトダイオード 3 垂直転送レジスタ 4 チャネルストップ 5 転送電極 6 遮光膜 7,20 ベース層 8,11 レンズ 9,13,19,22 入射光 10,12 不感光領域 14 フィルター 15 チップ 16 フィルターベース 17,21 第2の1次元レンズ 18 第1の1次元レンズ Reference Signs List 1 P-type substrate 2 Photodiode 3 Vertical transfer register 4 Channel stop 5 Transfer electrode 6 Light-shielding film 7, 20 Base layer 8, 11 Lens 9, 13, 19, 22 Incident light 10, 12 Light-insensitive area 14 Filter 15 Chip 16 Filter Base 17, 21 Second one-dimensional lens 18 First one-dimensional lens

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H04N 5/335 H01L 27/14 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H04N 5/335 H01L 27/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 垂直及び、水平方向に2次元配置された
光電変換素子と、転送レジスタと、前記光電変換素子の
表面近傍に焦点を持つ積層型の第1の1次元マイクロレ
ンズと、前記第1の1次元マイクロレンズの形成された
方向に対し直角方向に形成され、同じく前記光電変換素
子の表面近傍に焦点を持ち前記第1の1次元マイクロレ
ンズ上に更に積層された第2の1次元マイクロレンズと
から成る固体撮像素子。
A photoelectric conversion element arranged two-dimensionally in a vertical and horizontal direction; a transfer register; a first stacked one-dimensional microlens having a focal point near a surface of the photoelectric conversion element; A second one-dimensional array formed in a direction perpendicular to the direction in which the one one-dimensional microlens is formed, also having a focal point near the surface of the photoelectric conversion element and further laminated on the first one-dimensional microlens; A solid-state image sensor comprising a micro lens.
【請求項2】 請求項1記載の固体撮像素子において、
前記第2の1次元マイクロレンズが貼り合わせフィルタ
ー上に設けられていることを特徴とする固体撮像素子。
2. The solid-state imaging device according to claim 1, wherein
A solid-state imaging device, wherein the second one-dimensional microlens is provided on a bonding filter.
JP3209047A 1991-08-21 1991-08-21 Solid-state imaging device Expired - Fee Related JP2876838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209047A JP2876838B2 (en) 1991-08-21 1991-08-21 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209047A JP2876838B2 (en) 1991-08-21 1991-08-21 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH0548980A JPH0548980A (en) 1993-02-26
JP2876838B2 true JP2876838B2 (en) 1999-03-31

Family

ID=16566376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209047A Expired - Fee Related JP2876838B2 (en) 1991-08-21 1991-08-21 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2876838B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3666203B2 (en) * 1997-09-08 2005-06-29 ソニー株式会社 Solid-state image sensor
JP2006229110A (en) * 2005-02-21 2006-08-31 Sanyo Electric Co Ltd Imaging device and imaging device manufacturing method
JP6750230B2 (en) * 2016-01-19 2020-09-02 大日本印刷株式会社 Imaging module, imaging device
JP6910105B2 (en) * 2016-01-25 2021-07-28 大日本印刷株式会社 Lens sheet, imaging module, and imaging device
CN109671730A (en) 2017-10-16 2019-04-23 松下知识产权经营株式会社 Photographic device

Also Published As

Publication number Publication date
JPH0548980A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
US7427742B2 (en) Microlens for use with a solid-state image sensor and a non-telecentric taking lens
US7358475B2 (en) Solid-state imaging device and camera
US5682203A (en) Solid-state image sensing device and photo-taking system utilizing condenser type micro-lenses
CN100562069C (en) Be provided with the solid-state image pickup device of light converging micro-lenses and adopt its camera apparatus
US20100073540A1 (en) Multiple microlens system for image sensors or display units
US20070181923A1 (en) Solid-state image sensor comprising plural lenses
JP3778817B2 (en) Solid-state imaging device and manufacturing method thereof
JPH05335531A (en) Solid-state imaging device
JP3178629B2 (en) Solid-state imaging device and method of manufacturing the same
JPH11150254A (en) Solid-state image-pickup element
US7884397B2 (en) Solid-state image sensor and method for producing the same
JP3571982B2 (en) Solid-state imaging device and solid-state imaging system having the same
JP3693162B2 (en) Solid-state imaging device
JPH0750401A (en) Solid state image pick-up device and manufacturing method thereof
US6787824B2 (en) Solid-state image pick-up device
JP2558389B2 (en) Solid-state imaging device
JP2876838B2 (en) Solid-state imaging device
JPH0774332A (en) Ccd solid-state imaging device
JPH02103962A (en) Solid-state image sensing device and manufacture thereof
JPH0540216A (en) Microlens and production thereof
JPH03276677A (en) Solid-state image sensing element
JP3138502B2 (en) Solid-state imaging device
JP3018782B2 (en) Solid-state imaging device
JPH0682813B2 (en) Method for manufacturing infrared detection solid-state imaging device
JPH02309674A (en) Solid-state image sensing device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981222

LAPS Cancellation because of no payment of annual fees