JPH0682813B2 - Method for manufacturing infrared detection solid-state imaging device - Google Patents

Method for manufacturing infrared detection solid-state imaging device

Info

Publication number
JPH0682813B2
JPH0682813B2 JP59145427A JP14542784A JPH0682813B2 JP H0682813 B2 JPH0682813 B2 JP H0682813B2 JP 59145427 A JP59145427 A JP 59145427A JP 14542784 A JP14542784 A JP 14542784A JP H0682813 B2 JPH0682813 B2 JP H0682813B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
insulating material
organic resin
inorganic insulating
photosensitive organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59145427A
Other languages
Japanese (ja)
Other versions
JPS6124272A (en
Inventor
敏男 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59145427A priority Critical patent/JPH0682813B2/en
Publication of JPS6124272A publication Critical patent/JPS6124272A/en
Publication of JPH0682813B2 publication Critical patent/JPH0682813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はショットキー電極を用いた赤外線検出固体撮像
素子の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing an infrared detection solid-state imaging device using a Schottky electrode.

(従来の技術) 赤外線検出固体撮像素子(以下赤外CCD素子と記す)
は、ショットキーダイオードとシフトレジスターとの組
合わせによる二次元撮像素子であり、ミラー走査等の機
械的掃引機構なしに赤外線を検出し、二次元画像を得ら
れる素子である。より高画質の画像を得るためには空間
分解能の向上、すなわち画素数の増加と共に、一画素中
での感光領域の占める面積比率(以下、感光面積比とい
う)の向上が重要であるが、素子全体の面積には使用光
学系による上限が存在するため、これらの条件は、結
局、画素を徴細化しながら、かつ感光面積比を大きくす
ることと言いかえられる。
(Prior art) Infrared detection solid-state imaging device (hereinafter referred to as infrared CCD device)
Is a two-dimensional image pickup element that is a combination of a Schottky diode and a shift register, and is an element that can detect infrared rays and obtain a two-dimensional image without a mechanical sweep mechanism such as mirror scanning. In order to obtain a higher quality image, it is important to improve the spatial resolution, that is, to increase the number of pixels and the area ratio of the photosensitive area in one pixel (hereinafter referred to as the photosensitive area ratio). Since there is an upper limit in the total area due to the optical system used, it can be said that these conditions are ultimately to increase the photosensitive area ratio while making the pixels finer.

第1図は従来の赤外線検出素子の一例の平面図である。FIG. 1 is a plan view of an example of a conventional infrared detecting element.

この赤外線検出素子はCCDを用いて画素を構成したもの
である。第1図において、画素1はショットキーダイオ
ード2による光電変換部、及びそこで発生した信号電荷
を読出するためのトランスファゲート部3、及び信号電
荷を転送する垂直シフトレジスター4とで構成されてい
る。従って、一つの画素中に占めるショットキーダイオ
ード2の面積は小さくならざるを得ず、感光面積比は20
〜30%程度にとどまっている。この結果、単に入射する
赤外線の検出効率が低下してS/N比の劣化を招くのみな
らず、光学系により、たまたま例えば垂直シフトレジス
ター4に結像された光点は、得られた二次元赤外線画像
から完全に消失するといった現像を引起していた。尚、
第1図において、5はチャンネルストップ、6は転送電
極、7はトランスファーゲート電極、8は高不純物濃度
領域である。
This infrared detection element has a pixel formed by using a CCD. In FIG. 1, a pixel 1 is composed of a photoelectric conversion section using a Schottky diode 2, a transfer gate section 3 for reading out signal charges generated therein, and a vertical shift register 4 for transferring signal charges. Therefore, the area of the Schottky diode 2 occupied in one pixel must be small, and the photosensitive area ratio is 20%.
It remains around 30%. As a result, not only the detection efficiency of the incident infrared rays is lowered and the S / N ratio is deteriorated, but also the light spot which is incidentally imaged on the vertical shift register 4 by the optical system is obtained in the two-dimensional It caused development such that the infrared image disappeared completely. still,
In FIG. 1, 5 is a channel stop, 6 is a transfer electrode, 7 is a transfer gate electrode, and 8 is a high impurity concentration region.

第2図は従来の赤外線検出素子の他の例の断面図であ
る。
FIG. 2 is a sectional view of another example of the conventional infrared detecting element.

この例は、S/N比を改善するために、ショットキー電極1
2の上に反射鏡13を設けたものである。赤外CCD素子は半
導体基板11の裏面14から入射する赤外線15を検出するも
のであるが、この入射赤外線15のうち、薄いショットキ
ー電極12を透過した赤外線16を反射鏡13で反射させても
う一度ショットキー電極12に戻すことによって、検出効
率を向上させようとするものである。しかし、この構成
ではS/N比の向上は見られるのであるが、感光面積は元
のままであり、上記の欠点、すなわち光点の消失現象を
無くすことはできない。尚、第2図において、17はチャ
ンネルストップ、18は転送電極、19はトランスファーゲ
ート電極、20は高不純物濃度領域である。
In this example, in order to improve the S / N ratio, the Schottky electrode 1
A reflecting mirror 13 is provided on top of 2. The infrared CCD element detects infrared rays 15 incident from the back surface 14 of the semiconductor substrate 11, and among the incident infrared rays 15, the infrared rays 16 that have passed through the thin Schottky electrode 12 are reflected by the reflecting mirror 13 and again. By returning to the Schottky electrode 12, it is intended to improve the detection efficiency. However, with this structure, although the S / N ratio is improved, the photosensitive area remains the same, and the above-mentioned defect, that is, the phenomenon of disappearance of the light spot cannot be eliminated. In FIG. 2, 17 is a channel stop, 18 is a transfer electrode, 19 is a transfer gate electrode, and 20 is a high impurity concentration region.

更に、画素を微細化しようとする場合、比例縮小のでき
ない部分、例えば製作時のずれに対するマージン等が存
在するため、感光面積比は一層低下するため、画質を向
上させることは困難であった。
Further, when trying to miniaturize pixels, there is a portion that cannot be proportionally reduced, for example, a margin for misalignment at the time of manufacture, so that the photosensitive area ratio is further reduced, and it is difficult to improve the image quality.

(発明の目的) 本発明の目的は、上記欠点を除き、感光面積比を大幅に
向上させた赤外線検出固体撮像素子の製造方法を提供す
ることにある。
(Object of the Invention) It is an object of the present invention to provide a method for manufacturing an infrared detection solid-state imaging device with a significantly improved photosensitive area ratio, excluding the above drawbacks.

(発明の構成) 本願発明は、光電変換部とトランスファーゲート部と垂
直シフトレジスターと水平シフトレジスターと出力回路
とが設けられた半導体基板上に赤外線を透過する無機絶
縁材料を成膜する工程と、前記無機絶縁材料上に感光性
有機樹脂を塗布して前記光電変換部を覆う部分を矩形形
状にする工程と、熱処理を行なって前記矩形の感光性有
機樹脂の端部をなだらかにして凸面形状にする工程と、
前記凸面形状の感光性有機樹脂及び前記無機絶縁材料を
スパッターエッチングして前記感光性有機樹脂の凸面形
状を前記無機絶縁材料に転写する工程と、前記光電変換
部を覆うように反射鏡とする金属膜を凸面形状となった
前記無機絶縁材料の表面に成膜する工程とを含むことを
特徴とする赤外線検出固体撮像素子の製造方法である。
(Structure of the Invention) The present invention comprises a step of forming an inorganic insulating material that transmits infrared rays on a semiconductor substrate provided with a photoelectric conversion section, a transfer gate section, a vertical shift register, a horizontal shift register, and an output circuit, A step of applying a photosensitive organic resin on the inorganic insulating material to make a portion covering the photoelectric conversion portion into a rectangular shape, and performing a heat treatment to make the end portion of the rectangular photosensitive organic resin to be a convex shape. And the process of
A step of transferring the convex shape of the photosensitive organic resin to the inorganic insulating material by sputter etching the photosensitive organic resin of the convex shape and the inorganic insulating material; and a metal serving as a reflecting mirror so as to cover the photoelectric conversion portion. And a step of depositing a film on the surface of the inorganic insulating material having a convex shape.

(実施例) 次に、本発明の実施例について図面を用いて説明する。(Example) Next, the Example of this invention is described using drawing.

第3図は赤外線検出固体撮像素子の平面図である。FIG. 3 is a plan view of the infrared detection solid-state imaging device.

赤外線検出固体撮像素子は、半導体基板上に、行列板上
に、行列状に配設されたショットキー電極からなる光電
変換部21と、トランスファゲート部22と、垂直シフトレ
ジスター23と、水平レジスター24と、出力回路25が設け
られ、また、各々の光電変換部21の上にはこれらに対向
する面が凹面をなす反射鏡26が設けられたものである。
素子面に結像された赤外線像は光電変換部21で信号電荷
に変換され、トランスファーゲート部22を介して垂直シ
フトレジスター23に読み出された後、並列的に水平レジ
スター24へ転送され、更に水平レジスター24によって出
力回路25へ転送されて時系列的に外部へ出力される。こ
こで、凹面の反射鏡26が赤外線を透過する無機絶縁材料
を介して設けられている。
The infrared detection solid-state imaging device includes a photoelectric conversion unit 21 including Schottky electrodes arranged in a matrix on a semiconductor substrate, a matrix plate, a transfer gate unit 22, a vertical shift register 23, and a horizontal register 24. An output circuit 25 is provided, and a reflecting mirror 26 having a concave surface facing each other is provided on each photoelectric conversion unit 21.
The infrared image formed on the element surface is converted into a signal charge by the photoelectric conversion unit 21, read out to the vertical shift register 23 via the transfer gate unit 22, and then transferred in parallel to the horizontal register 24, and further. It is transferred to the output circuit 25 by the horizontal register 24 and output to the outside in time series. Here, the concave reflecting mirror 26 is provided via an inorganic insulating material that transmits infrared rays.

第4図(a),(b)は第3図に示す赤外線検出固体撮
像素子の画素部分の平面図及び断面図である。光電変換
部31はショットー電極から成り、トランファーゲート部
32はトランスファーゲート電極33と高不純物濃度領域34
から成る。更に、垂直シフトレジスター35は、いわゆる
埋込みチャンネル36と転送電極37から成り、また光電変
換部31はチャンネルストップ38で囲まれている。反射鏡
40は、上面をかまぼこ状の凸面に成形した赤外線を透過
する無機材料からなる絶縁層39上に成膜した金属膜から
なる。すなわち、絶縁層39の凸面形状により反射鏡40の
光電変換部31に対向する面を凸面としたものであり、こ
れにより半導体基板42の裏面43から入射された赤外線41
を反射して、反射された赤外線44を光電変換部31に向け
るものである。ここで、反射鏡40の凹面は必ずしも一定
曲率である必要はなく、図に示すように光電変換部31の
直上では平面とし、それ以外の部分のみを凹面としたも
ので良い。また、光電変換部31の各々に対応させて水平
及び垂直方向に凹面を形成しても良いが、この例のよう
に一方向、すなわち水平方向にのみ凹面としたかまぼこ
状でも十分効果が得られる。
4 (a) and 4 (b) are a plan view and a sectional view of a pixel portion of the infrared detection solid-state imaging device shown in FIG. The photoelectric conversion unit 31 is composed of a shot electrode and is a transfer gate unit.
32 is a transfer gate electrode 33 and a high impurity concentration region 34
Consists of. Further, the vertical shift register 35 includes a so-called buried channel 36 and a transfer electrode 37, and the photoelectric conversion unit 31 is surrounded by a channel stop 38. Reflector
Reference numeral 40 is a metal film formed on an insulating layer 39 made of an inorganic material that transmits infrared rays, the upper surface of which is formed into a semicylindrical convex surface. That is, the surface of the reflecting mirror 40 facing the photoelectric conversion part 31 is made to be a convex surface by the convex shape of the insulating layer 39, whereby the infrared rays 41 incident from the back surface 43 of the semiconductor substrate 42 are incident.
Is reflected, and the reflected infrared ray 44 is directed to the photoelectric conversion unit 31. Here, the concave surface of the reflecting mirror 40 does not necessarily have to have a constant curvature, and as shown in the figure, it may be a flat surface directly above the photoelectric conversion portion 31 and only the other portion may be a concave surface. Further, a concave surface may be formed in the horizontal and vertical directions corresponding to each of the photoelectric conversion units 31, but as in this example, a concave shape only in one direction, that is, in the horizontal direction is also sufficient to obtain the effect. .

次に、本発明の赤外線検出固体撮像素子の製造方法につ
いて説明する。但し、凹面の反射鏡を設ける点を除け
ば、この素子の製造方法は従来のものと同じであるの
で、以下では凹面の反射鏡の製造方法を主として説明す
る。
Next, a method for manufacturing the infrared detection solid-state imaging device of the present invention will be described. However, the manufacturing method of this element is the same as the conventional one except that a concave reflecting mirror is provided. Therefore, the manufacturing method of the concave reflecting mirror will be mainly described below.

第5図(a)〜(e)は本発明の赤外線固体撮像素子の
製造方法の一実施例を説明するための工程順に示した断
面図である。
5 (a) to 5 (e) are cross-sectional views showing the order of steps for explaining one embodiment of the method for manufacturing an infrared solid-state imaging device of the present invention.

まず、第5図(a)に示すように、ショットキー電極か
ら成る光電変換部61,トランスファーゲート部62、垂直
シフトレジスター63、層間絶縁膜69等を形成した半導体
基板64に赤外線を透過させる無機絶縁材料65を成膜す
る。この材料としては、例えばSiO2やAl2O3,ZnS等を使
用できる。また、この膜厚は製造しようとする反射鏡の
形状に合わせて設定し、例えば隣接する光電変換部同士
の間隔の1/3程度、すなわち間隔が20μmであれば6μ
m程度であればよい。尚、この成膜で特に半導体基板61
の表面の凹凸の影響を除く必要のある時にはいわゆるバ
イアススパッタリングが効果的である。
First, as shown in FIG. 5 (a), an inorganic material that transmits infrared rays to a semiconductor substrate 64 on which a photoelectric conversion portion 61 composed of a Schottky electrode, a transfer gate portion 62, a vertical shift register 63, an interlayer insulating film 69, etc. are formed. The insulating material 65 is deposited. As this material, for example, SiO 2 , Al 2 O 3 , ZnS or the like can be used. In addition, this film thickness is set according to the shape of the reflecting mirror to be manufactured, and is, for example, about 1/3 of the interval between adjacent photoelectric conversion units, that is, 6 μ if the interval is 20 μm.
It may be about m. In this film formation, especially the semiconductor substrate 61
The so-called bias sputtering is effective when it is necessary to eliminate the influence of the unevenness of the surface.

次に、第5図(b)に示すように、感光性有機樹脂66を
塗布し、これを露光現象して光電変換部61を覆う矩形パ
ターン67を形成する。この感光性有機樹脂としてはいわ
ゆるレジストフローを生じるものであればよく、ノボラ
ック系樹脂のフォトレジスト等が適している。
Next, as shown in FIG. 5B, a photosensitive organic resin 66 is applied and an exposure phenomenon is applied to this to form a rectangular pattern 67 that covers the photoelectric conversion section 61. The photosensitive organic resin may be any resin that causes a so-called resist flow, and a novolac resin photoresist or the like is suitable.

次に、第5図(c)に示すように、熱処理を行ない、レ
ジストフローを起させて端部67をなだらかにし、凸面形
状とする。この時、感光性有機樹脂を固化させる必要は
なく、150〜180℃で熱処理するだけで良い。
Next, as shown in FIG. 5 (c), heat treatment is performed to cause resist flow so that the end portion 67 is smoothed to form a convex shape. At this time, it is not necessary to solidify the photosensitive organic resin, and heat treatment at 150 to 180 ° C. is sufficient.

次に、第5図(d)に示すように、この感光性有機樹脂
67及び絶縁材料66をスパッターエッチングし、感光性有
機樹脂67の凸面形状を絶縁材料66に転写する。この時、
転写される形状は両者のスパッターエッチング効率の比
によって異なり、一般的には2〜3倍に拡大されるた
め、感光性有機樹脂67に形成する凸面の形状は、あらか
じめこれを見込んでおく必要がある。
Next, as shown in FIG. 5 (d), this photosensitive organic resin is used.
67 and the insulating material 66 are sputter-etched to transfer the convex shape of the photosensitive organic resin 67 to the insulating material 66. At this time,
The transferred shape varies depending on the ratio of the sputter etching efficiencies of the both, and is generally enlarged by 2 to 3 times. Therefore, the shape of the convex surface formed on the photosensitive organic resin 67 needs to be estimated in advance. is there.

最後に、第5図(e)に示すように、反射鏡とする金属
膜68を積層し、必要であれば更に適当なパターン形成を
行なうことにより所定の凹面をなす反射鏡が製造され
る。
Finally, as shown in FIG. 5 (e), a metal film 68 to be a reflecting mirror is laminated, and if necessary, an appropriate pattern is formed to manufacture a reflecting mirror having a predetermined concave surface.

以上の構成に於て、光電変換部のショットキー電極は金
属、ないしは金属と半導体との対応生成物であり、検出
しようとする赤外線の波長域に合わせて選択され、代表
的なものとして白金シリサイドやパラジウムシリサイド
が知られている。また、転送電極やトランスファーゲー
ト電極は赤外線に透明なポリシリコンによって形成でき
る。更に、反射鏡の金属膜はアルミニウム、白金、モリ
ブデン等でよく、特にアルミニウムの場合には外部電極
の配線の形成と同時に形成することも可能である。
In the above structure, the Schottky electrode of the photoelectric conversion unit is a metal or a corresponding product of a metal and a semiconductor, and is selected according to the wavelength range of infrared rays to be detected. And palladium silicide are known. Further, the transfer electrode and the transfer gate electrode can be formed of polysilicon transparent to infrared rays. Furthermore, the metal film of the reflecting mirror may be aluminum, platinum, molybdenum, or the like, and particularly in the case of aluminum, it can be formed simultaneously with the formation of the wiring of the external electrode.

本願発明の製造方法による赤外線検出固体撮像素子は、
光電変換部で赤外線を検出してから外部回路に出力する
までの動作は従来のものと特に変わる点は無いので、以
下では、本発明の製造方法による赤外線検出固体撮像素
子により感光面積比を向上できることについて説明す
る。
The infrared detection solid-state imaging device according to the manufacturing method of the present invention,
The operation from the detection of infrared rays by the photoelectric conversion unit to the output to the external circuit is the same as that of the conventional one. Therefore, in the following, the photosensitive area ratio is improved by the infrared detection solid-state imaging device according to the manufacturing method of the present invention. Describe what you can do.

第4図(b)に示すように、赤外線41は半導体基板42の
裏面43から入射し、半導体基板42を透過して光電変換部
31、すなわちショットキー電極に吸収され、光電変換さ
れる。この時、光電変換部31以外の部分、例えば垂直シ
フトレジスター35に入射した赤外線も転送電極37を透過
し、凹面の反射鏡40で反射されて、やはり光電変換部31
に集光され、光電変換される。従って、光電変換部31の
大きさのみから見れば感光面積比は第1図ないし第2図
に示した従来の素子と同じ25%程度でしかないが、実際
に入射赤外線41を検出できる範囲は反射鏡40の範囲に拡
大され、この例では感光面積比は約70%と大幅に改善さ
れた。これにより、出力のS/N比が向上したと同時に、
従来の素子の大きな欠点、すなわち前述の光点の消失現
象の問題は殆んど解決された。
As shown in FIG. 4 (b), the infrared ray 41 enters from the back surface 43 of the semiconductor substrate 42, passes through the semiconductor substrate 42, and passes through the photoelectric conversion unit.
31, ie, absorbed by the Schottky electrode and photoelectrically converted. At this time, a portion other than the photoelectric conversion unit 31, for example, infrared rays incident on the vertical shift register 35 also pass through the transfer electrode 37 and are reflected by the concave reflecting mirror 40, and the photoelectric conversion unit 31 is also formed.
It is focused on and photoelectrically converted. Therefore, although the photosensitive area ratio is only about 25%, which is the same as that of the conventional element shown in FIGS. 1 and 2, when viewed only from the size of the photoelectric conversion portion 31, the range in which the incident infrared ray 41 can be actually detected is It was expanded to the range of the reflecting mirror 40, and in this example, the photosensitive area ratio was greatly improved to about 70%. As a result, the S / N ratio of the output was improved and at the same time,
Most of the problems of the conventional device, that is, the problem of the vanishing phenomenon of the light spot described above, has been solved.

(発明の効果) 以上詳細に説明したように、本発明の赤外線検出固体撮
像素子の製造方法によれば、感光面積比を大幅に向上さ
せ、光点の消失現象を生ぜず、またS/N比の高い赤外線
画像を得ることができる赤外線画像を得ることができる
赤外線検出固体撮像素子を得ることができる。
(Effects of the Invention) As described in detail above, according to the method for manufacturing an infrared detection solid-state imaging device of the present invention, the photosensitive area ratio is significantly improved, the phenomenon of disappearance of the light spot is not caused, and the S / N ratio is reduced. It is possible to obtain an infrared detection solid-state imaging device that can obtain an infrared image that can obtain an infrared image with a high ratio.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の赤外線検出撮像素子の一例の平面図、第
2図は従来の赤外線検出撮像素子の他の例の断面図、第
3図は本第1の発明の赤外線検出固体撮像素子の一実施
例の平面図、第4図(a),(b)は第3図に示す実施
例の画素部分の平面図及び断面図、第5図(a)〜
(e)は本発明の赤外線検出固体撮像素子の製造方法の
一実施例を説明するための工程順に示した断面図であ
る。 1……1つの画素の大きさを示す枠、2,12,21,31,61…
…ショットキー電極から成る光電変換部、3,22,32,62…
…トランスファーゲート部、4,23,35,63……垂直シフト
レジスター、5,17,38……チャンネルストップ、6,18,37
……転送電極、7,19,33……トランスファーゲート電
極、8,20,34……高不純物濃度領域、11,42,64……半導
体基板、13……平面の反射鏡、14,43……半導体基板の
裏面、15,41……入射する赤外線、16,44……反射鏡で反
射される赤外線、24……水平シフトレジスター、25……
出力回路、36……埋込みチャンネル、39……凸面の絶縁
層、26,40,68……凹面の反射鏡となる金属膜、66……感
光性有機樹脂、67……端部、69……層間絶縁膜。
FIG. 1 is a plan view of an example of a conventional infrared detection image pickup device, FIG. 2 is a sectional view of another example of a conventional infrared detection image pickup device, and FIG. 3 is a view of an infrared detection solid-state image pickup device of the first invention. A plan view of one embodiment, FIGS. 4 (a) and 4 (b) are a plan view and a sectional view of a pixel portion of the embodiment shown in FIG. 3, and FIGS.
6E is a sectional view showing a step-by-step sequence for explaining an embodiment of the method for manufacturing the infrared-detecting solid-state imaging device of the present invention. FIG. 1 ... A frame indicating the size of one pixel, 2, 12, 21, 31, 61 ...
… Photoelectric conversion part consisting of Schottky electrodes, 3,22,32,62…
… Transfer gate section, 4,23,35,63 …… Vertical shift register, 5,17,38 …… Channel stop, 6,18,37
...... Transfer electrode, 7,19,33 …… Transfer gate electrode, 8,20,34 …… High impurity concentration region, 11,42,64 …… Semiconductor substrate, 13 …… Flat reflector, 14,43… … Surface of semiconductor substrate, 15,41 …… Incoming infrared rays, 16,44 …… Infrared rays reflected by reflecting mirror, 24 …… Horizontal shift register, 25 ……
Output circuit, 36 ... Embedded channel, 39 ... Convex insulating layer, 26, 40, 68 ... Metal film to be concave reflecting mirror, 66 ... Photosensitive organic resin, 67 ... Edge, 69 ... Interlayer insulation film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光電変換部とトランスファーゲート部と垂
直シフトレジスターと水平シフトレジスターと出力回路
とが設けられた半導体基板上に赤外線を透過する無機絶
縁材料を成膜する工程と、前記無機絶縁材料上に感光性
有機樹脂を塗布して前記光電変換部を覆う部分を矩形形
状にする工程と、熱処理を行なって前記矩形の感光性有
機樹脂の端部をなだらかにして凸面形状にする工程と、
前記凸面形状の感光性有機樹脂及び前記無機絶縁材料を
スパッターエッチングして前記感光性有機樹脂の凸面形
状を前記無機絶縁材料に転写する工程と、前記光電変換
部を覆うように反射鏡とする金属膜を凸面形状となった
前記無機絶縁材料の表面に成膜する工程とを含むことを
特徴とする赤外線検出固体撮像素子の製造方法。
1. A step of forming an inorganic insulating material which transmits infrared rays on a semiconductor substrate provided with a photoelectric conversion section, a transfer gate section, a vertical shift register, a horizontal shift register and an output circuit, and the inorganic insulating material. A step of applying a photosensitive organic resin on top to make a portion covering the photoelectric conversion portion into a rectangular shape, and a step of performing heat treatment to make the end portion of the rectangular photosensitive organic resin gentle to form a convex surface,
A step of transferring the convex shape of the photosensitive organic resin to the inorganic insulating material by sputter etching the photosensitive organic resin of the convex shape and the inorganic insulating material; and a metal serving as a reflecting mirror so as to cover the photoelectric conversion portion. And a step of forming a film on the surface of the inorganic insulating material having a convex shape.
JP59145427A 1984-07-13 1984-07-13 Method for manufacturing infrared detection solid-state imaging device Expired - Lifetime JPH0682813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59145427A JPH0682813B2 (en) 1984-07-13 1984-07-13 Method for manufacturing infrared detection solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59145427A JPH0682813B2 (en) 1984-07-13 1984-07-13 Method for manufacturing infrared detection solid-state imaging device

Publications (2)

Publication Number Publication Date
JPS6124272A JPS6124272A (en) 1986-02-01
JPH0682813B2 true JPH0682813B2 (en) 1994-10-19

Family

ID=15384993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59145427A Expired - Lifetime JPH0682813B2 (en) 1984-07-13 1984-07-13 Method for manufacturing infrared detection solid-state imaging device

Country Status (1)

Country Link
JP (1) JPH0682813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110023741A (en) * 2009-08-31 2011-03-08 인터내셔널 비지네스 머신즈 코포레이션 Image seosor, method and design structure including non-planar reflector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119476A (en) * 1988-10-28 1990-05-07 Nec Corp Irccd
US5811815A (en) * 1995-11-15 1998-09-22 Lockheed-Martin Ir Imaging Systems, Inc. Dual-band multi-level microbridge detector
US7495220B2 (en) 1995-10-24 2009-02-24 Bae Systems Information And Electronics Systems Integration Inc. Uncooled infrared sensor
EP0865672B1 (en) * 1995-12-04 2000-08-30 Lockheed-Martin IR Imaging Systems Infrared radiation detector having a reduced active area
JP5538811B2 (en) 2009-10-21 2014-07-02 キヤノン株式会社 Solid-state image sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123760A (en) * 1982-01-19 1983-07-23 Fujitsu Ltd Solid-state image pickup device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
InternationalElectronDevicesMeeting1983,IEEEIshihara,Y.Tanigaki,K.P.497−500

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110023741A (en) * 2009-08-31 2011-03-08 인터내셔널 비지네스 머신즈 코포레이션 Image seosor, method and design structure including non-planar reflector

Also Published As

Publication number Publication date
JPS6124272A (en) 1986-02-01

Similar Documents

Publication Publication Date Title
JP2596523B2 (en) Solid-state imaging device and method of manufacturing the same
US7816169B2 (en) Colors only process to reduce package yield loss
US9263486B2 (en) Method for forming structure for reducing noise in CMOS image sensors
JPH05335531A (en) Solid-state imaging device
JP3180748B2 (en) Solid-state imaging device
JPH0455028B2 (en)
US5120960A (en) Infrared image detecting device and method
JPH05110049A (en) Infrared solid state imaging element and manufacture thereof
JPH1093060A (en) Structure of solid-state image pickup device and manufacture thereof
JPH0682813B2 (en) Method for manufacturing infrared detection solid-state imaging device
JPH04229802A (en) Solid image pick-up device and manufacture thereof
JPH0150157B2 (en)
JP2910161B2 (en) Solid-state imaging device
JPH04343470A (en) Solid-state image pickup device
JPH03276677A (en) Solid-state image sensing element
JPS61154283A (en) Solid image pick-up element
JP2876838B2 (en) Solid-state imaging device
JPH04259256A (en) Solid state image sensor
JP2871831B2 (en) Solid-state imaging device
JP3138502B2 (en) Solid-state imaging device
JPH05226624A (en) Solid-state image pick-up device and its manufacture
JP2006041026A (en) Solid-state imaging element and manufacturing method thereof
JP2826317B2 (en) Solid-state imaging device and manufacturing method thereof
JPS5888976A (en) Charge transfer image pickup device
JPS5866470A (en) Solid-state image pickup device