JPH10229180A - Solid-state image sensor - Google Patents

Solid-state image sensor

Info

Publication number
JPH10229180A
JPH10229180A JP9029931A JP2993197A JPH10229180A JP H10229180 A JPH10229180 A JP H10229180A JP 9029931 A JP9029931 A JP 9029931A JP 2993197 A JP2993197 A JP 2993197A JP H10229180 A JPH10229180 A JP H10229180A
Authority
JP
Japan
Prior art keywords
microlens
light
film
incident
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9029931A
Other languages
Japanese (ja)
Inventor
Atsushi Kuroiwa
淳 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9029931A priority Critical patent/JPH10229180A/en
Publication of JPH10229180A publication Critical patent/JPH10229180A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress shading cause by a reduction of sensitivity in the peripheral region of a picture plane and surface roughness caused by irregularities of pixels in sensitivity even in a camera where an optical system short in eye point distance is used by a method wherein center axes of a first and a second microlens are both set deviating from the center of a light receiving section aperture. SOLUTION: A first micro lens 22 formed by processing a first lens forming film 21 is provided to the upper part of the film 21 over a light receiving section aperture 17. Furthermore, a second microlens 24 formed by processing a second lens forming film 23 is provided in the upper part of the film 23. The microlenses 22 and 24 and provided making their center axes X1 and X2 deviate from the center C of the aperture 17 with and approach to the chip peripheral part 1a of a solid-state image sensor 1 so as to enable light L incident on the second microlens 24 to impinge of the aperture 17 through the first microlens 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像素子に関
し、詳しくは受光部開口の上方にマイクロレンズを設け
た固体撮像素子に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device having a microlens provided above a light-receiving opening.

【0002】[0002]

【従来の技術】電荷結合デバイス(以下、CCD、CC
DはCharge coupled device の略)を用いた固体撮像素
子では、カムコーダーの小型化や内視鏡への応用などに
ともなって、射出瞳距離の短い光学系にも対応可能な素
子が要求されてきている。このような要求に対応するた
め、従来は図3に示すような構造のものが開示されてい
た。
2. Description of the Related Art Charge-coupled devices (hereinafter referred to as CCD, CC)
(D is an abbreviation for Charge coupled device) In the solid-state imaging device using a camcorder, as the size of the camcorder is reduced and the application to an endoscope is performed, an element which can correspond to an optical system having a short exit pupil distance has been required. I have. In order to respond to such a demand, a device having a structure as shown in FIG. 3 has been disclosed.

【0003】すなわち、図3に示すように、チップの中
心部101cではマイクロレンズ121のレンズ中心軸
Xと受光部開口111の中心Cとを一致させ、一方、チ
ップの周辺部101aに向かうにしたがってマイクロレ
ンズ121の中心軸Xと受光部開口111の中心Cとの
距離tを一定の割合でずらして、各マイクロレンズ12
1が配置されているものである。
That is, as shown in FIG. 3, the center axis X of the microlens 121 and the center C of the light-receiving opening 111 are aligned at the center portion 101c of the chip, while moving toward the peripheral portion 101a of the chip. The distance t between the center axis X of the microlens 121 and the center C of the light-receiving opening 111 is shifted at a fixed rate,
1 is arranged.

【0004】それによってチップの周辺部101aの画
素でも入射光Lを受光部開口111の中心部に入射させ
ることが可能になる。このように受光部開口111の中
心Cに対してマイクロレンズ121の中心軸Xをずらし
て配置することを「マイクロレンズの瞳補正をかける」
と呼んでいる。このマイクロレンズ121の中心軸Xと
受光部開口111の中心Cとの距離tは、チップの中心
部101cから周辺部101aに向かうにしたがって大
きくなり、チップ101の最外郭の画素で最大となる。
その値を瞳補正量と呼ぶ。
Accordingly, it becomes possible to make the incident light L incident on the central portion of the light receiving portion opening 111 even at the pixels in the peripheral portion 101a of the chip. Disposing the center axis X of the microlens 121 with respect to the center C of the light-receiving unit opening 111 in this way is called “correct the pupil of the microlens”.
I'm calling The distance t between the central axis X of the microlens 121 and the center C of the light-receiving unit opening 111 increases from the central part 101c of the chip toward the peripheral part 101a, and becomes maximum at the outermost pixels of the chip 101.
The value is called a pupil correction amount.

【0005】比較のため、マイクロレンズの瞳補正をか
けない構造を図4によって説明する。図4に示すよう
に、チップの中心部101cの画素に瞳補正をかけたと
きと同様に入射光Lは受光部開口111の中心部に入射
する。これに対して、チップの周辺部101aの画素
は、入射光Lの一部が受光部開口111に入射されず受
光部開口111の端部の遮光膜112やパッシベーショ
ン膜113上で反射するなどする。このような現象が生
じることによりチップの周辺部101aにおいて、特に
感度の低下、シェーディングなどの感度ムラが発生す
る。
For comparison, a structure in which pupil correction of a micro lens is not performed will be described with reference to FIG. As shown in FIG. 4, the incident light L enters the center of the light-receiving opening 111 in the same manner as when the pupil correction is applied to the pixel at the center 101 c of the chip. On the other hand, in the pixel of the peripheral portion 101a of the chip, a part of the incident light L is not incident on the light receiving portion opening 111 and is reflected on the light shielding film 112 or the passivation film 113 at the end of the light receiving portion opening 111. . Due to the occurrence of such a phenomenon, in the peripheral portion 101a of the chip, sensitivity unevenness such as a reduction in sensitivity and shading occurs.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、さらに
瞳補正の短い光学系に対応しようとすると、チップの周
辺部では光がより斜め入射するので瞳補正量を大きく取
らなければならない。このような状況では図5に示すよ
うに、チップの中心部101cでは、入射光Lが受光部
開口111の中心部に入射される。一方、チップの周辺
部101aでは、マイクロレンズ121の中心軸Xと受
光部開口111の中心Cとの距離tをより大きくとって
も、入射光Lは、受光部開口111の周辺に設けられた
遮光膜112やパッシベーション膜113などによっ
て、その一部が遮られる。そのため、感度の低下、シェ
ーディングなどの感度ムラが発生するという問題が起き
る。
However, if an attempt is made to cope with an optical system with a shorter pupil correction, a larger amount of pupil correction must be taken since light is more obliquely incident on the periphery of the chip. In such a situation, as shown in FIG. 5, the incident light L is incident on the central portion of the light receiving portion opening 111 at the central portion 101c of the chip. On the other hand, in the peripheral portion 101a of the chip, even if the distance t between the central axis X of the microlens 121 and the center C of the light receiving portion opening 111 is set to be larger, the incident light L is transmitted to the light shielding film provided around the light receiving portion opening 111. A part thereof is blocked by the passivation film 112 and the like. For this reason, there arises a problem that sensitivity is reduced and sensitivity unevenness such as shading occurs.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされた固体撮像素子である。すなわち、
受光部開口より光の入射側にマイクロレンズを備えた固
体撮像素子であって、上記マイクロレンズは、受光部開
口より光の入射側に設けた第1マイクロレンズと、その
受光部開口および上記第1マイクロレンズより光の入射
側に設けた第2マイクロレンズとからなる。しかも第1
マイクロレンズおよび第2マイクロレンズは、固体撮像
素子の周辺部に向かうにしたがって、第2マイクロレン
ズに入射した光が第1マイクロレンズを通して受光部開
口内に入射するように、第1マイクロレンズの中心軸お
よび第2マイクロレンズの中心軸を受光部開口の中心よ
りそれぞれにずらして設けたものである。
SUMMARY OF THE INVENTION The present invention is a solid-state image pickup device for solving the above-mentioned problems. That is,
What is claimed is: 1. A solid-state imaging device comprising: a microlens on a light incident side of a light-receiving unit opening, wherein the microlens includes a first microlens provided on a light-incident side of the light-receiving unit opening; A second microlens provided on the light incident side of one microlens. And the first
The micro-lens and the second micro-lens are arranged at the center of the first micro-lens such that light incident on the second micro-lens is incident on the light receiving unit opening through the first micro-lens as going toward the periphery of the solid-state imaging device. The axis and the central axis of the second microlens are provided to be shifted from the center of the aperture of the light receiving portion.

【0008】上記固体撮像素子では、受光部開口よりも
光の入射側に設けた第1マイクロレンズとさらにそれよ
りも光の入射側に設けた第2マイクロレンズとの2枚で
一つの受光部開口に対するマイクロレンズが構成されて
いて、かつ第1,第2マイクロレンズのそれぞれは、第
2マイクロレンズに入射した光が第1マイクロレンズを
通して受光部開口内に入射するように、固体撮像素子の
周辺部に向かうにしたがい第1マイクロレンズの中心軸
および第2マイクロレンズの中心軸を受光部開口の中心
よりそれぞれにずらして設けたことから、チップ周辺部
に入射される斜め入射光は受光部開口の周辺の遮光膜や
パッシベーション膜に入射されることなく受光部開口の
中心部に入射される。そのため、感度の低下、シェーデ
ィングなどの感度ムラの発生が抑制される。
In the above-mentioned solid-state image pickup device, the first microlens provided on the light incident side of the light receiving opening and the second microlens provided on the light incident side further therefrom constitute one light receiving unit. A microlens for the aperture is formed, and each of the first and second microlenses is provided with a solid-state imaging device such that light incident on the second microlens enters the light receiving unit aperture through the first microlens. As the central axis of the first microlens and the central axis of the second microlens are shifted from the center of the light receiving portion opening toward the peripheral portion, the obliquely incident light incident on the chip peripheral portion is not incident on the light receiving portion. The light does not enter the light-shielding film or the passivation film around the opening but enters the center of the light-receiving unit opening. Therefore, the occurrence of sensitivity unevenness such as a decrease in sensitivity and shading is suppressed.

【0009】[0009]

【発明の実施の形態】本発明の実施形態の一例を、図1
の概略構成断面図によって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention is shown in FIG.
Will be described with reference to the schematic configuration sectional view of FIG.

【0010】図1に示すように、半導体基板11に設け
た転送部12を覆う状態に絶縁膜13、遮光膜14、パ
ッシベーション膜15等が形成されている。上記半導体
基板11に形成された受光領域16の上方(入射光Lの
入射側)の遮光膜14には受光部開口17が形成されて
いる。さらに上記パッシベーション膜15上には、平坦
化膜18およびカラーフィルタ19を介して第1レンズ
形成膜21が形成され、上記受光部開口17の上方(入
射光Lの入射側)における第1レンズ形成膜21の上部
には、この第1レンズ形成膜21を加工してなる第1マ
イクロレンズ22が形成されている。さらにその上部に
第2レンズ形成膜23が形成され、第1マイクロレンズ
22の上方(入射光Lの入射側)における第2レンズ形
成膜23の上部には、この第2レンズ形成膜23を加工
してなる第2マイクロレンズ24が形成されている。
As shown in FIG. 1, an insulating film 13, a light shielding film 14, a passivation film 15, and the like are formed so as to cover a transfer section 12 provided on a semiconductor substrate 11. A light receiving portion opening 17 is formed in the light shielding film 14 above the light receiving region 16 formed on the semiconductor substrate 11 (on the incident side of the incident light L). Further, a first lens forming film 21 is formed on the passivation film 15 via a flattening film 18 and a color filter 19, and the first lens forming film 21 is formed above the light receiving portion opening 17 (on the incident side of the incident light L). Above the film 21, a first micro lens 22 formed by processing the first lens forming film 21 is formed. Further, a second lens forming film 23 is formed thereon, and the second lens forming film 23 is processed above the first micro lens 22 (on the incident side of the incident light L). A second micro lens 24 is formed.

【0011】しかも第1マイクロレンズ22および第2
マイクロレンズ24は、固体撮像素子1のチップの周辺
部1aに向かうにしたがって、第2マイクロレンズ24
に入射する光(以下、入射光という)Lが第1マイクロ
レンズ22を通して受光部開口17に入射するように、
第1マイクロレンズ22の中心軸X1および第2マイク
ロレンズ24の中心軸X2を受光部開口17の中心Cよ
りそれぞれにずらして設けられている。
In addition, the first micro lens 22 and the second
The microlens 24 moves toward the peripheral portion 1a of the chip of the solid-state imaging device 1, and
(Hereinafter, referred to as incident light) L is incident on the light-receiving opening 17 through the first microlens 22.
The central axis X1 of the first microlens 22 and the central axis X2 of the second microlens 24 are provided so as to be shifted from the center C of the light receiving opening 17 respectively.

【0012】一方、固体撮像素子1のチップの中心部1
cでは、第2マイクロレンズ24への入射光Lが第1マ
イクロレンズ22を通して受光部開口17に入射するよ
うに、第1マイクロレンズ22の中心軸X1および第2
マイクロレンズ24の中心軸X2は受光部開口17の中
心Cに一致する状態に設けられている。
On the other hand, the central portion 1 of the chip of the solid-state
3C, the central axis X1 of the first microlens 22 and the second axis L1 of the second microlens 22 are set such that the light L incident on the second microlens 24 is incident on the light receiving opening 17 through the first microlens 22.
The center axis X2 of the microlens 24 is provided so as to coincide with the center C of the light-receiving opening 17.

【0013】このようにマイクロレンズを2層に形成す
るに際し、1層目の第1マイクロレンズ22と2層目の
第2マイクロレンズ24のそれぞれに対して瞳補正をか
ける。このとき、入射光Lが受光部開口17端の遮光膜
14やパッシベーション膜15に当たって反射すること
がないように、第1マイクロレンズ22の瞳補正量t
1,第2マイクロレンズ24の瞳補正量t2、および第
1マイクロレンズ22の高さh1,第2マイクロレンズ
24の高さh2、および各層の厚さL1,L2は適宜設
定される。なお、固体撮像素子1のチップの中心部1c
では、t1=t2=0であり、チップの周辺部1aに向
かうにしたがってt1<t2となり、t2−t1は大き
くなる。
In forming the microlenses in two layers as described above, pupil correction is applied to each of the first microlens 22 of the first layer and the second microlens 24 of the second layer. At this time, the pupil correction amount t of the first micro lens 22 is adjusted so that the incident light L does not hit the light-shielding film 14 or the passivation film 15 at the end of the light-receiving unit opening 17 and is reflected.
1, the pupil correction amount t2 of the second microlens 24, the height h1 of the first microlens 22, the height h2 of the second microlens 24, and the thicknesses L1 and L2 of each layer are appropriately set. In addition, the central portion 1c of the chip of the solid-state imaging device 1
In this case, t1 = t2 = 0, and t1 <t2, and t2−t1 increases toward the peripheral portion 1a of the chip.

【0014】さらにチップの周辺部1aでは、第1,第
2マイクロレンズ22,24によって入射光Lを屈折さ
せるために、少なくとも(1)式に表される関係を満足
させる必要がある。
Further, in the peripheral portion 1a of the chip, in order to refract the incident light L by the first and second micro lenses 22 and 24, it is necessary to satisfy at least the relationship represented by the expression (1).

【0015】[0015]

【数1】 (Equation 1)

【0016】上記(1)式を満足するには、例えば第1
レンズ形成膜21は透明性のネガレジスト(N1≒1.
6)で形成し、さらに第2レンズ形成膜23はシクロポ
リマライズドフロリネーテッドポリマー系樹脂〔例えば
サイトップ(商品名)〕(N2≒1.3)で形成する。
In order to satisfy the above expression (1), for example, the first
The lens forming film 21 is made of a transparent negative resist (N1 ≒ 1.
6), and the second lens-forming film 23 is formed of a cyclopolymerized fluorinated polymer resin [for example, Cytop (trade name)] (N2N1.3).

【0017】上記固体撮像素子1では第1マイクロレン
ズ22と第2マイクロレンズ24との2枚で一つの受光
部開口17に対するマイクロレンズが構成されていて、
かつ第1,第2マイクロレンズ22,24のそれぞれ
は、射出瞳距離が短い入射光Lであっても、第2マイク
ロレンズ24から入射して第1マイクロレンズ22を通
して受光部開口17内に入射するように、固体撮像素子
1の周辺部に向かうにしたがい第1マイクロレンズ22
の中心軸X1および第2マイクロレンズ24の中心軸X
2を受光部開口17の中心Cよりそれぞれにずらして設
けたことから、チップ周辺部の受光部開口17に入射さ
れる斜め入射光Lはその受光部開口17の周辺の遮光膜
14やパッシベーション膜15に入射されることなく所
定の受光部開口17の中心部に入射される。そのため、
固体撮像素子1の周辺部の感度が落ちる現象(シェーデ
ィング)や画素毎に感度が若干変わることにより画面が
ざらつく現象(感度ムラ)が抑えられる。
In the solid-state image pickup device 1, the first micro lens 22 and the second micro lens 24 constitute a micro lens for one light receiving portion opening 17,
In addition, each of the first and second micro lenses 22 and 24 enters from the second micro lens 24 and enters the light receiving unit opening 17 through the first micro lens 22 even if the incident light L has a short exit pupil distance. So that the first microlenses 22 move toward the periphery of the solid-state imaging device 1.
And the central axis X of the second microlens 24
2 are provided so as to be shifted from the center C of the light receiving portion opening 17, the oblique incident light L entering the light receiving portion opening 17 in the peripheral portion of the chip receives the light shielding film 14 and the passivation film around the light receiving portion opening 17. The light is incident on the central portion of a predetermined light receiving portion opening 17 without being incident on the light receiving portion 15. for that reason,
The phenomenon (sensitivity shading) in which the sensitivity of the peripheral portion of the solid-state imaging device 1 decreases and the phenomenon in which the screen is rough due to the sensitivity slightly changing for each pixel (sensitivity unevenness) are suppressed.

【0018】次に上記固体撮像素子1の製造方法を簡単
に説明する。まず、通常のプロセスによって、半導体基
板に受光部、転送部等を形成した後、半導体基板上に絶
縁膜、遮光膜等を形成する。次いで受光部上の遮光膜に
受光部開口を設けた後、遮光膜、受光開口等を覆う状態
にパッシベーション膜を形成する。その後、平坦化膜、
カラーフィルタを形成した後、第1レンズ形成膜を形成
する。
Next, a brief description will be given of a method of manufacturing the solid-state imaging device 1. First, after a light receiving portion, a transfer portion, and the like are formed on a semiconductor substrate by a normal process, an insulating film, a light shielding film, and the like are formed on the semiconductor substrate. Next, after a light receiving portion opening is provided in the light shielding film on the light receiving portion, a passivation film is formed so as to cover the light shielding film, the light receiving opening, and the like. After that, a flattening film,
After forming the color filters, a first lens forming film is formed.

【0019】次に上記第1レンズ形成膜上にレジスト膜
を塗布により形成してから、このレジスト膜を第1マイ
クロレンズと同様の形状にパターニングする。このパタ
ーニングは、リソグラフィー技術によって上記レジスト
膜で第1レジストパターンを形成した後、その第1レジ
ストパターンをリフロー処理することによって行う。そ
してレンズ状にパターニングしたレジスト膜とともに上
記第1レンズ形成膜をエッチバックして、第1マイクロ
レンズを形成する。上記第1レジストパターンを形成す
る際には、入射光が形成しようとする第1マイクロレン
ズを通して受光部開口内に入射するように、受光部開口
の中心とこれから形成しようとする第1マイクロレンズ
の中心軸とを所定距離にして、この第1レジストパター
ンの位置を設定する。
Next, after a resist film is formed on the first lens forming film by coating, the resist film is patterned into a shape similar to that of the first microlens. This patterning is performed by forming a first resist pattern on the resist film by a lithography technique and then performing a reflow process on the first resist pattern. Then, the first lens forming film is etched back together with the resist film patterned into a lens shape to form a first microlens. When forming the first resist pattern, the center of the light-receiving opening and the first micro-lens to be formed from the center are formed so that the incident light enters the light-receiving opening through the first micro-lens to be formed. The position of the first resist pattern is set with a predetermined distance from the center axis.

【0020】次いで、上記第1マイクロレンズを覆う状
態に第2レンズ形成膜を形成する。次いでこの第2レン
ズ形成膜上にレジスト膜を塗布により形成してから、こ
のレジスト膜を第2マイクロレンズと同様の形状にパタ
ーニングする。このパターニングは、前記パターニング
と同様に、リソグラフィー技術によってレジスト膜で第
2レジストパターンを形成した後、その第2レジストパ
ターンをリフロー処理することによって行う。そしてパ
ターニングしたレンズ状のレジスト膜とともに上記第2
レンズ形成膜をエッチバックして、第2マイクロレンズ
を形成する。上記第2レジストパターンを形成する際に
は、入射光が形成しようとする第2マイクロレンズから
第1マイクロレンズを通して受光部開口内に入射するよ
うに、受光部開口の中心とこれから形成しようとする第
2マイクロレンズの中心軸とを所定距離にして、この第
2レジストパターンの位置を設定する。
Next, a second lens forming film is formed so as to cover the first micro lens. Next, after a resist film is formed on the second lens forming film by coating, the resist film is patterned into a shape similar to that of the second microlens. This patterning is performed by forming a second resist pattern using a resist film by a lithography technique and performing a reflow process on the second resist pattern in the same manner as the above-described patterning. Then, together with the patterned lens-shaped resist film, the second
The second micro lens is formed by etching back the lens forming film. When the second resist pattern is formed, the center of the light-receiving opening and the light-receiving opening are to be formed so that the incident light enters the light-receiving opening through the first microlens from the second microlens to be formed. The position of the second resist pattern is set with a predetermined distance from the center axis of the second microlens.

【0021】次に第1マイクロレンズと第1マイクロレ
ンズとの間にカラーフィルタを形成した別の実施形態の
一例を、図2によって説明する。図2では、前記図1に
よって説明したのと同様の構成部品には同一符号を付
す。
Next, another embodiment in which a color filter is formed between the first micro lens and the first micro lens will be described with reference to FIG. 2, the same components as those described with reference to FIG. 1 are denoted by the same reference numerals.

【0022】図2に示すように、半導体基板11上に形
成した転送部12を覆う状態に絶縁膜13、遮光膜1
4、パッシベーション膜15が形成され、このパッシベ
ーション膜15上には第1レンズ形成膜21が形成され
ている。この第1レンズ形成膜21は、プラズマ窒化シ
リコン膜(N1≒2.0)またはプラズマ酸窒化シリコ
ン(SiON)膜(N1≒1.7〜2.0)からなる。
上記遮光膜14には受光部開口17が形成され、この受
光部開口17の上方(入射光Lの入射側)における第1
レンズ形成膜21の上部には、この第1レンズ形成膜2
1を加工してなる第1マイクロレンズ22が形成されて
いる。この第1マイクロレンズ22を覆う状態に平坦化
膜18が形成され、さらにその上面にカラーフィルタ1
9が形成されている。このカラーフィルタ19上には第
2レンズ形成膜23が形成されている。この第2レンズ
形成膜23は、例えば透明性のネガレジスト(N1≒
1.6)またはシクロポリマライズドフロリネーテッド
ポリマー系樹脂〔例えばサイトップ(商品名)〕(N2
≒1.3)からなる。さらに第1マイクロレンズ22の
上方(入射光Lの入射側)における第2レンズ形成膜2
3の上部には、この第2レンズ形成膜23を加工してな
る第2マイクロレンズ24が形成されている。
As shown in FIG. 2, the insulating film 13 and the light shielding film 1 are covered with the transfer portion 12 formed on the semiconductor substrate 11 so as to cover the same.
4. A passivation film 15 is formed, and a first lens forming film 21 is formed on the passivation film 15. The first lens forming film 21 is made of a plasma silicon nitride film (N1 ≒ 2.0) or a plasma silicon oxynitride (SiON) film (N1 ≒ 1.7 to 2.0).
A light receiving portion opening 17 is formed in the light shielding film 14, and a first light receiving portion opening 17 above the light receiving portion opening 17 (on the incident side of the incident light L).
The first lens forming film 2 is formed on the lens forming film 21.
A first microlens 22 formed by processing No. 1 is formed. The flattening film 18 is formed so as to cover the first microlenses 22, and the color filter 1 is further formed on the upper surface thereof.
9 are formed. On this color filter 19, a second lens forming film 23 is formed. The second lens forming film 23 is made of, for example, a transparent negative resist (N1 ≒).
1.6) or cyclopolymerized fluorinated polymer resin [eg Cytop (trade name)] (N2
$ 1.3). Further, the second lens forming film 2 above the first micro lens 22 (on the incident side of the incident light L)
A second micro lens 24 formed by processing the second lens forming film 23 is formed on the upper part of the third micro lens 24.

【0023】しかも第1マイクロレンズ22および第2
マイクロレンズ24は、固体撮像素子2のチップの周辺
部2aに向かうにしたがって、第2マイクロレンズ24
に対する入射光Lが第1マイクロレンズ22を通して受
光部開口17に入射するように、第1マイクロレンズ2
2の中心軸X1および第2マイクロレンズ24の中心軸
X2を受光部開口17の中心軸Xcよりずらして設けら
れている。例えば、第1マイクロレンズ22の瞳補正量
t1および第2マイクロレンズ24の瞳補正量t2が適
宜設定されている。なお、固体撮像素子2のチップの中
心部2cでは、t1=t2=0であり、チップの周辺部
2aに向かうにしたがってt1<t2となり、t2−t
1は大きくなる。
Moreover, the first micro lens 22 and the second
The microlens 24 moves toward the peripheral portion 2 a of the chip of the solid-state imaging device 2,
The first microlens 2 is arranged such that the incident light L to the light enters the light receiving opening 17 through the first microlens 22.
The center axis X1 of the second microlens 24 and the center axis X2 of the second microlens 24 are shifted from the center axis Xc of the light-receiving opening 17. For example, the pupil correction amount t1 of the first micro lens 22 and the pupil correction amount t2 of the second micro lens 24 are appropriately set. Note that t1 = t2 = 0 at the center 2c of the chip of the solid-state imaging device 2, and t1 <t2 toward the periphery 2a of the chip, and t2−t.
1 increases.

【0024】一方、固体撮像素子2のチップの中心部2
cでは、第2マイクロレンズ24に対する入射光Lが第
1マイクロレンズ22を通して受光部開口17に入射す
るように、第1マイクロレンズ22の中心軸X1および
第2マイクロレンズ24の中心軸X2は受光部開口17
の中心軸Xcに一致する状態に設けられている。
On the other hand, the central portion 2 of the chip of the solid-state
In (c), the central axis X1 of the first microlens 22 and the central axis X2 of the second microlens 24 are received such that the light L incident on the second microlens 24 enters the light receiving opening 17 through the first microlens 22. Opening 17
Are provided in a state coinciding with the central axis Xc.

【0025】上記図2によって説明した固体撮像素子2
も前記図1によって説明した固体撮像素子1と同様に、
射出瞳距離が短い入射光Lであっても、チップ周辺部の
受光部開口17に入射される斜め入射光は、第2マイク
ロレンズ24および第1マイクロレンズ22によって受
光部開口17の周辺の遮光膜14やパッシベーション膜
15に入射されることなく所定の受光部開口17内に入
射される。そのため、固体撮像素子2の周辺部の感度が
落ちる現象(シェーディング)や画素毎に感度が若干変
わることにより画面がざらつく現象(感度ムラ)が抑制
される。
The solid-state imaging device 2 described with reference to FIG.
Similarly to the solid-state imaging device 1 described with reference to FIG.
Even if the incident light L has a short exit pupil distance, oblique incident light incident on the light receiving portion opening 17 around the chip is blocked by the second micro lens 24 and the first micro lens 22 around the light receiving portion opening 17. The light does not enter the film 14 or the passivation film 15 and enters the predetermined light receiving portion opening 17. For this reason, a phenomenon in which the sensitivity of the peripheral portion of the solid-state imaging device 2 decreases (shading) and a phenomenon in which the screen is rough due to a slight change in sensitivity for each pixel (sensitivity unevenness) are suppressed.

【0026】次に上記固体撮像素子2の製造方法を簡単
に説明する。通常のプロセスによって、半導体基板に受
光部、転送部等を形成した後、半導体基板上に絶縁膜、
遮光膜等を形成する。次いで受光部上の遮光膜に受光部
開口を設けた後、遮光膜、受光開口等を覆う状態にパッ
シベーション膜を形成する。その後、第1レンズ形成膜
を形成する。
Next, a brief description will be given of a method of manufacturing the solid-state imaging device 2. After forming a light receiving part, a transfer part, etc. on a semiconductor substrate by a normal process, an insulating film,
A light shielding film or the like is formed. Next, after a light receiving portion opening is provided in the light shielding film on the light receiving portion, a passivation film is formed so as to cover the light shielding film, the light receiving opening, and the like. After that, a first lens forming film is formed.

【0027】次いで上記第1レンズ形成膜上にレジスト
膜を塗布により形成してから、このレジスト膜を第1マ
イクロレンズと同様の形状にパターニングする。このパ
ターニングは、リソグラフィー技術によってレジスト膜
で第1レジストパターンを形成した後、その第1レジス
トパターンをリフロー処理することによって行う。そし
てパターニングしたレンズ状のレジスト膜とともに上記
第1レンズ形成膜をエッチバックして、第1マイクロレ
ンズを形成する。
Next, after a resist film is formed on the first lens forming film by coating, the resist film is patterned into the same shape as the first microlens. This patterning is performed by forming a first resist pattern with a resist film by a lithography technique and then performing a reflow process on the first resist pattern. Then, the first lens forming film is etched back together with the patterned lens-shaped resist film to form a first microlens.

【0028】上記第1レジストパターンを形成する際に
は、入射光が形成しようとする第1マイクロレンズを通
して受光部開口内に入射するように、受光部開口の中心
とこれから形成しようとする第1マイクロレンズの中心
軸とを所定距離にして、この第1レジストパターンの位
置を設定する。
When the first resist pattern is formed, the center of the light-receiving portion opening and the first light-receiving portion to be formed therefrom are formed so that incident light enters the light-receiving portion opening through the first microlens to be formed. The position of the first resist pattern is set with a predetermined distance from the center axis of the microlens.

【0029】さらに、上記第1マイクロレンズを覆う状
態に平坦化膜、カラーフィルタを形成した後、第2レン
ズ形成膜を形成する。次いでこの第2レンズ形成膜上に
レジスト膜を塗布により形成してから、このレジスト膜
を第2マイクロレンズと同様の形状にパターニングす
る。このパターニングは、前記パターニングと同様に、
リソグラフィー技術によってレジスト膜で第2レジスト
パターンを形成した後、その第2レジストパターンをリ
フロー処理することによって行う。そしてパターニング
したレンズ状のレジスト膜とともに上記第2レンズ形成
膜をエッチバックして、第2マイクロレンズを形成す
る。
Further, after a flattening film and a color filter are formed so as to cover the first micro lens, a second lens forming film is formed. Next, after a resist film is formed on the second lens forming film by coating, the resist film is patterned into a shape similar to that of the second microlens. This patterning, like the patterning,
After forming a second resist pattern with a resist film by a lithography technique, the second resist pattern is subjected to a reflow process. Then, the second lens forming film is etched back together with the patterned lens-shaped resist film to form a second microlens.

【0030】上記第2レジストパターンを形成する際に
は、入射光が形成しようとする第2マイクロレンズから
第1マイクロレンズを通して受光部開口内に入射するよ
うに、受光部開口の中心とこれから形成しようとする第
2マイクロレンズの中心軸とを所定距離にして、この第
2レジストパターンの位置を設定する。
When the second resist pattern is formed, the center of the light-receiving portion opening and the light-receiving portion are formed so that incident light enters the light-receiving portion opening from the second microlens to be formed through the first microlens. The position of the second resist pattern is set with a predetermined distance from the center axis of the second microlens to be obtained.

【0031】[0031]

【発明の効果】以上、説明したように本発明によれば、
受光部開口の光の入射側に第1,第2マイクロレンズを
設け、かつ第2マイクロレンズへの入射光が第1マイク
ロレンズを通して受光部開口に入射するように、固体撮
像素子の周辺部に向かうにしたがって第1マイクロレン
ズの中心軸および第2マイクロレンズの中心軸を受光部
開口の中心よりそれぞれにずらして設けたので、斜め入
射光を受光部開口の中心部に入射することが可能にな
る。そのため、射出瞳距離が短い光学系を使うカメラで
あっても、周辺部の感度が落ちるシェーディングや画素
毎に感度が若干変わることにより画面がざらつく感度ム
ラを抑制することが可能になり、画質の向上が図れる。
また感度の低下が抑制されるので、受光部を大きくして
感度を向上させる必要もなくなる。そのため、光学系を
小さくできるのでカメラの小型化が図れる。
As described above, according to the present invention,
First and second microlenses are provided on the light incident side of the light receiving unit opening, and the light incident on the second microlens is incident on the light receiving unit opening through the first microlens at a peripheral portion of the solid-state imaging device. Since the central axis of the first microlens and the central axis of the second microlens are provided to be shifted from the center of the light receiving unit opening toward the center, it is possible to make oblique incident light incident on the central part of the light receiving unit opening. Become. Therefore, even with a camera that uses an optical system with a short exit pupil distance, it is possible to suppress shading in which the sensitivity in the peripheral area is reduced and sensitivity unevenness in which the screen is rough due to a slight change in sensitivity for each pixel. Improvement can be achieved.
In addition, since a decrease in sensitivity is suppressed, it is not necessary to increase the light receiving unit to improve the sensitivity. Therefore, the size of the optical system can be reduced, and the size of the camera can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる実施形態の概略構成断面図であ
る。
FIG. 1 is a schematic configuration sectional view of an embodiment according to the present invention.

【図2】別の実施形態の概略構成断面図である。FIG. 2 is a schematic sectional view of another embodiment.

【図3】マイクロレンズに瞳補正をかけた従来構造の概
略構成断面図である。
FIG. 3 is a schematic configuration sectional view of a conventional structure in which a pupil correction is applied to a microlens.

【図4】マイクロレンズに瞳補正をかけない構造の概略
構成断面図である。
FIG. 4 is a schematic cross-sectional view of a structure in which pupil correction is not performed on a micro lens.

【図5】課題の説明図である。FIG. 5 is an explanatory diagram of a problem.

【符号の説明】[Explanation of symbols]

1 固体撮像素子 1a チップの周辺部 17
受光部開口 22 第1マイクロレンズ 24 第2マイクロレン
ズ C 受光部開口の中心 L 入射光 X1 第1マ
イクロレンズの中心軸 X2 第2マイクロレンズの中心軸
1 solid-state imaging device 1a peripheral portion of chip
Light receiving part opening 22 First micro lens 24 Second micro lens C Center of light receiving part opening L Incident light X1 Central axis of first micro lens X2 Central axis of second micro lens

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 受光部開口の上方にマイクロレンズを備
えた固体撮像素子において、 前記マイクロレンズは、 前記受光部開口より光の入射側に設けた第1マイクロレ
ンズと、 前記受光部開口および前記第1マイクロレンズより光の
入射側に設けた第2マイクロレンズとからなり、 前記第1マイクロレンズおよび前記第2マイクロレンズ
は、該固体撮像素子の周辺部に向かうにしたがって、該
第2マイクロレンズへ入射する光が該第1マイクロレン
ズを通して前記受光部開口内に入射するように、前記第
1マイクロレンズの中心軸および前記第2マイクロレン
ズの中心軸を前記受光部開口の中心よりそれぞれずらし
て設けられていることを特徴とする固体撮像素子。
1. A solid-state imaging device having a microlens above a light-receiving unit opening, wherein the microlens comprises: a first microlens provided on a light incident side of the light-receiving unit opening; A second microlens provided on a light incident side of the first microlens, wherein the first microlens and the second microlens are arranged closer to a periphery of the solid-state imaging device; The center axis of the first microlens and the center axis of the second microlens are respectively shifted from the center of the light receiving unit opening such that light incident on the light receiving unit opening passes through the first micro lens. A solid-state imaging device, which is provided.
JP9029931A 1997-02-14 1997-02-14 Solid-state image sensor Withdrawn JPH10229180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9029931A JPH10229180A (en) 1997-02-14 1997-02-14 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9029931A JPH10229180A (en) 1997-02-14 1997-02-14 Solid-state image sensor

Publications (1)

Publication Number Publication Date
JPH10229180A true JPH10229180A (en) 1998-08-25

Family

ID=12289743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9029931A Withdrawn JPH10229180A (en) 1997-02-14 1997-02-14 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JPH10229180A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045449A2 (en) * 1999-04-12 2000-10-18 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device
FR2803395A1 (en) * 1999-12-30 2001-07-06 Commissariat Energie Atomique FLAT-SIDE SOLID OPTICAL MICROSYSTEM AND METHOD FOR PRODUCING SUCH MICROSYSTEM
KR20020042098A (en) * 2000-11-30 2002-06-05 박종섭 Image sensor and method for fabricating the same
JP2005057024A (en) * 2003-08-04 2005-03-03 Matsushita Electric Ind Co Ltd Solid state imaging device, manufacturing method thereof and camera
JP2005260242A (en) * 2004-03-10 2005-09-22 Samsung Electronics Co Ltd Cmos image element having high light condensing efficiency and manufacturing method therefor
US6974717B2 (en) * 2002-08-12 2005-12-13 Sanyo Electric Co., Ltd. Solid state image device and including an optical lens and a microlens
JP2006049721A (en) * 2004-08-06 2006-02-16 Matsushita Electric Ind Co Ltd Solid-state imaging device and its manufacturing method
US7019373B2 (en) 2003-05-28 2006-03-28 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US7023034B2 (en) 2003-08-29 2006-04-04 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device with improved image sensitivity
JP2006114592A (en) * 2004-10-13 2006-04-27 Sony Corp Solid-state image pick-up device
US7060961B2 (en) 2003-12-12 2006-06-13 Canon Kabushiki Kaisha Image sensing element and optical instrument having improved incident light use efficiency
JP2006261248A (en) * 2005-03-15 2006-09-28 Canon Inc Imaging element
WO2007132866A1 (en) * 2006-05-16 2007-11-22 Sharp Kabushiki Kaisha Solid-state imaging device, method for manufacturing the solid-state imaging device, and electronic information apparatus
JP2007311563A (en) * 2006-05-18 2007-11-29 Sharp Corp Solid-state imaging apparatus, and electronic information equipment
CN100428484C (en) * 2003-09-11 2008-10-22 松下电器产业株式会社 Solid-state imaging device and manufacturing method thereof
US7470881B2 (en) 2004-07-21 2008-12-30 Fujifilm Corporation Solid-state imaging device including plural groups of photoelectric conversion devices with plural microlenses being shifted in a peripheral portion of the imaging device, and imaging apparatus including the imaging device
US7474350B2 (en) 2003-09-08 2009-01-06 Sanyo Electric Co., Ltd. Solid state image pickup device comprising lenses for condensing light on photodetection parts
EP2083447A1 (en) * 2008-01-28 2009-07-29 Sony Corporation Image pickup apparatus
US20110063486A1 (en) * 2008-05-28 2011-03-17 Panasonic Corporation Solid-state imaging device and method of manufacturing the same
US8110885B2 (en) 2004-09-03 2012-02-07 Canon Kabushiki Kaisha Solid state imaging device comprising hydrogen supply film and antireflection film
US8111982B2 (en) * 2009-09-30 2012-02-07 Fujifilm Corporation Imaging device and electronic camera
US8582013B2 (en) 2009-04-03 2013-11-12 Canon Kabushiki Kaisha Refractive index distributed optical element and image sensor including the refractive index distributed optical element
WO2015040825A3 (en) * 2013-09-18 2015-05-21 Sony Corporation Imaging device, manufacturing apparatus, manufacturing method, and electronic apparatus

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045449A3 (en) * 1999-04-12 2002-06-12 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device
EP1045449A2 (en) * 1999-04-12 2000-10-18 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device
FR2803395A1 (en) * 1999-12-30 2001-07-06 Commissariat Energie Atomique FLAT-SIDE SOLID OPTICAL MICROSYSTEM AND METHOD FOR PRODUCING SUCH MICROSYSTEM
WO2001050158A1 (en) * 1999-12-30 2001-07-12 Commissariat A L'energie Atomique Solid optical microsystem with planar surface and method for making same
KR20020042098A (en) * 2000-11-30 2002-06-05 박종섭 Image sensor and method for fabricating the same
US6974717B2 (en) * 2002-08-12 2005-12-13 Sanyo Electric Co., Ltd. Solid state image device and including an optical lens and a microlens
US8581358B2 (en) 2003-05-28 2013-11-12 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method
US8866249B2 (en) 2003-05-28 2014-10-21 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US7019373B2 (en) 2003-05-28 2006-03-28 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US8299557B2 (en) 2003-05-28 2012-10-30 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method
US7709918B2 (en) 2003-05-28 2010-05-04 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US7420236B2 (en) 2003-05-28 2008-09-02 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US7417214B2 (en) 2003-08-04 2008-08-26 Matsushita Electric Industrial Co., Ltd. Solid-state image sensor, manufacturing method for solid-state image sensor, and camera having plural color filters and dual transparent film
JP2005057024A (en) * 2003-08-04 2005-03-03 Matsushita Electric Ind Co Ltd Solid state imaging device, manufacturing method thereof and camera
US7919743B2 (en) 2003-08-04 2011-04-05 Panasonic Corporation Solid-state image sensor, manufacturing method for solid-state image sensor, and camera
US7531782B2 (en) 2003-08-04 2009-05-12 Matsushita Electric Industrial Co., Ltd. Solid-state image sensor having micro-lenses arranged to collect light of which the incidence angle has been moderated by a transparent film disposed thereon
US7459665B2 (en) 2003-08-04 2008-12-02 Panasonic Corporation Solid-state image sensor with transparent film on micro-lenses by which oblique light is refracted towards light receiving elements
US7456381B2 (en) 2003-08-04 2008-11-25 Panasonic Corporation Solid-state image sensor, manufacturing method for solid-state image sensor, and camera having an offsetting arrangement between light receiving elements and micro-lenses
US7411180B2 (en) 2003-08-04 2008-08-12 Matsushita Electric Industrial Co., Ltd. Solid state image sensor with transparent film on micro-lenses and offsetting positions of micro-lenses and color filters from a central portion of a corresponding light receiving area
US7023034B2 (en) 2003-08-29 2006-04-04 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device with improved image sensitivity
US7474350B2 (en) 2003-09-08 2009-01-06 Sanyo Electric Co., Ltd. Solid state image pickup device comprising lenses for condensing light on photodetection parts
CN100428484C (en) * 2003-09-11 2008-10-22 松下电器产业株式会社 Solid-state imaging device and manufacturing method thereof
US7470965B2 (en) 2003-09-11 2008-12-30 Panasonic Corporation Solid-state imaging device
US7060961B2 (en) 2003-12-12 2006-06-13 Canon Kabushiki Kaisha Image sensing element and optical instrument having improved incident light use efficiency
JP2005260242A (en) * 2004-03-10 2005-09-22 Samsung Electronics Co Ltd Cmos image element having high light condensing efficiency and manufacturing method therefor
US7470881B2 (en) 2004-07-21 2008-12-30 Fujifilm Corporation Solid-state imaging device including plural groups of photoelectric conversion devices with plural microlenses being shifted in a peripheral portion of the imaging device, and imaging apparatus including the imaging device
US7847852B2 (en) 2004-08-06 2010-12-07 Panasonic Corporation Solid-state imaging device and manufacturing method of solid-state imaging device
JP2006049721A (en) * 2004-08-06 2006-02-16 Matsushita Electric Ind Co Ltd Solid-state imaging device and its manufacturing method
US8110885B2 (en) 2004-09-03 2012-02-07 Canon Kabushiki Kaisha Solid state imaging device comprising hydrogen supply film and antireflection film
JP4626255B2 (en) * 2004-10-13 2011-02-02 ソニー株式会社 Manufacturing method of solid-state imaging device
JP2006114592A (en) * 2004-10-13 2006-04-27 Sony Corp Solid-state image pick-up device
JP2006261248A (en) * 2005-03-15 2006-09-28 Canon Inc Imaging element
WO2007132866A1 (en) * 2006-05-16 2007-11-22 Sharp Kabushiki Kaisha Solid-state imaging device, method for manufacturing the solid-state imaging device, and electronic information apparatus
JP2007311413A (en) * 2006-05-16 2007-11-29 Sharp Corp Solid-state imaging device and its manufacturing method, and electronic information device
US8525199B2 (en) 2006-05-16 2013-09-03 Sharp Kabushiki Kaisha Solid-state image capturing device, method for manufacturing the same and electronic information device
JP2007311563A (en) * 2006-05-18 2007-11-29 Sharp Corp Solid-state imaging apparatus, and electronic information equipment
WO2007135903A1 (en) * 2006-05-18 2007-11-29 Sharp Kabushiki Kaisha Solid-state imaging device and electronic information apparatus
EP2083447A1 (en) * 2008-01-28 2009-07-29 Sony Corporation Image pickup apparatus
US8106994B2 (en) 2008-01-28 2012-01-31 Sony Corporation Image pickup apparatus having a microlens array
US20110063486A1 (en) * 2008-05-28 2011-03-17 Panasonic Corporation Solid-state imaging device and method of manufacturing the same
US8582013B2 (en) 2009-04-03 2013-11-12 Canon Kabushiki Kaisha Refractive index distributed optical element and image sensor including the refractive index distributed optical element
US8111982B2 (en) * 2009-09-30 2012-02-07 Fujifilm Corporation Imaging device and electronic camera
WO2015040825A3 (en) * 2013-09-18 2015-05-21 Sony Corporation Imaging device, manufacturing apparatus, manufacturing method, and electronic apparatus

Similar Documents

Publication Publication Date Title
JPH10229180A (en) Solid-state image sensor
US7522341B2 (en) Sharing of microlenses among pixels in image sensors
US7427799B2 (en) Complementary metal oxide semiconductor image sensor and method for fabricating the same
US7560295B2 (en) Methods for creating gapless inner microlenses, arrays of microlenses, and imagers having same
JP4743842B2 (en) Solid-state image sensor
KR20140100888A (en) Solid-state image pickup device, electronic apparatus, and manufacturing method
JP2996958B2 (en) Structure for focusing and color filtering on a semiconductor photoelectric device and method for manufacturing the structure
JPH08107194A (en) Solid state image sensor
JP2000150846A (en) Solid state imaging device and manufacture of it
JP2009021379A (en) Solid-state imaging apparatus and camera equipped with the same, and manufacturing method of solid-state imaging apparatus
KR20060043228A (en) Imaging apparatus and arranging method for the same
JP3178629B2 (en) Solid-state imaging device and method of manufacturing the same
US6582988B1 (en) Method for forming micro lens structures
US20160238836A1 (en) Back Side Illumination Image Sensor With Non-Planar Optical Interface
US7646551B2 (en) Microlenses with patterned holes to produce a desired focus location
CN111261650A (en) Method for manufacturing optical filter on image sensor wafer
JP2742185B2 (en) Solid-state imaging device
KR100685881B1 (en) CMOS image sensor and method for the same
JPH04229802A (en) Solid image pick-up device and manufacture thereof
JP3269644B2 (en) Manufacturing method of micro lens
CN101442066A (en) Method for manufacturing image sensor
JPH05283661A (en) Solid state image pickup
JP2005252391A (en) Imaging apparatus
CN116113856A (en) Solid-state imaging element and method of manufacturing the same
US20080048284A1 (en) Image sensor and fabrication method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050128