JPS5987872A - Insulated gate semiconductor device and manufacture thereof - Google Patents

Insulated gate semiconductor device and manufacture thereof

Info

Publication number
JPS5987872A
JPS5987872A JP57197530A JP19753082A JPS5987872A JP S5987872 A JPS5987872 A JP S5987872A JP 57197530 A JP57197530 A JP 57197530A JP 19753082 A JP19753082 A JP 19753082A JP S5987872 A JPS5987872 A JP S5987872A
Authority
JP
Japan
Prior art keywords
type region
region
type
gate
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57197530A
Other languages
Japanese (ja)
Inventor
Hideshi Ito
伊藤 秀史
Takeaki Okabe
岡部 健明
Mitsuo Ito
伊藤 満夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57197530A priority Critical patent/JPS5987872A/en
Publication of JPS5987872A publication Critical patent/JPS5987872A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To reduce output capacity, and to enhance the video output frequency band characteristic at a vertical power MOS FET by a method wherein a channel part is limited to the surface of a p type region under the neighborhood of a gate, and impurity concentration of a p<-> type region surrounded with the p type region thereof is made lower than that of the p type region to be used as the channel part. CONSTITUTION:B ions are implanted to be diffused to the surface of an n type layer 1 using an insulating film 9 as a mask, and a p<-> type region 8 is formed. Then a part of a thick oxide film 10 on the p<-> type region 8 is left as a part of a field oxide film, and the others are etched to be removed. Gate oxidation is performed to form a gate oxide film 6. Poly-Si is deposited on the whole surface, and a poly-Si gate 7 is left according to the prescribed photo resist process. B ions and As ions are implanted to be diffused respectively using the poly-Si gate 7 and a field oxide film 10 as masks, and a p type region 3 to act as the channel part and an n<+> type region 5 to act as a source are formed. After then, a PSG film 11 is deposited, and contact photoetching is performed to form an opening in the SiO2 film as to expose a part of the n<+> type region 5 and the whole of the inside p<-> type region 8.

Description

【発明の詳細な説明】 本発明は縦形の絶縁ゲート・電界効果トランジスタ(以
下MO8FETと称する)における出力容量低減技術に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a technology for reducing output capacitance in a vertical insulated gate field effect transistor (hereinafter referred to as MO8FET).

ビディオ出力用素子として用いられている高耐圧縦形M
O8FETは、第1図に示すように、裏面にn++層2
を有するn型Si (シリコン)基体1をドレイン(D
)として、この基体1の一生表面に浅いp型領域3とこ
のp型領域3に囲まれその一部で重なる深いp型ウェル
領域4とな形成し、周辺の浅いp型頭域30表面の一部
にさらに浅い高濃度のn+型領領域5形成してソース(
S)となし、このn+型領領域5形成されない浅いp型
頭域30表面をチャネル部3aとしてこの上に絶縁膜(
S I O* Ha ) 6を介してポリSi (シリ
コン)からなるゲート7 (G)を設け、このゲートG
への電圧印加によってその直下のチャネル部3aにおい
てソース・ドレイン電流I8Dを制御する構成を有する
High voltage vertical type M used as a video output element
As shown in Figure 1, O8FET has an n++ layer 2 on the back side.
An n-type Si (silicon) substrate 1 having a drain (D
), a shallow p-type region 3 and a deep p-type well region 4 surrounded by and partially overlapping with this p-type region 3 are formed on the surface of the substrate 1, and the surface of the peripheral shallow p-type head region 30 is formed. A shallower high concentration n+ type region 5 is formed in a part of the source (
S), and an insulating film (
A gate 7 (G) made of polySi (silicon) is provided via the SIO*Ha) 6, and this gate G
It has a configuration in which the source-drain current I8D is controlled in the channel portion 3a immediately below by applying a voltage to the channel portion 3a.

パワー縦形MO8FETを高周波帯域で使用する場合、
出力容量C888は出力損失となるため、容量はできる
だけ小さい方が望ましい。又このMOSFETをキャラ
クタディスプレイ等のビデビオ出力用トランジスタとし
て使用する場合、負荷となるブラウン管の容量が3〜5
PFと小さく、ビディオ出力の周波数帯域を50MHz
以上必要とする高精細ディスプレイではC888はl0
PF以下であることを要しできれば、5PFが理想的で
ある。
When using power vertical MO8FET in high frequency band,
Since the output capacitance C888 causes output loss, it is desirable that the capacitance be as small as possible. Also, when using this MOSFET as a video output transistor for a character display, etc., the capacity of the cathode ray tube serving as the load is 3 to 5.
Small PF, video output frequency band 50MHz
For high-definition displays that require more than 10
If it is possible to require less than PF, 5PF is ideal.

しかし前記の高耐圧縦形MO8FETの構造では第1図
を参照しドレイン・ソース間の出力容量Co55はチャ
ネル部を含む浅いp型領域3の接合容量C1と深いp型
ウェル値域4の接合容量C3で決定され、したがってC
888を小さくする手段としては接合面積を小さくする
かスはp型領域3,4の不純物濃度を薄くするかしなけ
ればならない。
However, in the structure of the above-mentioned high voltage vertical MO8FET, referring to FIG. 1, the output capacitance Co55 between the drain and source is the junction capacitance C1 of the shallow p-type region 3 including the channel part and the junction capacitance C3 of the deep p-type well range 4. determined and therefore C
In order to reduce the size of 888, it is necessary to reduce the junction area or to reduce the impurity concentration of the p-type regions 3 and 4.

しかしチャネル部を含む浅いpi領域3ではnチャネル
MO8FETの1m特性や■1等から所要の濃度に限定
され、チャネル部拡散による接合容量C1は動かすこと
ができない。一方、p型ウェル領域4の不純物濃度はチ
ャネル部に比して低く選ぶことができるが、ウニ;が深
くなるほどその側面部分の面積が増加し、又、浅いp型
領域3と深いp型ウェル領域40重なる部分4aは2度
の拡散によりチャネル部3aの不純物濃度よりも濃くな
っており、したがって接合容量Ctが大きくなり、全体
としてC888の低減は困難である。
However, in the shallow pi region 3 including the channel part, the concentration is limited to a required value due to the 1m characteristic of the n-channel MO8FET and (1), and the junction capacitance C1 due to channel part diffusion cannot be changed. On the other hand, the impurity concentration of the p-type well region 4 can be selected to be lower than that of the channel region, but the deeper the region, the larger the area of the side surface. The region 40 overlapping portion 4a has an impurity concentration higher than that of the channel portion 3a due to the double diffusion, and therefore the junction capacitance Ct increases, making it difficult to reduce C888 as a whole.

次に低耐圧・低オン抵抗縦形MO8FETとして、p型
ウェルの浅い場合、あるいは第2図に示すようにチャネ
ル部を含む浅いp型領域のみで深いウェルを有しない構
造では、ゲート電圧印加時に空乏層がチャネル部拡散層
にぶつかることになり、同様に出力容量C888の低減
ができない。
Next, as a vertical MO8FET with low breakdown voltage and low on-resistance, if the p-type well is shallow, or if the structure has only a shallow p-type region including the channel part and no deep well as shown in Figure 2, depletion occurs when the gate voltage is applied. The layer collides with the channel diffusion layer, and the output capacitance C888 cannot be similarly reduced.

本発明は上記の問題を解決するためになされたものであ
り、その目的とするところは、出力用縦形MO8FET
において出力容量を低減し、ビディオ出力の周波数帯域
特性を向上することにある。
The present invention was made to solve the above problems, and its purpose is to provide a vertical MO8FET for output.
The objective is to reduce the output capacitance and improve the frequency band characteristics of video output.

上記目的を達成するための本発明の一実施態様は第3図
に示されるように裏面にn+型SiJ脅2を有するn型
Si基板1をドレインとして、このn型基板lの表面に
一部がチャネル部となるp型領域3を有し、p型頭域3
0表面の一部にn+型領領域5形成してソースとし、n
+型領領域形成されないp型頭域3表面に薄い絶縁膜6
を介してゲート(電極)7を設けたnチャネ/I/MO
8FETにおいて、チャネル部をゲート近傍下のp型頭
域3表面に限定し、このp型領域に囲まれたp−型領域
8の不純物濃度をチャネル部となるp型領域3のそれよ
りも低いものとしたものである。第4図は第3図に示し
たMOSFETに対応する拡散パターンをあられす平面
図である。
As shown in FIG. 3, one embodiment of the present invention for achieving the above object uses an n-type Si substrate 1 having an n+ type SiJ layer 2 on the back surface as a drain, and a part of the surface of this n-type substrate 1 is used as a drain. has a p-type region 3 which becomes a channel part, and a p-type head region 3
An n+ type region 5 is formed on a part of the surface of 0 to serve as a source.
A thin insulating film 6 is formed on the surface of the p-type head region 3 where the +-type region is not formed.
n-channel/I/MO with gate (electrode) 7 provided through
In the 8FET, the channel portion is limited to the surface of the p-type head region 3 below near the gate, and the impurity concentration of the p-type region 8 surrounded by this p-type region is lower than that of the p-type region 3 which becomes the channel portion. It was taken as a thing. FIG. 4 is a plan view showing a diffusion pattern corresponding to the MOSFET shown in FIG. 3.

このような構造とすることによって、チャネル部となる
p型領域3とそれKより囲まれたp−型領域8とを個別
に設計でき、特にp−型領域8の不純物濃度を低減させ
たことにより、ゲート電圧印加時に空乏層の拡がりを少
なくし、又、p−型領域8を浅く形成して「ウェル」側
面部の面積を減少させることにより、このp−型領域8
にかかわるC1を小さくし、パワーMO8FETのID
・7mを低下させることなく出力容量C888を低減す
ることができる。
By adopting such a structure, the p-type region 3 serving as the channel portion and the p-type region 8 surrounded by the p-type region 8 can be individually designed, and the impurity concentration of the p-type region 8 can be particularly reduced. By reducing the spread of the depletion layer when a gate voltage is applied, and by forming the p-type region 8 shallowly to reduce the area of the "well" side surface, this p-type region 8
By reducing C1, which is related to
- Output capacitance C888 can be reduced without reducing 7m.

第5図は本発明の他の実施形態を示し、この場合はチャ
ネル部を含むp型領域3とそれに囲まれたp−型領域些
との重なり部分をC型領域6の直下に形成した場合で、
第4図の場合よりチャネル部となるp型領域3の面積が
小さくなるため、その部分の接合容量C1が小さくなり
、したがって全体の出力容量C8,8をより低減できる
FIG. 5 shows another embodiment of the present invention, in which the overlapping portion of the p-type region 3 including the channel portion and the p-type region surrounded by it is formed directly under the C-type region 6. in,
Since the area of the p-type region 3 serving as the channel portion is smaller than in the case of FIG. 4, the junction capacitance C1 of that portion becomes smaller, and therefore the overall output capacitance C8, 8 can be further reduced.

第6図はp型領域とn型基板とのpn接合(0の位置)
よりの空乏層の拡がり(距離)Jと電界強度Eとの関係
がp型領域の不純物濃度によって変ることを示している
。同図において、曲線(1)はp型領域の濃度が高い場
合で、p型層n型層双方への拡がりの大きいことな示し
、曲線(2)はp型領域の濃度を低くup型層への拡が
りが小さく、n型層へのそれが大きい場合、曲線(31
p型層へもn型層へも共に拡がりが小さい場合を示して
いる。
Figure 6 shows the pn junction between the p-type region and the n-type substrate (position 0)
This shows that the relationship between the spread (distance) J of the depletion layer and the electric field strength E changes depending on the impurity concentration of the p-type region. In the same figure, curve (1) shows the case where the concentration of the p-type region is high, indicating a large spread to both the p-type layer and the n-type layer, and the curve (2) shows the case where the concentration of the p-type region is low and the up-type layer. If the spread to the n-type layer is small and that to the n-type layer is large, then the curve (31
This shows a case where the spread is small both to the p-type layer and to the n-type layer.

第7図乃至第13図は本発明による出力用nチャネルM
O8FETの製造法をそのプロセスの工程断面図により
示すもので各工程は下記の通り。
7 to 13 show n-channel M for output according to the present invention.
The O8FET manufacturing method is shown in cross-sectional diagrams of the process, and each step is as follows.

(1)  第7図に示すようにn++層2な有するn型
単結晶Si基板1又はn++基板(21の上にn型層(
1)をエピタキシャル成長させたn” n型基板(1゜
2)を用意し、そのn型層(基板)10表面に絶縁膜(
SiOx膜)9をマスクとしてB(ポロン)イオン打込
み(不純物オーダN:1012/IJ2)拡散(120
0°CX1.3hr程度)してp−型領域8を形成する
(1) As shown in FIG. 7, an n-type single crystal Si substrate 1 having an n++ layer 2 or an n-type layer (
An "n" n-type substrate (1°2) on which 1) was epitaxially grown is prepared, and an insulating film (
Using SiOx film) 9 as a mask, implant B (poron) ions (impurity order N: 1012/IJ2) diffusion (120
0° C. for about 1.3 hr) to form a p-type region 8.

(2)  第8図に示すようにp−型領域8上の厚い酸
化膜10をフィールド酸化膜(4〜5000A )の一
部として残して他をエッチ除去する。
(2) As shown in FIG. 8, the thick oxide film 10 on the p-type region 8 is left as part of the field oxide film (4 to 5000 Å) and the rest is removed by etching.

(3)第9図に示すようにゲート酸化を行ないゲート酸
化膜6を1250A程度に形成する。
(3) As shown in FIG. 9, gate oxidation is performed to form a gate oxide film 6 having a thickness of about 1250A.

(4)全面にポリSiをデポジットし、所定のホトレジ
スト処理で第10図に示すようにポリSiゲート7をパ
ターニングにより残す。
(4) Deposit poly-Si over the entire surface, and pattern it to leave a poly-Si gate 7 as shown in FIG. 10 using a predetermined photoresist process.

(5)ポリSiゲート7及びフィールド酸化膜10をマ
スクとしてB(ボロン)及びAs (ヒ素)をイオン打
込みしそれぞれ拡散することにより第10図に示すチャ
ネル部となるp型領域3及びソースとなるn+型領領域
5形成する。この場合、p型領域3の濃度は8 X 1
01310tn2、拡散時間1200℃X1hr程度で
あり、n+型領領域5濃度は5X10”101R2、拡
散時間は900℃×%hr程度とする。
(5) Using the poly-Si gate 7 and field oxide film 10 as a mask, B (boron) and As (arsenic) are ion-implanted and diffused to form the p-type region 3 which becomes the channel portion and the source shown in FIG. 10. An n+ type region 5 is formed. In this case, the concentration of p-type region 3 is 8×1
01310tn2, the diffusion time is about 1200° C. x 1 hr, the concentration of the n+ type region 5 is 5×10”101R2, and the diffusion time is about 900° C.×% hr.

(6)この後PSG(リンシリケートガラス)膜11を
0.9μmデポジットし、第12図に示すようにコンタ
クトホトエッチを行なってn+型領領域5一部と内側の
p−型頭w、8の全部が露出するようにS io、膜を
エッチ窓開する。
(6) After this, a PSG (phosphosilicate glass) film 11 of 0.9 μm is deposited, and contact photoetching is performed as shown in FIG. The film is etched to expose the entire Sio layer.

(7)最後に第13図に示すようにA−eを蒸着(又は
スパッタ)しホトレジスト処理により、p−型領域8と
n+型領領域5短絡し、その一部はゲートの上を延在さ
せるソース電極12を形成する。
(7) Finally, as shown in FIG. 13, by vapor depositing (or sputtering) A-e and photoresist processing, the p- type region 8 and the n+ type region 5 are short-circuited, and a part of the region extends above the gate. A source electrode 12 is formed.

なお裏面のn++Si基板上にもドレイン電極13な形
成する。
Note that a drain electrode 13 is also formed on the n++ Si substrate on the back side.

以上実施例で述べた本発明によればチャネル部となるp
型領域とそれに囲まれたp−型ウェルを別工程で形成で
き、またチャネル部となるp型領域とンースn+型領域
はゲートをマスクとすることで自己整合的に形成でき、
ドレイン・ソース間の出力容量をl0FFから3PFに
減少させることでfTを70MHzから200 GHz
に向上することができた。このことはMOSFETとし
ての速度を犬ならしめるとともに、ディスプレイの高精
密微細化を可能ならしめるものである。
According to the present invention described in the embodiments above, p
The type region and the p-type well surrounded by it can be formed in separate steps, and the p-type region and n+-type region that will become the channel part can be formed in a self-aligned manner by using the gate as a mask.
By reducing the drain-source output capacitance from 10FF to 3PF, fT can be increased from 70MHz to 200GHz.
was able to improve. This not only makes the speed of the MOSFET comparable, but also enables highly precise miniaturization of displays.

本発明は縦形のパワーMO8FET全般に適用できるも
のである。
The present invention is applicable to all vertical power MO8FETs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は縦形nチャネルMO8FETのこれ
までの例を示す断面図である。 第3図は本発明による縦形nチャネルMO8FETを原
理的に示す一実施例の断面図、 第4図は第3図のMO8’FETの拡散パターンを示す
平面図である。 第5図は本発明による縦形nチャネルMO8FETの他
の実施例を示す断面図である。 第6図はpn接合よりの空乏層の延びと電界強度の関係
を示す曲線図である。 第7図乃至第13図は本発明によるMOS F ETの
製造法の実施例プロセスで示す工程断面図である。 1・・・n W S i基体、2・・・n+型Si層、
3・・・p型領域、4・・・p型ウェル領域、5・・・
n+型ンソー領域、6・・・絶縁膜、7・・・ゲート、
8・・・p−型領域、9・・・酸化膜、10・・・フィ
ールド酸化膜、11・・・PSG膜、12・・・電極。 第  1  図 、? 第  3  図 第  5  図 第  6 図 0) (2)  □ (1)        − 第  7  図 第  9  図 第10図
FIGS. 1 and 2 are cross-sectional views showing conventional examples of vertical n-channel MO8FETs. FIG. 3 is a cross-sectional view of an embodiment showing the principle of a vertical n-channel MO8FET according to the present invention, and FIG. 4 is a plan view showing a diffusion pattern of the MO8'FET of FIG. 3. FIG. 5 is a sectional view showing another embodiment of a vertical n-channel MO8FET according to the present invention. FIG. 6 is a curve diagram showing the relationship between the extension of the depletion layer from the pn junction and the electric field strength. FIGS. 7 to 13 are process cross-sectional views showing an embodiment of the method for manufacturing a MOSFET according to the present invention. 1...n W Si substrate, 2... n+ type Si layer,
3...p-type region, 4...p-type well region, 5...
n+ type source region, 6... insulating film, 7... gate,
8...p-type region, 9...oxide film, 10...field oxide film, 11...PSG film, 12...electrode. Figure 1, ? Figure 3 Figure 5 Figure 6 Figure 0) (2) □ (1) - Figure 7 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】 1、第1導電型半導体基板をドレインとして、この基板
の一生面表面に第2導電型領域な形成し、この第2導電
型領域表面の一部に第1導電型高濃度領域を形成してソ
ースとなし、第1導電型高濃度領域の形成されない第2
導電型領域表面上に絶縁膜を介してゲート(電極)を設
け、このゲートへの電圧印加によってその直下の第2導
電型領域表面をチャネル部としてのソース・ドレイン電
流を制御する絶縁ゲート電界効果半導体装置において、
チャネル部となる第2導電型領域をゲート近傍下に限定
し、この領域に囲まれた第2導電型領域の不純物濃度を
上記チャネル部となる第2導電型領域のそれよりも低い
ものとしたことを特徴とする絶縁ゲート半導体装置。 2、n−n□+型シリコン基板を用意し、そのn型シリ
コン層表面の一部に低濃度p−型領領域形成する工程、
p−型領域の周辺部表面にうすいシリコン酸化膜を介し
て多結晶シリコン層かりなるゲートを形成する工程、p
二型領域上に形成した厚い酸化膜と上記多結晶シリコン
層をマスクとしてその間にはさまれたn型シリコン層表
面に自己整合的に不純物を導入し、前記p−型領領域り
も高い濃度のp型領域なチャネル部として形成するとと
もに浅い高濃度n+型領領域ソースとして形成する工程
及び上記p−型領領域n+型領領域一部に対して抵抗接
触する電極を形成する工程とを含む絶縁ゲート半導体装
置の製造法。
[Claims] 1. A semiconductor substrate of a first conductivity type is used as a drain, a second conductivity type region is formed on the entire surface of this substrate, and a first conductivity type high-temperature region is formed on a part of the surface of the second conductivity type region. A high concentration region of the first conductivity type is formed to serve as a source, and a second high concentration region of the first conductivity type is not formed.
Insulated gate field effect: A gate (electrode) is provided on the surface of a conductivity type region via an insulating film, and by applying a voltage to this gate, the source/drain current is controlled using the surface of the second conductivity type region immediately below as a channel part. In semiconductor devices,
The second conductivity type region that will become the channel portion is limited to the area below the vicinity of the gate, and the impurity concentration of the second conductivity type region surrounded by this region is lower than that of the second conductivity type region that will become the channel portion. An insulated gate semiconductor device characterized by: 2. Step of preparing an n-n□+ type silicon substrate and forming a low concentration p- type region on a part of the surface of the n-type silicon layer;
a step of forming a gate made of a polycrystalline silicon layer on the peripheral surface of the p-type region through a thin silicon oxide film, p
Using the thick oxide film formed on the type 2 region and the polycrystalline silicon layer as a mask, impurities are introduced into the surface of the n-type silicon layer sandwiched between them in a self-aligned manner, and the p-type region also has a high concentration. A step of forming a p-type region as a channel part and a shallow high concentration n+ type region as a source, and a step of forming an electrode in resistive contact with a part of the p-type region and n+ type region. A method for manufacturing an insulated gate semiconductor device.
JP57197530A 1982-11-12 1982-11-12 Insulated gate semiconductor device and manufacture thereof Pending JPS5987872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57197530A JPS5987872A (en) 1982-11-12 1982-11-12 Insulated gate semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57197530A JPS5987872A (en) 1982-11-12 1982-11-12 Insulated gate semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5987872A true JPS5987872A (en) 1984-05-21

Family

ID=16375996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57197530A Pending JPS5987872A (en) 1982-11-12 1982-11-12 Insulated gate semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5987872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238871A (en) * 1990-02-15 1991-10-24 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238871A (en) * 1990-02-15 1991-10-24 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
JPS6243549B2 (en)
JPS6124833B2 (en)
JPS634683A (en) Field-effect transistor
JPH05251694A (en) Mos type semiconductor device and its manufacture
JP2712359B2 (en) Method for manufacturing semiconductor device
JPS60247974A (en) Semiconductor device
JPS5987872A (en) Insulated gate semiconductor device and manufacture thereof
JPH0382163A (en) Power mosfet and manufacture thereof
JPS62229880A (en) Semiconductor device and manufacture thereof
JPH01765A (en) semiconductor equipment
JPH0493083A (en) Semiconductor device and manufacture thereof
JPS61160965A (en) Semiconductor ic device
JPH02305443A (en) Manufacture of semiconductor device
JPH03173175A (en) Semiconductor device
JPS63278273A (en) Semiconductor device
JP2513634B2 (en) Method for manufacturing semiconductor device
JPS63241965A (en) Insulated-gate field-effect transistor and manufacture thereof
JP2004022555A (en) Insulated-gate field-effect transistor and manufacturing method thereof
JPS63305566A (en) Semiconductor device and manufacture thereof
JPH0491481A (en) Mis field effect transistor
JPH06181312A (en) Manufacture of semiconductor device
JPS62159468A (en) Semiconductor device
JPS60136377A (en) Manufacture of semiconductor device with insulated gate
JPH10209429A (en) Tft semiconductor device and manufacture thereof
JPS5928993B2 (en) Semiconductor device and its manufacturing method