JPS5987866A - Manufacture of bipolar semiconductor device - Google Patents

Manufacture of bipolar semiconductor device

Info

Publication number
JPS5987866A
JPS5987866A JP19820182A JP19820182A JPS5987866A JP S5987866 A JPS5987866 A JP S5987866A JP 19820182 A JP19820182 A JP 19820182A JP 19820182 A JP19820182 A JP 19820182A JP S5987866 A JPS5987866 A JP S5987866A
Authority
JP
Japan
Prior art keywords
collector
region
ions
oxide film
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19820182A
Other languages
Japanese (ja)
Inventor
Koji Makita
牧田 耕次
Kazuyoshi Shinada
品田 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19820182A priority Critical patent/JPS5987866A/en
Publication of JPS5987866A publication Critical patent/JPS5987866A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Abstract

PURPOSE:To contrive to manufacture a bipolar transistor to operate at a high speed by a method wherein channeling ion implantation is applied actively to formation of the collector of the bipolar transistor formed according to triple diffusion. CONSTITUTION:After an oxide film 12 is etched to be removed wholly, photo resist patterns 15 are covered on the parts other than the collector region formation programing part, and after the implanting direction of P<+> ions and the <110> crystal axis of a substrate 11 are made to coincide within + or -0.3 deg., P<+> channeling ions are implanted by the dose of 4X10<13>cm<-2>, for example, to the collector region formation programing part. After photo resist patterns 19 to cover the parts other than the base region formation programing part are covered, B<+> ions are implanted by the dose of 1X10<14>cm<-2>, for example. Then after the photo resist patterns 19 are removed, a heat treatment is performed in an N2 atmosphere to form a P type base region 20 of 0.4mum thickness. A part of silicon nitride film 18 and a thermal oxide film 16 corresponding to the upper part of the P type base region 20 are etched selectively in order to be removed to form openings 24, and after an Al-Si film is deposited on the whole surface, patterning is performed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はバイポーラ半導体装置の製造方法に関し、特に
3重拡散によるバイポーラトランジスタの形成方法に係
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a bipolar semiconductor device, and particularly to a method for forming a bipolar transistor by triple diffusion.

〔発明の技術的背景〕[Technical background of the invention]

3重拡散によるバイポーラトランジスタの製造方法は、
エピタキシャル層を成長させる工程及びこのエピタキシ
ャル層を分離酸化膜によって分離する工程が不要なため
、製造工程が簡便であるという利点を有する。
The method for manufacturing bipolar transistors using triple diffusion is as follows:
This method has the advantage that the manufacturing process is simple because it does not require the step of growing an epitaxial layer and the step of separating this epitaxial layer with an isolation oxide film.

上述した3重拡散によるバイポーラトランジスタの製造
方法を第1図を参照して説明する。
A method of manufacturing a bipolar transistor using the above-mentioned triple diffusion will be explained with reference to FIG.

まず、P−型シリコン基板1表面に熱酸化膜2を形成し
た後、前記基板1の所定の領域に例えばp+−eイオン
注入し、熱処理を施してN−型コレクタ領域3を形成す
る。次に、このN−型コレクタ領域3内にコレクタ直列
抵抗を下げるため高濃度のN+型コレクタコンタクト領
域4七形成する。つづいて、前記N−型コレクタ領域3
内の所定の領域にBiイオン注入し、熱処理を施してP
−型ペース領域5全形成する。
First, a thermal oxide film 2 is formed on the surface of a P- type silicon substrate 1, and then, for example, p+-e ions are implanted into a predetermined region of the substrate 1, and a heat treatment is performed to form an N- type collector region 3. Next, a highly doped N+ type collector contact region 47 is formed in this N- type collector region 3 in order to lower the collector series resistance. Next, the N-type collector region 3
Bi ions are implanted into a predetermined region within the P
- Form the entire mold pace area 5.

つづいて、このP−型ペース領域5内の所定の領域にA
s fイオン注入し熱処理を施してN+型エミッタ領域
6を形成する。つづいて、前記熱酸化膜2に開孔を設け
、エミッタ、ペース、コレクタの各電極を形成し、NP
Nバイポ−ラトランリスタを製造する。
Next, A is applied to a predetermined area within this P-type pace area 5.
N+ type emitter region 6 is formed by sf ion implantation and heat treatment. Next, holes are formed in the thermal oxide film 2, and emitter, paste, and collector electrodes are formed, and the NP
Manufacture N bipolar transistor.

〔背景技術の問題点〕[Problems with background technology]

上記方法において使用されるイオン注入はいわゆるラン
ダムイオン注入であシ、製造されるバイポーラトランジ
スタの各領域の不純物濃度分布は第2図に示すようにな
る。第2図から明らかなようにコレクタ領域Cの不純物
濃度は基板表面からの深さが深くなるとともに低くなっ
ている。このため、コレクタの直列抵抗が増大し、トラ
ンジスタのスイッチング動作が著しく阻害されるという
欠点がある。
The ion implantation used in the above method is so-called random ion implantation, and the impurity concentration distribution in each region of the manufactured bipolar transistor is as shown in FIG. As is clear from FIG. 2, the impurity concentration in the collector region C decreases as the depth from the substrate surface increases. Therefore, there is a drawback that the series resistance of the collector increases and the switching operation of the transistor is significantly inhibited.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するためになされたものであり
、高速化を達成し得るバイポーラ半導体装置の製造方・
法、を提供しようとするものである。
The present invention has been made to eliminate the above-mentioned drawbacks, and provides a method for manufacturing a bipolar semiconductor device that can achieve high speed.
It seeks to provide the law.

〔発明の概要〕[Summary of the invention]

従来の方法のように不純物イオンをランダムイオン注入
した場合、不純物は第3図中破線で示す如(L、 S、
 S、理論に従い、飛程(Rp )に最大濃度をもつガ
ウス分布をとる。一方、不純物イオンを半導体基体の結
晶軸、例えば(110)、<112>、(100)、<
111>方向に略平行にイオン注入した場合、不純物は
第3図中破線で示すように結晶中に異常に侵入する。い
わゆるチャネリング現象を起こし、結晶内部のRchに
最大濃度をもつ分布をとる(以下、上述したイオン注入
全チャネリングイオン注入と称する)。
When impurity ions are randomly implanted as in the conventional method, the impurities are as shown by the broken lines in Fig. 3 (L, S,
S, according to theory, takes a Gaussian distribution with maximum concentration at range (Rp). On the other hand, the impurity ions are aligned with the crystal axes of the semiconductor substrate, for example (110), <112>, (100), <
When ions are implanted substantially parallel to the 111> direction, impurities abnormally invade the crystal as shown by the broken line in FIG. A so-called channeling phenomenon occurs, and a distribution with a maximum concentration is taken at Rch inside the crystal (hereinafter referred to as the above-mentioned ion implantation and full channeling ion implantation).

本発明は上記チャネリングイオン注入を積極的に3重拡
散によるバイポーラトランジスタのコレクタ形成に応用
したものである。すなわち、本発明のバイポーラ半導体
装置の製造方法は、第1導電型の半導体基体に辿択的に
該基体の結晶軸方向と略平行に第2導電型不純物をイオ
ン注入して第2導電型のコレクタ領域全形成する工程と
、該第2導電型のコレクタ領域内に第1導電型のベース
領域全形成する工程と、該第1導電型のペース領域内に
第2導電型のエミッタ領域を形成する工程とを具備した
ことを特徴とするものである。
The present invention applies the above channeling ion implantation to the formation of a collector of a bipolar transistor by active triple diffusion. That is, in the method of manufacturing a bipolar semiconductor device of the present invention, impurity ions of the second conductivity type are selectively implanted into a semiconductor substrate of the first conductivity type substantially parallel to the crystal axis direction of the substrate to form a semiconductor substrate of the second conductivity type. a step of forming the entire collector region, a step of forming the entire base region of the first conductivity type within the collector region of the second conductivity type, and a step of forming an emitter region of the second conductivity type within the space region of the first conductivity type. The method is characterized by comprising a step of:

このようにコレクタ領域の形成にチャネリングイオン注
入を適用すると、不純物濃度分布は第2図と異なシ第4
図のようになる。したがって、コレクタ領域の内部の濃
度全表面近傍の濃度より1桁程度高くすることができ、
コレクタの直列抵抗を低減して高速化を達成することが
できる。
When channeling ion implantation is applied to form the collector region in this way, the impurity concentration distribution is different from that in Figure 2.
It will look like the figure. Therefore, the concentration inside the collector region can be made about one order of magnitude higher than the concentration near the entire surface.
Higher speeds can be achieved by reducing the series resistance of the collector.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第5図(、)〜(f)t−参照
して説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.

まず、面方位(110)、比抵抗10〜20Ω・mのP
−型シリコン基板11表面に厚さ0.3μmの酸化膜1
2′ff:形成した。次に、この酸化膜12の一部を選
択的にエツチング除去して開孔13を形成した後、po
ct3’i拡散源として1000℃で30分間拡散し、
ρ8=3シロ、x j” 1−5 Aim ON+型コ
レクタ取出し領域14を形成した(第5図(、)図示)
First, P with a plane orientation (110) and a specific resistance of 10 to 20 Ω・m
- Oxide film 1 with a thickness of 0.3 μm on the surface of the silicon substrate 11
2'ff: Formed. Next, after selectively etching and removing a part of this oxide film 12 to form an opening 13,
Diffuse at 1000°C for 30 minutes as a ct3'i diffusion source,
ρ8=3, x j" 1-5 Aim ON+ type collector extraction region 14 was formed (as shown in Fig. 5(,))
.

次いで、前記酸化膜12を全面的にエツチング除去した
後、コレクタ領域形成予定部以外にホトレゾストノやタ
ーン15を被榎した。
Next, after the oxide film 12 was completely removed by etching, photoresist holes and turns 15 were etched in areas other than the portion where the collector region was to be formed.

つづいて、P イオンの入射方向と前記基板11のく1
10〉結晶軸を±o 、 3 e・以内に軸合わせした
後、コレクタ領域形成予定部にp’6加速エネルギー1
50 keV、ドーズ量4 X 1015crn−2の
条件でチャネリングイオン注入した(第5図(b)図示
)。
Continuing, the incident direction of P ions and the corner 1 of the substrate 11
10> After aligning the crystal axes within ±o, 3 e・, apply p'6 acceleration energy 1 to the area where the collector region is to be formed.
Channeling ions were implanted under the conditions of 50 keV and a dose of 4×10 15 crn-2 (as shown in FIG. 5(b)).

次いで、前記ホトレジストパターン15を除去した後、
全面に厚さ0.1μmの熱酸化膜16を形成した。この
時同時に前記Pイオン注入層が活性化されて、xj=1
.5μm1表面濃度1o crn 1結晶内部で10 
 cm  のピーク濃度を持つN型コレクタ領域17が
形成された。つづいて、前記熱酸化膜16上に厚さ0.
1μmのシリコン窒化膜18を堆積した(第5図(C)
図示)。
Next, after removing the photoresist pattern 15,
A thermal oxide film 16 with a thickness of 0.1 μm was formed on the entire surface. At this time, the P ion implantation layer is simultaneously activated, and xj=1
.. 5 μm 1 surface concentration 1 o crn 1 crystal inside 10
An N-type collector region 17 was formed with a peak concentration of cm 2 . Subsequently, the thermal oxide film 16 is coated with a thickness of 0.
A 1 μm silicon nitride film 18 was deposited (Fig. 5(C)).
(Illustrated).

次いで、ペース領域形成予定部以外を覆う厚さ1.0μ
mのホトレジストパターン19を被嫁した後、B+全加
速エネルギー100keV。
Next, a thickness of 1.0 μm was applied to cover the area other than the area where the pace area is to be formed.
After applying a photoresist pattern 19 of m, B + total acceleration energy of 100 keV.

ドーズ量lXl0  cm  の条件でイオン注入した
(第5図(d)図示)。
Ion implantation was performed at a dose of lXl0 cm (as shown in FIG. 5(d)).

次いで、前記ホトレジストハターン19を除去した後、
N2雰囲気中、1000℃で1!5分間熱処理してρ、
=500Ω/口、x j ”” 0.4μmのP型ベー
ス領域20を形成した。つづいて、エミッタ領域形成予
定部上及びコレクタコンタクト領域形成予定部上に対応
する前記シリコン窒化膜18及び熱酸化膜16の一部を
順次選択的にエツチング除去して開孔21゜21を形成
した後、As  k加速エネルギー60keV、  ド
ーズ量2 X 1015cm−2の条件でイオン注入し
た(第5図(、)図示)。
Next, after removing the photoresist pattern 19,
After heat treatment at 1000℃ for 1.5 minutes in N2 atmosphere, ρ,
A P-type base region 20 of =500Ω/hole and x j ”” of 0.4 μm was formed. Subsequently, portions of the silicon nitride film 18 and the thermal oxide film 16 corresponding to the portion where the emitter region is to be formed and the portion where the collector contact region is to be formed are sequentially and selectively removed to form openings 21°21. Thereafter, ions were implanted under the conditions of As k acceleration energy of 60 keV and dose of 2 x 1015 cm-2 (as shown in Fig. 5(, )).

次いで、N2雰囲気中、1000℃で15分間熱処理し
、Xj70.2μmの1型エミッタ領域22及びN+型
コレクタコンタクト領域23を形成した。つづいて、前
記P型ベース領域20上に対応する前記シリコン窒化膜
18及び熱酸化膜16の一部全順次選択的にエツチング
除去して開孔24を形成した。つがいて、全面にAA−
8t膜を堆積した後、パターニングしてエミッタ電極2
5、ベース電極26及びコレクタ電極27を形成し、N
2Hノぐイポーラトランリスタ盆製造し、た(第5図(
f)図示)。
Next, heat treatment was performed at 1000° C. for 15 minutes in an N2 atmosphere to form a type 1 emitter region 22 and an N+ type collector contact region 23 with Xj of 70.2 μm. Subsequently, a portion of the silicon nitride film 18 and the thermal oxide film 16 corresponding to the P-type base region 20 were selectively etched away in order to form an opening 24. It comes with AA- on the entire surface.
After depositing the 8t film, it is patterned to form the emitter electrode 2.
5. Form the base electrode 26 and collector electrode 27, and
2H Nogipola Tranlista tray was manufactured (Fig. 5 (
f) As shown).

しかして、本発明方法によれば、P のチャネリングイ
オン注入によって光面濃度 1017m−3、結晶内部で1018cm−’のピーク
濃度を持つN型コレクタ領域17を形成することができ
る。したがって、コレクタ直列抵抗を低減できるので高
速化を達成することができる。また、チャネリングイオ
ン注入の採用によりコレクタ領域の結晶性が保存され、
良好なベースコレクタ接合を形成することができる。
Thus, according to the method of the present invention, an N-type collector region 17 having an optical surface concentration of 1017 m-3 and a peak concentration of 1018 cm-' inside the crystal can be formed by channeling P ion implantation. Therefore, since the collector series resistance can be reduced, higher speeds can be achieved. In addition, the use of channeling ion implantation preserves the crystallinity of the collector region.
A good base-collector junction can be formed.

なお、上記実施例では面方位(110)の半導体基体の
<11’0>結晶軸に略平行に不純物イオンのチャネリ
ングイオン注入を行なったが、面方位(100)の半導
体基体を傾けて(110)軸に略平行にチャネリングイ
オン注入を行なっても同様の効果を得ることができる。
Note that in the above example, channeling ion implantation of impurity ions was performed approximately parallel to the <11'0> crystal axis of the semiconductor substrate with the (110) plane orientation; ) A similar effect can be obtained by performing channeling ion implantation approximately parallel to the axis.

また、面方位(100)、(111)あるいは(112
)の半導体基体の(100)軸、(111)軸あるいは
〈112〉軸に略平行′にチャネリングイオン注入全行
なってもよいことは勿論である。
Also, the plane orientation (100), (111) or (112
It goes without saying that the channeling ion implantation may be carried out substantially parallel to the (100) axis, (111) axis, or <112> axis of the semiconductor substrate.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、高速化を達成し得る
バイポーラ半導体装置の製造方法全提供できるものであ
る。
As described in detail above, according to the present invention, it is possible to provide a complete method of manufacturing a bipolar semiconductor device that can achieve high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の3重拡散によシ製造されたバイポーラト
ランジスタの断面図、第2図は同バイポーラトランジス
タの不純物濃度分布を示す図、第3図はランダムイオン
注入とチャネリングイオン注入の不純物濃度分布全示す
図、第4図は本発明方法によシ製造されるバイポーラト
ランジスタの不純物濃度分布を示す図、第5図(、)〜
(f)は本発明の実施例延おけるバイポーラトランジス
タの製造工程全示す断面図である。 11・・・P−型シリコン基板、14・・・1型コレク
タ取出し領域、16・・・熱酸化膜、17・・・N型コ
レクタ領域、18・・・シリコン窒化膜、20・・・P
型ベース領域、22・・・1型エミッタ領域、25・・
・エミッタ電極、26・・・ベース電極、27・・・コ
レクタ電極。 出願人代理人  弁理士 鈴 江 武 彦第 1 創・
d 第 3  IJ 表iO・らり;装含 第 2 H 石 4 11!(1 糺 命令・らの潔き (a) (c) ― (d)
Figure 1 is a cross-sectional view of a bipolar transistor manufactured by conventional triple diffusion, Figure 2 is a diagram showing the impurity concentration distribution of the same bipolar transistor, and Figure 3 is the impurity concentration of random ion implantation and channeling ion implantation. FIG. 4 is a diagram showing the entire distribution, and FIG. 4 is a diagram showing the impurity concentration distribution of a bipolar transistor manufactured by the method of the present invention. FIG.
(f) is a sectional view showing the entire manufacturing process of a bipolar transistor according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 11...P-type silicon substrate, 14...1 type collector extraction region, 16...thermal oxide film, 17...N type collector region, 18...silicon nitride film, 20...P
Type base region, 22...1 type emitter region, 25...
- Emitter electrode, 26...base electrode, 27...collector electrode. Applicant's agent Patent attorney Takehiko Suzue 1st Sou.
d 3rd IJ table iO・Rari; inclusion 2nd H stone 4 11! (1 Tadasu Command・Ranokiki (a) (c) - (d)

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基体に選択的に該基体の結晶軸方向
と略平行に第2導電型不純物をイオン注入して第2導電
型のコレクタ領域を形成する工程と、該第2導電型のコ
レクタ領域内に第1導電型のペース領域を形成する工程
と、該第1導電型のペース領域内に第2導電型のエミッ
タ領域を形成する工程とを具備したことを特徴とするバ
イポーラ半導体装置の製造方法。
forming a collector region of the second conductivity type by selectively ion-implanting a second conductivity type impurity into the semiconductor substrate of the first conductivity type substantially parallel to the crystal axis direction of the substrate; A bipolar semiconductor device comprising the steps of: forming a first conductivity type paste region within the collector region; and forming a second conductivity type emitter region within the first conductivity type paste region. manufacturing method.
JP19820182A 1982-11-11 1982-11-11 Manufacture of bipolar semiconductor device Pending JPS5987866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19820182A JPS5987866A (en) 1982-11-11 1982-11-11 Manufacture of bipolar semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19820182A JPS5987866A (en) 1982-11-11 1982-11-11 Manufacture of bipolar semiconductor device

Publications (1)

Publication Number Publication Date
JPS5987866A true JPS5987866A (en) 1984-05-21

Family

ID=16387155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19820182A Pending JPS5987866A (en) 1982-11-11 1982-11-11 Manufacture of bipolar semiconductor device

Country Status (1)

Country Link
JP (1) JPS5987866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247200A (en) * 1989-02-16 1993-09-21 Kabushiki Kaisha Toshiba MOSFET input type BiMOS IC device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247200A (en) * 1989-02-16 1993-09-21 Kabushiki Kaisha Toshiba MOSFET input type BiMOS IC device

Similar Documents

Publication Publication Date Title
JP3012673B2 (en) Method for manufacturing semiconductor device
JPS5917243A (en) Manufacture of semiconductor device
JPS5987866A (en) Manufacture of bipolar semiconductor device
CN112071751A (en) Method for manufacturing semiconductor device
JP2748326B2 (en) Ion implantation method
JPH0231468A (en) Manufacture of floating gate type semiconductor memory device
JP2576664B2 (en) Method for manufacturing NPN transistor
JPS58206158A (en) Manufacture of semiconductor device
JP2656054B2 (en) Method for manufacturing semiconductor device
KR0154307B1 (en) Method of fabricating semiconductor device
JPS6129538B2 (en)
JP2630616B2 (en) Method for manufacturing semiconductor device
JP2892436B2 (en) Method for manufacturing semiconductor device
JPS5987865A (en) Manufacture of bipolar semiconductor device
JPH0443673A (en) Semiconductor device and its manufacture
JPS6216555B2 (en)
JPH04213834A (en) Manufacture of bipolar integrated circuit
JPH025429A (en) Manufacture of lateral pnp transistor
JPH04113630A (en) Manufacture of semiconductor device
JPH02281732A (en) Manufacture of semiconductor device
JPS6362100B2 (en)
JPH01225156A (en) Manufacture of semiconductor integrated circuit device
JPH04176129A (en) Manufacture of semiconductor integrated circuit device
JPS6365671A (en) Manufacture of semiconductor device
JPS59161068A (en) Manufacture of bipolar type semiconductor device