JPS5987856A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5987856A
JPS5987856A JP19712182A JP19712182A JPS5987856A JP S5987856 A JPS5987856 A JP S5987856A JP 19712182 A JP19712182 A JP 19712182A JP 19712182 A JP19712182 A JP 19712182A JP S5987856 A JPS5987856 A JP S5987856A
Authority
JP
Japan
Prior art keywords
dose
diffusion
oxide film
region
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19712182A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shinada
品田 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19712182A priority Critical patent/JPS5987856A/en
Publication of JPS5987856A publication Critical patent/JPS5987856A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes

Abstract

PURPOSE:To inhibit the generation of a defect with the diffusion of impurities while forming a shallow junction with excellent controllability by each implanting the ions of P<+> and As<+> to a polycrystalline semiconductor layer in the specific quantities of doses and thermally diffusing P and As while using the polycrystalline semiconductor layer as diffusion source. CONSTITUTION:Sections corresponding to an emitter-region forming prearranged section and a collector-contact region forming prearranged section of a thermal oxide film 5 are removed selectively through etching, and openings 71, 72 are formed. A non-doped polycrystalline silicon layer 8 is deposited on the whole surface through a LPCVD method, and the ions of P<+> are implanted under the conditions of the quantity of a dose of 10<15>-10<16>cm<-2> and the ions of As under the conditions of the quantity of a dose of 10<12>-10<14>cm<-2> respectively. Both elements are thermally diffused in an O2 atmosphere while using the polycrystalline silicon layer 8 as the diffusion source. One part of a thermal oxide film 5 on a P type base region 6 is removed selectively through etching to form an opening 12.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、詳しくは浅い接
合の形成方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a shallow junction.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体デバイスの高集積化,高速化を達成するための技
術の一つとして浅い接合形成技術が挙げられる。
Shallow junction formation technology is one of the technologies for achieving higher integration and higher speed of semiconductor devices.

接合を形成するために不純物としてPを用いた場合、P
は拡散係数が太きいため浅い接合を゛制御よく形成する
ことには困Mを伴う。そこで、一般に不純物として拡散
係数が/J\さ〈、がっ固溶度の高いAsをドープする
ことによって浅い接合が形成されている。しかし、As
の拡散は欠陥、ストレスの存在に敏感であシ、例えば、
選択酸化技術によシ厚い酸化膜を半導体基板中に強制的
に埋設した場合、厚い酸化膜と半導体基板との界面に発
生する欠陥等に沿ってAsが異常拡散を起こし、バイポ
ーラ型トランジスタにおいてはエミッターコレクタ短絡
が生じる恐れがある。
When P is used as an impurity to form a junction, P
Since the diffusion coefficient is large, it is difficult to form shallow junctions with good control. Therefore, a shallow junction is generally formed by doping As as an impurity with a diffusion coefficient of /J\< and high solid solubility. However, As
The diffusion of is sensitive to the presence of defects, stress, e.g.
When a thick oxide film is forcibly buried in a semiconductor substrate using selective oxidation technology, arsenic will abnormally diffuse along the defects that occur at the interface between the thick oxide film and the semiconductor substrate, resulting in abnormal diffusion in bipolar transistors. Emitter-collector short circuit may occur.

また、半導体基板上にCVD法によ、9p及びAsを含
む多結晶半導体層を堆積し、この多結晶半導体層を拡散
源として半導体基板中へP及びA8を同時拡散するとい
う方法を採用すれば、両者の原子半径の違いによりpの
拡散時に発生する欠陥を抑制するとともにPの拡散長を
抑制できることが知られている。しかし、この方法では
多結晶半導体層中のAs濃夏を制御することが困難であ
り、接合深さの均一な浅い接合を制御よく形成すること
は困難である。
Alternatively, if a method is adopted in which a polycrystalline semiconductor layer containing 9P and As is deposited on a semiconductor substrate by the CVD method, and P and A8 are simultaneously diffused into the semiconductor substrate using this polycrystalline semiconductor layer as a diffusion source. It is known that defects generated during p diffusion can be suppressed and the diffusion length of p can be suppressed due to the difference in atomic radius between the two. However, with this method, it is difficult to control the As concentration in the polycrystalline semiconductor layer, and it is difficult to form a shallow junction with a uniform junction depth in a well-controlled manner.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものでおり、不純物
の拡散に伴う欠陥の発生を抑制するとともに制御よく浅
い接合を形成し、高速化。
The present invention was made in view of the above circumstances, and it suppresses the occurrence of defects due to impurity diffusion, forms shallow junctions with good control, and increases speed.

高集積化を達成し得る半導体装置の製造方法を提供しよ
うとするものである。
The present invention aims to provide a method for manufacturing a semiconductor device that can achieve high integration.

半導体基体に多結晶半導体層からP及びAsを拡散させ
る際、多結晶半導体層に含まれるP及びAsが厳密に規
定されていれば浅い接合を制御よく形成することができ
ると考えられる。そのためには、多結晶半導体層にP+
及びAs+をイオン注入法によってドープすれば、イオ
ン注入法は物理的に不純物をドープする方法であるため
多結晶半導体層中の不純物置を制御できる〇そこで、本
発明者はP型シリコン基板上に厚さ約0.2μmのノン
ルーブト多結晶シリコン層を形成し、戸を1015〜1
016m−2のドーズ量で−As+を1011〜101
5i2のドーズ量で二重イオン注入した後、900℃で
熱拡散した時のN+fj1不純物領域の接合深さを調べ
、浅い接合を形成し得る戸及びAs+のドーズ量につい
て検討した。
When diffusing P and As from a polycrystalline semiconductor layer into a semiconductor substrate, it is considered that a shallow junction can be formed with good control if the P and As contained in the polycrystalline semiconductor layer are strictly defined. For this purpose, P+
If As+ is doped by ion implantation, the ion implantation is a method of physically doping impurities, so the location of impurities in the polycrystalline semiconductor layer can be controlled.Therefore, the inventors of the present invention A non-rubuted polycrystalline silicon layer with a thickness of approximately 0.2 μm is formed, and the door is
-As+ at a dose of 016 m-2 to 1011 to 101
After double ion implantation at a dose of 5i2, the junction depth of the N+fj1 impurity region when thermally diffused at 900° C. was investigated, and the depth and As+ dose for forming a shallow junction were investigated.

第1図にP+及びAs+を二重イオン注入して熱拡散し
た場合の拡散長を、上記二重イオン注入の際のP+のド
ーズ量を同ドーズ量の戸のみをイオン注入して熱拡散し
た場合の拡散長で規格化した接合深さとA8+ ドーズ
量との関係をビドーズ量をパラメータとして示す。
Figure 1 shows the diffusion length when P+ and As+ are double ion-implanted and thermally diffused. The relationship between the junction depth normalized by the diffusion length and the A8+ dose is shown using the dose as a parameter.

本発明の半導体装置の製造方法は第1図を評価した結果
に基づいてなされたものであシ、半導体基体表面に該基
体を電気的に分離するための絶縁膜を形成し、少なくと
も前記絶縁膜によシ分離された半導体基体の領域を覆う
ように多結晶半導体層を形成した後、該多結晶半導体層
にP+を1015crn−2を超えて10 ” cm−
2未満のドーズ量で、As(’z 1012cm−2を
超えてl Q” cm−2未満のドーズ量で夫々イオン
注入し、更に該多結晶半導体層を拡散源としてP及び八
8を熱拡散させることにより不純物の拡散に伴う欠陥の
発生を抑制するとともに制御よく浅い接合を形成するこ
とができる。
The method for manufacturing a semiconductor device of the present invention was made based on the results of evaluating FIG. 1, and includes forming an insulating film on the surface of a semiconductor substrate for electrically isolating the substrate, After forming a polycrystalline semiconductor layer so as to cover the separated regions of the semiconductor substrate, the polycrystalline semiconductor layer is doped with P+ to a depth of 10” cm−2 over 10 cm−2.
The ions of As (more than 1012 cm-2 and less than 1 Q'' cm-2) are implanted at a dose of less than 2, and P and 88 are thermally diffused using the polycrystalline semiconductor layer as a diffusion source. By doing so, it is possible to suppress the occurrence of defects due to the diffusion of impurities and to form a shallow junction with good control.

本発明においてP+のドーズ量を1015cr++−2
を超えて1016crn−2未満としたのは、1015
crn−2以下では・、一般に用いられているベース領
域の不純物濃度1018crn−3に対して、エミッタ
領域の不純物濃度がIQ19cn+−3程度となシュミ
ッタ電流増巾率を決める要因の一つであるエミッタとベ
ース領域の不純物濃度の比が10程度以下に低下し、ト
ランジスタの性能を著しく悪化させる〉から1であ’j
) 、10” cm−2以上では戸のみをイオン注入し
た場合とほぼ゛同一の拡散長となシ、浅い接合を形成す
ることができないためである。また、Afi+のドーズ
量f I Q 12cm−2を超えてI Q ’、’ 
cm−2未満としたのは、この範囲を逸脱すると、P+
のみをイオン注入した場合とほぼ同一の拡散長とな仄浅
い接合を形成することができないためである。
In the present invention, the dose of P+ is 1015cr++-2
exceeding 1016 crn-2 is 1015
Below crn-2, the impurity concentration of the emitter region is about IQ19cn+-3 compared to the generally used base region impurity concentration of 1018crn-3. The ratio of the impurity concentration in the base region and the impurity concentration in the base region decreases to about 10 or less, significantly deteriorating the performance of the transistor.
), 10" cm-2 or more, the diffusion length is almost the same as when only the door is ion-implanted, and a shallow junction cannot be formed. Also, the dose of Afi+ is f I Q 12 cm- I Q',' over 2
The reason for setting it below cm-2 is that if it deviates from this range, P+
This is because it is not possible to form a shallow junction with approximately the same diffusion length as in the case where only ions are implanted.

また、P+及びA8+のドーズ量が上記範囲であれば、
Pの拡散に特有な転位はみられない。
Moreover, if the dose amount of P+ and A8+ is within the above range,
No dislocations specific to P diffusion are observed.

〔発明の実施例〕 以下、本発明方法をバイポーラトランジスタのエミッタ
形成に適用した実施例を第2図(、)〜(、)を参照し
て説明する。
[Embodiments of the Invention] Hereinafter, an embodiment in which the method of the present invention is applied to the formation of an emitter of a bipolar transistor will be described with reference to FIGS.

まず、比抵抗10〜20Ω・副のP−型シリコン基板1
に部分的にρ8=20〜25ル勺のN+型埋込み領域2
を形成した後、気相成長法によシ比抵抗0.2〜0.4
0・錆、厚さ1.2μmのN型エピタキシャル層(コレ
クタ領域)3を方位成長させた。
First, a secondary P-type silicon substrate 1 with a specific resistance of 10 to 20Ω
Partially in the N+ type buried region 2 of ρ8=20~25μ
After forming, the resistivity is 0.2 to 0.4 by vapor phase growth method.
0. Rust, 1.2 μm thick N-type epitaxial layer (collector region) 3 was grown azimuthally.

次に、前記基板1上に図示しない厚さ500Xのバッフ
ァ酸化膜パターン及び厚さ0.1μm のシリコン屋化
膜パターンを形成し、このシリコン窒化膜パターンをマ
スクとして前記N型エピタキシャル層(コレクタ領域)
3を0.75Mエツチング除去した。つづいて、選択酸
化法によシ厚さ1.5μmの分離酸化膜4を形成した後
、前記シリコン窒化膜及びバッファ酸化膜を順次エツチ
ング除去しfc(第2図(、)図示)。
Next, a buffer oxide film pattern with a thickness of 500× and a silicon nitride film pattern with a thickness of 0.1 μm (not shown) are formed on the substrate 1, and using this silicon nitride film pattern as a mask, the N-type epitaxial layer (collector region )
3 was removed by 0.75M etching. Subsequently, after forming an isolation oxide film 4 with a thickness of 1.5 μm by selective oxidation, the silicon nitride film and the buffer oxide film are sequentially removed by etching fc (as shown in FIG. 2(a)).

次いで、前記N型エピタキシャル層(コレクタ領域)3
表面に厚さ0.2μmの熱酸化膜5を形成した後、図示
しないホトレジストパターンをマスクとしてB+を加速
エネルギー80 keV、  ドーズ量1×10 cr
n の条件でイオン注入した。
Next, the N-type epitaxial layer (collector region) 3
After forming a thermal oxide film 5 with a thickness of 0.2 μm on the surface, B+ is accelerated with an energy of 80 keV and a dose of 1×10 cr using a photoresist pattern (not shown) as a mask.
Ion implantation was performed under the conditions of n.

つづいて、前記ホトレジストパターンを除去した後、N
2雰囲気中、1000℃で60分間熱処理することによ
ってρ5=6004/口、xj=0.4μmのP型ベー
ス領域6を形成した(第2図(b)図示)。
Subsequently, after removing the photoresist pattern, N
A P-type base region 6 with ρ5=6004/hole and xj=0.4 μm was formed by heat treatment at 1000° C. for 60 minutes in a 2 atmosphere (as shown in FIG. 2(b)).

次いで、前記熱酸化膜5のエミッタ領域形成予定部及び
コレクタコンタクト領域形成予定部に対応する部分を選
択的にエツチング除去して開孔71,72を形成した。
Next, openings 71 and 72 were formed by selectively etching away portions of the thermal oxide film 5 corresponding to the portions where the emitter region and the collector contact region were to be formed.

つづいて、LPCvD法によシ全面に厚さ0,2μmの
ノンドープト多結晶シリコン層8を堆積した後、P+を
加速エネルギー3 Q keV、  ドーズ量5XLO
crn の条件で、またA8+を加速エネルギー60k
eV、  ドーズ量5 X 1013cm−2の条件で
夫々イオン注入した(第2図(c)図示)。
Subsequently, a non-doped polycrystalline silicon layer 8 with a thickness of 0.2 μm is deposited on the entire surface by the LPCvD method, and then P+ is accelerated at an energy of 3 Q keV and a dose of 5 XLO.
Under crn conditions, the A8+ is accelerated with an energy of 60k.
The ions were implanted under the conditions of eV and a dose of 5×10 13 cm −2 (as shown in FIG. 2(c)).

次いで、前記多結晶シリコン層8を拡散源として02雰
囲気中、900℃で60分間熱拡散することによってρ
、=6010、xj =0.14μmのN++エミッタ
領域9及びN+ mコレクタコンタクト領域10を形成
した。因みに、P+のみを加速エネルギー3 Q ke
V %  ドーズ量5x10  crnの条件でイオン
注入し、熱拡散を行った場合、ρ8=60Ω/口、Xj
=0.26AT1となる。つづいて、熱拡散時に多結晶
シリコン層8表面に形成された酸化膜を除去した後、こ
の多結晶シリコン層8をパターニングして前記N+型型
窩ミッタ領域及びN++コレクタコンタクト領域10上
にのみ多結晶シリコンパターン111pHzk残存させ
た(第2図(d)図示)。
Next, by thermally diffusing the polycrystalline silicon layer 8 at 900° C. for 60 minutes in a 02 atmosphere using the polycrystalline silicon layer 8 as a diffusion source, ρ
, = 6010, xj = 0.14 μm, an N++ emitter region 9 and an N+ m collector contact region 10 were formed. Incidentally, the acceleration energy of only P+ is 3 Q ke
V % When ion implantation is performed at a dose of 5x10 crn and thermal diffusion is performed, ρ8 = 60Ω/mouth, Xj
=0.26AT1. Subsequently, after removing the oxide film formed on the surface of the polycrystalline silicon layer 8 during thermal diffusion, the polycrystalline silicon layer 8 is patterned to form a polycrystalline silicon layer 8 only on the N+ type cavity transmitter region and the N++ collector contact region 10. A crystalline silicon pattern of 111 pHzk remained (as shown in FIG. 2(d)).

次いで、前記P型ベース領域6上の熱酸化膜5の一部を
選択的にエツチング除去して開孔12を形成した。つづ
いて、全面に厚さ1.0μmのAt−Si膜を堆椎した
後、バターニングしてエミッタ電極13、ベース電極1
4及びコレクタ電極15を形成し、NPNバイポーラト
ランジスタを製造した(第2図(、)図示)。得られた
NPNバイポーラトランジスタにおいて、h、8=5.
0、VCEO= 12 V、■o、。=20VXv9B
。−6Vであった。
Next, a portion of the thermal oxide film 5 on the P-type base region 6 was selectively etched away to form an opening 12. Next, after depositing an At-Si film with a thickness of 1.0 μm on the entire surface, it is patterned to form an emitter electrode 13 and a base electrode 1.
4 and a collector electrode 15 were formed to manufacture an NPN bipolar transistor (as shown in FIG. 2(, )). In the resulting NPN bipolar transistor, h,8=5.
0, VCEO= 12 V, ■o,. =20VXv9B
. -6V.

しかして、本発明方法によれは、戸及びAg+のイオン
注入のドーズ量を規定することによって、多結晶シリコ
ン層8中のP及びAl1の量を厳密に規定することがで
き、この多結晶シリコン層8を拡散源としてP及びAg
e同時に拡散すれば浅いエミッタ接合を精密に制御して
形成することができる。例えば、P+のドーズ量5×1
0 crnlA−のドーズ量2 X 1013cm−2
でイオン注入を行なった場合、拡散長140Xの接合を
均一性よく得ることができた。こうした極めて浅い接合
は従来の方法では制御よく形成することが困難である。
According to the method of the present invention, the amount of P and Al1 in the polycrystalline silicon layer 8 can be strictly defined by specifying the dose of ion implantation of Ag+. P and Ag using layer 8 as a diffusion source
e Simultaneous diffusion allows formation of a shallow emitter junction with precise control. For example, the dose of P+ is 5×1
0 crnlA-dose amount 2 X 1013cm-2
When ion implantation was carried out in this manner, a junction with a diffusion length of 140X could be obtained with good uniformity. Such extremely shallow junctions are difficult to form with good control using conventional methods.

このように浅い接合形成により、エミッタシリーズ抵抗
を低減できるため得られたバイポーラトランジスタは高
速動作を達成することかできる。
By forming such a shallow junction, the emitter series resistance can be reduced, so that the resulting bipolar transistor can achieve high-speed operation.

また、PとAs、とを同時に拡散させると拡散に伴う結
晶欠陥を抑制でき、Asの異常拡散は生じにくり、エミ
ッタ・コレクタ短絡は生じにくい。
Further, by simultaneously diffusing P and As, crystal defects accompanying diffusion can be suppressed, abnormal diffusion of As is less likely to occur, and emitter-collector shorting is less likely to occur.

このため、トランジスタの良品確罠は0.99999と
なシ、従来の方法によシエミッタを形成した場合の良品
確率0.99994と比較して大幅に向上するので、バ
イポーラトランジスタを高集積化することができる。
Therefore, the probability of good quality transistors is 0.99999, which is significantly improved compared to 0.99994 when the emitter is formed by the conventional method, so it is important to increase the integration of bipolar transistors. I can do it.

更に、多結晶シリコンパターン118.11□の存在は
、配線メタルが浅い接合に触れ接合不良となるのを防ぐ
のに有効であることは言うまでもない。
Furthermore, it goes without saying that the presence of the polycrystalline silicon patterns 118.11□ is effective in preventing the wiring metal from coming into contact with shallow junctions and resulting in poor junctions.

なお、本発明方法はバイポーラトランジスタだけでな(
MOS )ランリスタの製造にも同様に適用できる。本
発明方法をMOS )ランリスタのソース、ドレイン形
成に適用した場合を第3図を参照して説明する。
Note that the method of the present invention is applicable not only to bipolar transistors (
It can be similarly applied to the manufacture of MOS) run listers. A case in which the method of the present invention is applied to the formation of the source and drain of a MOS (MOS) run lister will be explained with reference to FIG.

まず、P−型シリコン基板21に選択酸化法によシ厚い
フィールド酸化膜22を埋設する。次に、素子形成領域
に薄い熱酸化膜を形成した後、全面に多結晶シリコン膜
を堆積する。つづいて、該多結晶シリコン膜をバターニ
ングしてゲート電極23を形成した後、該ゲート電極2
3をマスクとして前記薄い熱酸化膜をエツチング除去し
てゲート酸化膜24を形成する。つづいて、熱酸化処理
を施して、ゲート電極23周囲で厚く、基板21表面で
薄い熱酸化膜を形成した後、基板21表面の薄い熱酸化
膜のみをエツチング除去し、ゲート電極23周囲に熱酸
化膜25を残存させる。つづいて、全面にノンドープト
多結晶シリコン層を堆積した後、P+及びAa+を本発
明方法の範囲内のドーズ童でイオン注入する。
First, a thick field oxide film 22 is buried in a P-type silicon substrate 21 by selective oxidation. Next, after forming a thin thermal oxide film in the element formation region, a polycrystalline silicon film is deposited on the entire surface. Subsequently, the polycrystalline silicon film is buttered to form a gate electrode 23, and then the gate electrode 23 is formed.
3 as a mask, the thin thermal oxide film is removed by etching to form a gate oxide film 24. Next, thermal oxidation treatment is performed to form a thick thermal oxide film around the gate electrode 23 and a thin thermal oxide film on the surface of the substrate 21, and then only the thin thermal oxide film on the surface of the substrate 21 is removed by etching. The oxide film 25 is left. Subsequently, after a non-doped polycrystalline silicon layer is deposited on the entire surface, P+ and Aa+ are ion-implanted at a dose within the range of the method of the present invention.

つついて、前記多結晶シリコン層を拡散源としてP及び
Asを熱拡散させ、N+型ソース、ドレイン領域26.
27を形成する。つづいて、前記多結晶シリコン層をバ
ターニングしてN+型ソース、ドレイン領域26.27
上にのみ多結晶シリコンパターン28を残存させた後、
全面にAt−8i膜を堆積し、これをバターニングして
ソース電極29及びドレイン電極30を形成する(第3
図図示)。
Then, P and As are thermally diffused using the polycrystalline silicon layer as a diffusion source, and the N+ type source and drain regions 26.
form 27. Subsequently, the polycrystalline silicon layer is patterned to form N+ type source and drain regions 26 and 27.
After leaving the polycrystalline silicon pattern 28 only on the top,
An At-8i film is deposited on the entire surface and patterned to form a source electrode 29 and a drain electrode 30 (third
(Illustrated)

しかして、本発明方法によれば、接合深さの浅いN+型
ンース、ドレイン領域26.27を形成することができ
るため、チャネル長がほぼゲート電極23の幅によって
決定され、高速高集積MOSデバイスを得ることができ
る。
According to the method of the present invention, it is possible to form N+ type source and drain regions 26 and 27 with a shallow junction depth, so that the channel length is almost determined by the width of the gate electrode 23, and this enables high-speed, highly integrated MOS devices. can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、不純物の拡散に伴う
欠陥の発生を抑制するとともに制御よく浅い接合を形成
し、高速化、高集積化を達成し得る半導体装置の製造方
法を提供できるものである。
As detailed above, according to the present invention, it is possible to provide a method for manufacturing a semiconductor device that suppresses the occurrence of defects due to impurity diffusion, forms shallow junctions with good control, and achieves high speed and high integration. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はP及び八8の二重イオン注入による接合の深さ
を示す線図、第2図(a)〜(、)は本発明の実施例に
おけるNPNバイポーラトランジスタの製造工程を示す
断面図、第3図は本発明の他の実施例において製造され
たMOS )ランリスタの断面図である。 l・・・P−型シリコン基板、2・・・N+型埋込み領
域、3・・・Hzエピタキシャル層(コレクタ領域)、
4・・・分離酸化膜、5・・・熱酸化膜、6・・・P型
ベース領域、71172・・・開孔、8・・・多結晶シ
リコン層、9・・・N+型エミッタ領域、10・・・N
+型コレクタコンタクト領域、111.112・・・多
結晶シリコンパターン、12・・・’fA孔、13・・
・エミッタ電極、14・・・ベース電極、15・・・コ
レクタ電極、21・・・P−型シリコン基11i、22
・・・フィールド酸ドレイン領域、29・・・ソース電
極、30・・・ドレイン電極。
FIG. 1 is a diagram showing the depth of a junction by double ion implantation of P and 88, and FIGS. 2 (a) to (,) are cross-sectional views showing the manufacturing process of an NPN bipolar transistor in an embodiment of the present invention. , FIG. 3 is a cross-sectional view of a MOS (MOS) run lister manufactured in another embodiment of the present invention. 1...P- type silicon substrate, 2...N+ type buried region, 3...Hz epitaxial layer (collector region),
4... Isolation oxide film, 5... Thermal oxide film, 6... P type base region, 71172... Opening, 8... Polycrystalline silicon layer, 9... N+ type emitter region, 10...N
+ type collector contact region, 111.112...polycrystalline silicon pattern, 12...'fA hole, 13...
- Emitter electrode, 14... Base electrode, 15... Collector electrode, 21... P-type silicon base 11i, 22
... Field acid drain region, 29... Source electrode, 30... Drain electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基体表面に該基体を電気的に分離するため
の絶縁膜を形成する工程と、少なくとも前記絶縁膜によ
シ分離された半導体基体の領域を覆うように多結晶半導
体層を形成する工程と、該多結晶半導体層にP+を1 
0 15cm−2を超えて1016crn−2未満のド
ーズ量で、AB+を1012crn−2  を超えて1
0  cm  未満のドーズ量で夫々イオン注入する工
程と、該多結晶半導体層を拡散源としてP及びAsを熱
拡散させ、前記基体に一導電型の不純物領域を形成する
工程とを具備したことを特徴とする半導体装置の製造方
法。
(1) Forming an insulating film on the surface of a semiconductor substrate to electrically isolate the substrate, and forming a polycrystalline semiconductor layer to cover at least the region of the semiconductor substrate separated by the insulating film. step, and adding 1 P+ to the polycrystalline semiconductor layer.
0 AB+ above 1012 crn-2 at a dose of more than 15 cm-2 and less than 1016 crn-2
ion implantation at a dose of less than 0 cm, and thermally diffusing P and As using the polycrystalline semiconductor layer as a diffusion source to form an impurity region of one conductivity type in the substrate. A method for manufacturing a featured semiconductor device.
(2)一導電型の不純物領域がバイポーラトランジスタ
のエミッタ領域であることを特徴とする特許請求の範囲
第1項記載の半導体装置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the impurity region of one conductivity type is an emitter region of a bipolar transistor.
(3)  一導電型の不純物領域がMOS }ランリス
タのソース,ドレイン領域であることを特徴とする特許
請求の範囲第1項記載の半導体装置の製造方法。
(3) The method of manufacturing a semiconductor device according to claim 1, wherein the impurity regions of one conductivity type are source and drain regions of a MOS (MOS) run lister.
JP19712182A 1982-11-10 1982-11-10 Manufacture of semiconductor device Pending JPS5987856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19712182A JPS5987856A (en) 1982-11-10 1982-11-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19712182A JPS5987856A (en) 1982-11-10 1982-11-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5987856A true JPS5987856A (en) 1984-05-21

Family

ID=16369078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19712182A Pending JPS5987856A (en) 1982-11-10 1982-11-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5987856A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177513A (en) * 1987-01-19 1988-07-21 Nec Corp Manufacture of semiconductor device
EP0735590A2 (en) * 1995-03-27 1996-10-02 Siemens Aktiengesellschaft Silicon bipolar transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177513A (en) * 1987-01-19 1988-07-21 Nec Corp Manufacture of semiconductor device
EP0735590A2 (en) * 1995-03-27 1996-10-02 Siemens Aktiengesellschaft Silicon bipolar transistor

Similar Documents

Publication Publication Date Title
KR0133540B1 (en) Bicmos process for forming shallow npn emitters and mosfet
JPH08321511A (en) Preparation of vertical type bipolar transistor
US5686322A (en) Process for doping two levels of a double poly bipolar transistor after formation of second poly layer
JPH0226032A (en) Manufacture of semiconductor device
JPS5987856A (en) Manufacture of semiconductor device
US6806159B2 (en) Method for manufacturing a semiconductor device with sinker contact region
JPH05283520A (en) Manufacture of semiconductor device
US7164186B2 (en) Structure of semiconductor device with sinker contact region
JP2697631B2 (en) Method for manufacturing semiconductor device
JPH01220438A (en) Manufacture of semiconductor device
JPH0695521B2 (en) Method for manufacturing bipolar transistor
KR100497221B1 (en) Method For Manufacturing Semiconductor Devices
JPH0547774A (en) Manufacture of semiconductor device
JP2847773B2 (en) Method for manufacturing semiconductor device
JPH02309646A (en) Manufacture of semiconductor device
KR920005127B1 (en) Method of manufacturing self-aligned bipolar transistor using seletive epitaxy
JPS63144567A (en) Manufacture of semiconductor device
JPS617664A (en) Semiconductor device and manufacture thereof
JPS60137072A (en) Manufacture of junction type field effect transistor
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH0555585A (en) Manufacture of insulated-gate field-effect transistor
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPH0485936A (en) Manufacture of semiconductor device
KR20020029199A (en) A method for fabrication of semiconductor devices comprising bipolar transistor and resistors
JPH04176129A (en) Manufacture of semiconductor integrated circuit device